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Abstract

Fast and accurate prediction of solvent effects on reaction rates are crucial for kinetic
modeling, chemical process design, and high-throughput solvent screening. Despite the
recent advance in machine learning, a scarcity of reliable data has hindered the devel-
opment of predictive models that are generalizable for diverse reactions and solvents.
In this work, we generate a large set of data with the COSMO-RS method for over
28,000 neutral reactions and 295 solvents and train a machine learning model to pre-
dict the solvation free energy and solvation enthalpy of activation (∆∆G‡solv, ∆∆H‡solv)
for a solution phase reaction. On unseen reactions, the model achieves mean absolute
errors of 0.71 and 1.03 kcal/mol for ∆∆G‡solv and ∆∆H‡solv, respectively, relative to the
COSMO-RS calculations. The model also provides reliable predictions of relative rate
constants within a factor of 4 when tested on experimental data. The presented model
can provide nearly instantaneous predictions of kinetic solvent effects or relative rate
constants for a broad range of neutral closed-shell or free radical reactions and solvents
only based on atom-mapped reaction SMILES and solvent SMILES strings.
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1 Introduction

Accurate prediction of reaction rates is essential for modeling a variety of chemical kinetic sys-
tems such as pyrolysis,1,2 polymerization,3 oxidative degradation,4,5 and atmospheric chem-
istry.6 Detailed kinetic models enable one to predict key products, identify major kinetic
pathways, and optimize reaction conditions for complex chemical systems. Kinetic mech-
anisms often involve hundreds to tens of thousands of elementary reactions,7 and a fast,
high-throughput method to estimate reaction rates is thus needed. Ab initio methods like
quantum mechanics/molecular mechanics (QM/MM) can provide accurate predictions of rate
constants, but their high computational cost has been a major limiting factor for large-scale,
automated predictions. As more kinetic data become available, data-driven approaches such
as linear group contribution,8–10 decision tree based rate rules,11,12 and machine learning
(ML) models13–19 have emerged as more popular choices for estimating kinetic parameters.
Several ML models15–17 have successfully predicted barrier heights and rate constants of
diverse gas phase reactions only based on readily available 2D information (e.g. SMILES
strings) of reactants and products. However, such predictive models for liquid/solution phase
reactions have been lightly investigated with limited applicability.20

Solvents can have significant impacts on reaction rates and outcomes, and it is crucial to
accurately predict these kinetic solvent effects. Recent research efforts have been devoted
to employing ML (e.g. deep neural network) for free energy predictions of condensed phase
reactions.15,18,19,21–26 Many of these studies18,19,21–23,26 combine the ML models with semi-
empirical or lower-level QM/MM methods to obtain the energy predictions that match the
accuracy of higher-level QM/MM methods. For example, Gómez-Flores et al.19 used a ML
approach to predict the energy difference between the density functional tight-binding model
and other higher level QM methods for a thiol-disulfide exchange reaction in water. In a
study by Pan et al.,18 a ML model was trained to reproduce ab initio QM/MM poten-
tials in free energy simulations for the aqueous Menshutkin reaction between ammonia and
chloromethane. Farrar and Grayson26 employed ML models to predict DFT-quality activa-
tion barriers for various nitro-Michael addition reactions in toluene based on the features
generated from semi-empirical methods. These approaches, however, require semi-empirical
QM/MM steps that are less suitable for instantaneous, automatic rate predictions. Fur-
thermore, their models are limited to a single solvent and need the 3D coordinates or QM
features of reactants and transition states as inputs, which are not readily available.

The ML models by Jorner et al.24 and by Heid and Green15 are the few cases that can
predict reaction properties in multiple solvents only based on the 2D structural information
of molecules. Jorner et al.24 employed a Gaussian process regression model and compared
several 2D structural features to predict the barrier height of 443 SNAr reactions in different
solvents. In their work, the best accuracy was reached by adopting the BERT27 reaction fin-
gerprint. Heid and Green,15 on the other hand, used the condensed graph of reaction (CGR)
as an input reaction representation for a graph convolutional neural network (GCNN). They
applied the CGR GCNN model to the same SNAr data set and were able to achieve better
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barrier height predictions compared to the other models that used the BERT fingerprint or
different reaction representations. While these models can provide fast kinetic estimations
for solution-phase reactions at a low computational cost, only one reaction family was con-
sidered with a relatively small training set. A larger data set that contains more diverse
types of reactions and solvents is needed in order to train a more generalized model for
kinetic solvent effect predictions. Moreover, both models used fixed descriptors to represent
solvents, but prior studies15,28,29 revealed that the learned molecular representations based
on a graph convolutional approach outperform fixed molecular descriptors in many property
prediction tasks.

In this study, we present a ML model that can predict kinetic solvent effects for a wide range
of neutral reactions and solvents only based on atom-mapped reaction SMILES and solvent
SMILES strings. More precisely, the model predicts the solvation free energy and solvation
enthalpy of activation (∆∆G‡solv, ∆∆H‡solv) for a reaction-solvent pair, which can be used
to estimate a relative rate constant between a solution phase and a gas phase reaction or
between the reaction in different solvents. Our model adopts a CGR GCNN architecture with
separate GCNN layers for solvent molecular encoding. A large, diverse set of training data
containing over 28,000 reactions and 295 solvents is generated in this work by performing
ab initio COSMO-RS30 calculations. The performance of the model on unseen reactions is
rigorously assessed by comparing the ML predictions with both COSMO-RS calculations
and experimental data. A transfer learning approach and various additional features are
explored to further improve the model. Our ML model can provide accurate predictions of
relative rate constants, and together with the existing predictive models or databases for gas
phase rate constants (e.g. RMG database12), it can provide the estimates of absolute rate
constants for many different liquid phase reactions.

2 Background on the prediction targets

Figure 1: Potential energy diagram of a reaction in a gas phase and a solution phase.
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Our ML model aims to predict the solvation free energy and solvation enthalpy of activation
(∆∆G‡solv, ∆∆H‡solv) at 298 K for a reaction in a solvent. Solvation free energy (∆Gsolv)
and solvation enthalpy (∆Hsolv) are the changes in Gibbs free energy and enthalpy when a
molecule is transferred from an ideal gas to a solvent at a fixed condition. The ∆∆G‡solv

and ∆∆H‡solv of a reaction-solvent pair are defined as the solvation free energy and solvation
enthalpy differences between a transition state (TS) and reactant(s):

∆∆G‡solv = ∆GTS
solv −∆GR

solv (1)

∆∆H‡solv = ∆HTS
solv −∆HR

solv (2)

where ∆GTS
solv and ∆GR

solv represent the solvation free energies of a TS and a reactant, and
∆HTS

solv and ∆HR
solv represent the solvation enthalpies of a TS and a reactant, respectively.

For a bimolecular reaction, ∆GR
solv and ∆HR

solv each correspond to the sum of the solvation
free energies and solvation enthalpies of all reactants. The standard state of 1 M ideal gas
and 1 M solution is used for solvation free energy and enthalpy in this work.

As depicted in Figure 1, a solvent medium can affect the energies of reactants and a TS
by different degrees, causing the activation free energy to shift when a reaction occurs in
a solution (liquid) phase. The ∆∆G‡solv of a reaction corresponds to the difference in the
free energy of activation between a gas phase and a solution phase and is an important
kinetic parameter for solution phase reactions. For example, ∆∆G‡solv can be directly used
to estimate the ratio of a gas phase rate constant (kgas) to a liquid phase rate constant (kliq)
as follows:31

kliq

kgas

= exp

(
−∆∆G‡solv

RT

)
(3)

where R is the universal gas constant and T is a temperature. It can be also used to calculate
the relative rate constant between two solvents:

krel =
ks1

liq

ks2
liq

= exp

(
−

∆∆G‡solv,s1 −∆∆G‡solv,s2

RT

)
(4)

where ks1
liq and ks2

liq are the rate constants of a reaction in a solvent 1 and in a solvent

2, respectively, and ∆∆G‡solv,s1 and ∆∆G‡solv,s2 are the corresponding solvation energies of
activation for the reaction in each solvent.

Our model predicts ∆∆H‡solv in addition to ∆∆G‡solv at 298 K to account for the temperature

dependence of ∆∆G‡solv. The ∆∆G‡solv at a different temperature can be linearly extrapolated
using the two model outputs at 298 K as follows:

∆∆G‡solv(T ) ≈ ∆∆H‡solv(298K)− T

(
∆∆H‡solv(298K)−∆∆G‡solv(298K)

298K

)
(5)
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The linear approximation is found to be generally valid for a moderate temperature range
(250 K - 400 K),32 but the error is expected to increase as the temperature significantly
deviates from 298 K.

3 Methods

3.1 Data generation

Table 1: Summary of the data sets used in this study. The number of reactions in the
pre-training and fine-tuning sets include both forward and reverse directions. “N data cho-
sen” represents the number of data sampled from the total data to construct the training,
validation, and test sets.

Data set N data N data N N Data type & reference
total chosen reactions solvents

Pre-training 7,796,583 500,000 26,448 295 In-house COSMO-RS calculations
set (6.4 %) based on the optimized geometries

from Grambow et al.33–35

Fine-tuning 542,833 46,122 1870 295 In-house COSMO-RS calculations
set (8.5 %) based on the optimized geometries

from Harms et al.36

Experimental 165 165 15 49 Experimental relative rate constants
test set from Chung and Green31

Table 1 shows the summary of the data sets used in this work. A total of three data sets
are prepared: (1) a pre-training set containing the reactions from Grambow et al.,33–35 (2) a
fine-tuning set containing the reactions from Harms et al.,36 and (3) an experimental test set
from our prior study.31 The data sets include diverse range of neutral closed-shell and free
radical reactions and nonionic solvents. For both pre-training and fine-tuning sets, ∆∆G‡solv

and ∆∆H‡solv are computed for each reaction-solvent pair with the COSMO-RS calculations
based on the geometries obtained from Grambow et al. and Harms et al. The ML model
is trained, validated, and tested on the computed data, and the experimental set is used as
an additional test set for the final error assessment. The reaction and solvent information is
stored as atom-mapped reaction SMILES and solvent SMILES in all data sets.

We separated the computed data into the pre-training and fine-tuning sets because the two
data sets significantly differ in the types of reactions included and the level of theory used for
geometry optimizations. The pre-training set is the largest, but the majority of its reactions
are uncommon reactions with high gas phase barrier heights (e.g. Ea > 50 kcal/mol), and it
does not contain any reactions that are bimolecular in both forward and reverse directions.
In contrast, the fine-tuning set is smaller but contains more common reactions. To leverage
the different types of data, we employ a transfer learning approach in which the model is
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first pre-trained on the reactions from Grambow et al. and subsequently fine-tuned on the
reactions from Harms et al. Details on each data set and the computational method are
described below, and all data sets are provided as a part of the Supporting Information.

3.1.1 Computational method

The pre-training and fine-tuning data sets are generated by performing COSMO-RS calcula-
tions at the BP86/def2-TZVPD37–39 level of theory with fine grid cavity,40 which is commonly
known as a BP-TZVPD-FINE level. The COSMO-RS is a hybrid solvation model that uses
quantum chemistry and statistical thermodynamics to compute the chemical potential of
a compound in a solvent.30,41,42 We have previously demonstrated that the COSMO-RS
method can provide accurate predictions of ∆∆G‡solv for various neutral closed-shell and free
radical reactions in different solvents with a mean absolute error of around 0.45 kcal/mol.31

The computational workflow used in this work follows that employed in our earlier study.31

Single-point energy calculations are performed at the BP-TZVPD-FINE level of theory in
a COSMO phase and in a gas phase with TURBOMOLE 7.543,44 for reactants, products,
and TSs based on the optimized gas phase geometries obtained from Grambow et al. and
Harms et al.; this step generates screening charge densities and energies that are needed for
the COSMO-RS calculations. Then, the ∆Gsolv and ∆Hsolv of reactants, products, and TSs
are computed in 295 common solvents at 298 K with COSMOtherm (release 2021)45 based
on the COSMO-RS theory, and the ∆∆G‡solv and ∆∆H‡solv of each reaction are subsequently
calculated in 295 solvents at 298 K using equations 1 and 2. Because COSMOtherm does not
directly output solvation enthalpy, ∆∆H‡solv is obtained by first computing ∆∆G‡solv at 297,
298, and 299 K, estimating the temperature gradient at 298 K, and then using the definition
∆H = ∆G − T d∆G

dT
. The screening charge densities and energies of the 295 solvents are

acquired from the COSMObase database.46 The reactions from Grambow et al. and Harms
et al. were each optimized in gas phase at the ωB97XD3/def2-TZVP47,48 and M06-2X/cc-
pVTZ49,50 levels of theory in their original work. Although these levels of theory are different
from the level used for the COSMO-RS calculations, our prior work31 demonstrated that
the accurate COSMO-RS calculations can be made with the gas phase geometries that are
optimized at different levels of theory, which justifies the current computational workflow.

A total of 7,814,610 and 614,780 COSMO-RS calculations were completed successfully for
the pre-training and fine-tuning sets, respectively. The results were then further cleaned by
only including the reaction-solvent pairs that successfully ran for both forward and reverse
directions of the reaction. While most of the computed ∆∆G‡solv and ∆∆H‡solv values were
within ±10 kcal/mol, a small fraction of the data had unreasonably large values for neutral
reactions. For instance, a ∆∆G‡solv of ±40 kcal/mol corresponds to around 29 orders of
magnitude increase/decrease in a liquid phase rate constant compared to a gas phase rate
constant (see eq 3). We suspected that these are likely due to the COSMO-RS calculation
errors as the COSMO-RS method may not have been parameterized well for certain reactions
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and geometries. Therefore, we filtered out 241 reaction-solvent pairs from the pre-training
set that had |∆∆G‡solv| > 40 kcal/mol or |∆∆H‡solv| > 56 kcal/mol (14 standard deviations
away from means). Higher quality data are usually expected for the fine-tuning set. Thus,
more strict cutoff values of |∆∆G‡solv| > 10 kcal/mol and |∆∆H‡solv| > 18 kcal/mol are
applied to the fine-tuning set to remove potentially erroneous data.

3.1.2 Pre-training set

The final pre-training set contains a total of 7,796,583 reaction-solvent pairs with 26,448
unique reactions and 295 solvents. Both forward and reverse reactions are included in the
data set to augment the data. As mentioned earlier, the geometry optimizations were done at
the ωB97XD3/def2-TZVP level of theory for these reactions in the original work by Gram-
bow et al.33–35 The histograms and statistics of the data set are provided in Supporting
Information Figure S1. The computed ∆∆G‡solv and ∆∆H‡solv have nearly normal distribu-

tions with high peaks at zero. The ∆∆G‡solv and ∆∆H‡solv have absolute mean values of
1.81 and 2.58 kcal/mol, respectively, with standard deviations of 2.76 and 3.92 kcal/mol.
The reactions contain diverse types of neutral closed-shell and free radical reactions that
involve H, C, N, and O atoms and have at most 7 heavy atoms. Due to errors from Open
Babel51 when perceiving connectivity, a small set of the original reaction SMILES from the
Grambow et al. had incorrect bond orders and formal charges, and therefore, the corrected
atom-mapped SMILES from Spiekermann et al.52 are used for our pre-training set.

The entire data set has nearly 7.8 million data points. However, it is unlikely that every
reaction-solvent pair is needed since the total number of unique reactions and solvents would
remain fixed even if the number of reaction-solvent pairs increases. To investigate the effect
of the data size on the model performance, we prepared 8 different data sets containing
10k, 50k, 75k, 100k, 250k, 500k, 750k, and 1M data points. These data are sampled in a
semi-random manner such that all reactions and solvents appear in the data sets at least
once, except the 10k set which has fewer data than the total number of reactions. From
the results, we determined 500k to be the optimal data set size for the model as explained
further in the results section.

3.1.3 Fine-tuning set

The fine-tuning data set has 542,833 reaction-solvent pairs with 1870 unique reactions in-
cluding both forward and reverse directions and 295 solvents. The geometry optimizations
were performed at the M06-2X/cc-pVTZ level of theory in the original work by Harms et
al.36 for these reactions. The data set contains three specific reaction types: bimolecular
hydrogen abstraction (H-abstraction), unimolecular hydrogen migration (H-migration), and
radical addition to a multiple bond (R-addition). These are neutral, free radical reactions
that are ubiquitous in both gas and liquid phase systems. The reaction templates are illus-
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trated in the Supporting Information Figure S2. In total, there are 1402 H-abstraction, 146
H-migration, and 322 R-addition reactions. The reactions involve maximum 10 heavy atoms
and include H, C, and O atoms. The histograms and statistics of the data are presented in
Supporting Information Figure S3. The ∆∆G‡solv and ∆∆H‡solv have absolute average values
of 1.40 and 2.32 kcal/mol, respectively, with standard deviations of 1.91 and 3.17 kcal/mol.

Similar to the pre-training set, only a subset of the fine-tuning data was chosen for the model.
We sampled around 25 solvents per each reaction semi-randomly with more weights on polar
solvents in order to include more data with stronger solvent effects. A total of 46,122 data
points were selected, and all reactions and solvents appear in the chosen set at least once.
The detailed data sampling method is explained in Supporting Information Section S2.

3.1.4 Experimental test set

The experimental data set31 consists of 165 relative rate constants (krel) for 15 neutral
reactions and 49 solvents from 273 K to 392 K. None of the experimental reactions appear
in the pre-training and fine-tuning sets, and therefore these data serve as a reaction split
test set for the final model evaluation. The reactions are depicted in Supporting Information
Table S1, and they include 2 β-scission, 5 H-abstraction, 3 Diels-Alder, and 5 other types of
reactions. The reactions involve H, C, N, O, and S atoms and have up to 22 heavy atoms,
which are much larger than the reactions found in the pre-training and fine-tuning sets. The
errors on the experimental test set are computed in both log10(krel) and ∆G‡rel units, where

the ∆G‡rel error is calculated as follows:

∆G‡rel error = −RT (ln(krel,expt)− ln(krel,calc)) (6)

3.2 Data splits

The pre-training set is split into a 90% training/validation and a 10% test set using reaction
and solvent splits to evaluate the model’s predictive performance on unseen reactions and
unseen solvents. For our test splits, 5% reactions and 5% solvents are randomly selected, and
all reaction-solvent pairs that include the chosen reactions or chosen solvents are added to the
test set and excluded from the training/validation set. Both forward and reverse directions
of the selected reactions are included in the test set to prevent data leakage; this procedure
is very crucial for evaluating the true performance of a model on unseen reactions since
the model can gain the information on the reaction and TS from its own reverse reaction.
The importance of the proper reaction split is addressed in the recent studies by Heid and
Green15 and Spiekermann et al.16 The remaining 90% data are randomly split into a 80%
training and 20% validation set. The validation set is used for early stopping to determine
the epoch that gives the lowest validation error and prevents over-fitting. Five folds are used
to prepare five different training, validation, and test sets from the pre-training set.
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The fine-tuning set is randomly split into a 80 % training and a 20 % validation set using
one fold. We did not construct a separate test set from the fine-tuning set. Instead, the
experimental set is used as a final reaction-split test set for the fine-tuned model. We ensured
that none of the experimental reactions (both forward and reverse) appear in the pre-training
and fine-tuning sets.

3.3 Machine learning model architecture

Figure 2: Schematic of a machine learning model architecture. The model takes an atom-
mapped reaction SMILES and a solvent SMILES as inputs.

The schematic of the ML architecture is depicted in Figure 2. Our model takes the atom-
mapped reaction SMILES and solvent SMILES as inputs and predicts ∆∆G‡solv and ∆∆H‡solv

at 298 K. The model is constructed using Chemprop,28 an open-source software that uses
a directed message passing neural network (D-MPNN) for chemical and reaction property
predictions. A D-MPNN is a type of GCNN that converts atom and bond features into
a latent representation of a molecule through bond-level message passing. To encode a
reaction, we adopt the established CGR representation15,53,54 as it has shown to outperform
other representations for various reaction property predictions. The CGR is a superposition
of the reactant and product graphs, which mimics the 2D-structure of the TS. In our model,
the CGR representation is constructed from the atom-mapped reactants and products and
passed into a D-MPNN to give a reaction embedding. A separate D-MPNN is employed to
convert a solvent graph into a solvent molecular embedding. The learned reaction and solvent
representations are then concatenated together and passed into a feed forward neural network
(FNN) to predict the regression targets. The initial atom and bond features are generated
using RDKit55 within Chemprop and include several features such as atom type, bond type,
formal charge, chirality, and etc. The hyperparameters are optimized via 47 iterations of
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Bayesian optimization with the Hyperopt package.56 Only the training/validation set of the
pre-training data is used for the hyperparameter optimization to prevent data leakage. The
full list of atom and bond features and the optimized hyperparameters can be found in
Supporting Information Tables S2 and S3.

As mentioned in the earlier section, a transfer learning approach is used to first train the
model on the pre-training set and subsequently fine-tune the model on the fine-tuning set
with fewer epochs. Within each of the 5 folds of the pre-training set, an ensemble of 5
different models are generated by using different random initialization of model parameters.
This results in a total of 25 individual models from the 5-fold pre-training set. The optimized
parameters from the 25 pre-trained models are then used to initialize the 25 fine-tuned models
that are trained on the fine-tuning set. When evaluating the reaction- and solvent-split errors
on the pre-training test set, average predictions from the ensemble of 5 models are employed
to compute the error in each fold. When evaluating the final error on the experimental
set, an ensemble of all 25 fine-tuned models are used to make the average predictions. We
ensured that no models are trained or validated on the tested reactions or solvents.

3.4 Additional features

Table 2: List of additional features investigated.

Name Type Description Ref
RP-solv Molecular Solvation energy and enthalpy of reactants and This

products at 298 K (∆GR
solv, ∆GP

solv, ∆HR
solv, ∆HP

solv) work
S-abr Molecular Abraham parameters of solvents 57

RDKit-mol Molecular 2D molecular features generated from RDKit 55

Addit-atom Atomic Additional atom features generated from RDKit 55,58

QM-desc Atomic, bond QM atom and bond descriptors 59

Five additional sets of features that are listed in Table 2 are explored to improve the model
performance. The RP-solv features represent the solvation free energies and solvation en-
thalpies of reactants and products that are calculated in this work. We also tested the
Abraham parameters of solvents (S-abr) that are obtained from the ML model by Chung
et al.57 The Abraham parameters consist of five descriptors that can describe various so-
lute/solvent interactions.60 The RDKit-mol represents the 2D molecular features generated
from RDKit. There are 200 2D molecular features available within RDKit, and 20 and 15 fea-
tures were selected for reactants/products and solvents, respectively, based on the variance
threshold and random forest methods imported from scikit-learn.61 Six additional RDKit
atomic features (Addit-atom) that are adopted from Vermeire and Green58 are also tested
as they have shown to improve solvation free energy predictions. These include the number
of radical electrons, ring size, number of lone electron pairs, H-bond donating and accepting
characters, and electronegativity. Lastly, the QM atomic and bond descriptors (QM-desc)
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obtained from the ML model by Guan et el.59 are explored. The QM-desc contains 4 atomic
descriptors (Hirshfeld partial charge, two Fukui indices, NMR shielding constants) and 2
bond descriptors (bond lengths, bond orders) that were shown to improve reaction property
predictions.59,62

The performances of the additional features are compared using the pre-training test set.
Within the ML model, additional molecular features are concatenated with the reaction and
solvent embeddings and fed into the FFN layer to make the predictions. Additional atom
and bond features are concatenated with the initial atom and bond features prior to the
CGR/D-MPNN layers. Note that nearly all features can be calculated instantly or predicted
by existing ML models. The only exception is the RP-solv features which are computed
with the COSMO-RS method. Yet, several ML models are available for predicting solvation
energy and enthalpy of closed-shell compounds,57,58,63–66 and the RP-solv features can be
therefore estimated with the ML models if fast approximations are needed. We did not
consider the 3D structures of the reactants and products as additional inputs in our study as
they are usually not readily available and prone to calculation noise and error. Furthermore,
Spiekermann et al.16 showed that the 2D D-MPNN model outperformed the 3D ML model
for gas phase barrier height predictions on the Grambow et al.’s reactions. Since the same
data set and similar model architecture are used in our study, we expect the result to be
similar and hence do not consider the 3D ML model in this work.

4 Results and discussion

4.1 Data set size and additional features

The effects of the data set size and additional features are investigated using the pre-training
set prior to fine-tuning any models. The resulting test root-mean-square errors (RMSE) on
the reaction and solvent splits are presented in Figure 3. The reaction and solvent splits
each test the model’s performance on unseen reactions in seen solvents and on seen reactions
in unseen solvents. As previously explained, the pre-training set of around 7.8M data is
divided into smaller subsets to identify the optimal data set size that can balance accuracy
and training time. From Figure 3a, it can be seen that the test error initially decreases with
an increasing data set size and plateaus out from 500k for the reaction split. For the solvent
split, the error continues to decrease at a higher data set size, but the change in the error is
very small beyond 500k. Therefore, 500k is chosen as a final data set size for the pre-training
set. This result was expected since only the number of reaction-solvent pairs increases with
the increasing data set size whereas the number of unique reactions and solvents remains
constant. The information gain from more reaction-solvent pairs is likely to saturate after
the model sees enough data on each reaction and solvent, causing the errors to level out.
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Figure 3: Pre-trained model results on the reaction split and solvent split test sets. (a)
RMSE vs the data set size for the model trained with the RP-solv feature. (b) RMSE error
of different additional features for the model trained with the 500k data set. The chosen
data set size and feature are marked with dashed vertical and horizontal lines, respectively.
The error bars indicate the standard deviation between five folds.

Figure 3b shows the results of the additional features tested with the 500k data set. In all
cases, only the RP-solv feature improves the errors and other features do not have noticeable
impacts on the model performance. The reactions tend to accelerate/decelerate in a polar
solvent when the products are more/less strongly solvated than the reactants.67,68 The RP-
solv feature, which consists of solvation energy and solvation enthalpy of reactants and
products, describe how strongly the reactants and products are solvated in a solvent and
therefore helps the ∆∆G‡solv and ∆∆H‡solv predictions for our model. The results also show
that the QM-desc feature worsens the model performance, which is consistent with results
from Spiekermann et al.16 that show the descriptors offer no improvement. The QM-desc

12

https://doi.org/10.26434/chemrxiv-2023-f20bg ORCID: https://orcid.org/0000-0002-3097-010X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-f20bg
https://orcid.org/0000-0002-3097-010X
https://creativecommons.org/licenses/by/4.0/


feature was predicted by the ML model from Guan et al.59 which was trained on three
classes of substitution reactions. Our data set includes more diverse types of reactions, and
therefore, it is likely that their model is not suitable for our reaction data. Moreover, it is
possible that the chosen QM descriptors are not related to our targets and act as noise to
the model.

4.2 Comparison of the pre-trained and fine-tuned models

Table 3: Test errors of different models and additional (addit.) features. The best combi-
nation of the model and additional feature is marked in bold. For the pre-training set, the
errors on the reaction split are available for all models while the errors on the solvent split are
only available for the pre-trained model and shown in parentheses. The standard deviations
are calculated between the 5 folds for the pre-trained set. All test errors are reported in
kcal/mol.

Pre-training set: Experimental
reaction split (solvent split) set

Addit. ∆∆G‡solv ∆∆H‡solv ∆G‡rel

Model feature MAE RMSE MAE RMSE MAE RMSE

Pre-trained None 0.79 ± 0.03 1.41 ± 0.07 1.13 ± 0.04 1.99 ± 0.08 0.90 1.18
(0.20 ± 0.05) (0.46 ± 0.17) (0.30 ± 0.07) (0.66 ± 0.21)

Pre-trained RP-solv 0.68 ± 0.02 1.25 ± 0.07 0.97 ± 0.03 1.75 ± 0.08 0.75 0.98
(0.16 ± 0.04) (0.35 ± 0.11) (0.24 ± 0.06) (0.52 ± 0.16)

Fine-tuned None 0.71 ± 0.14 1.16 ± 0.24 1.03 ± 0.18 1.63 ± 0.33 0.60 0.80
( - ) ( - ) ( - ) ( - )

Fine-tuned RP-solv 0.82 ± 0.08 1.29 ± 0.18 1.40 ± 0.09 2.06 ± 0.21 0.71 0.99
( - ) ( - ) ( - ) ( - )

Table 3 summarizes the performances of the pre-trained and fine-tuned models with and
without the RP-solv feature. The MAE (mean absolute error) and RMSE are reported in
kcal/mol, and the standard deviations are calculated between the 5 folds for the pre-training
set. For the experimental test set, the krel error is converted to a Gibbs free energy unit
(∆G‡rel or RT (ln krel)) using eq 6 to allow easy comparison.

The fine-tuned model with no additional feature achieves overall the best performance on
unseen reactions for both pre-training and experimental test sets and is therefore selected as
the optimal model. The model has the RT (ln krel) MAE/RMSE of 0.60/0.80 kcal/mol on the
experimental set and has the ∆∆G‡solv and ∆∆H‡solv MAE/RMSE of 0.71/1.16 and 1.03/1.63

kcal/mol, respectively, on the pre-training set reaction split. The model has higher ∆∆H‡solv

errors than ∆∆G‡solv in all cases as the COSMO-RS method, which was used to generate the

training data, has higher calculation errors for ∆∆H‡solv.57 Furthermore, ∆∆H‡solv generally

has a larger magnitude than ∆∆G‡solv, which leads to larger absolute errors. The results also
show that the pre-trained model has much lower errors on the solvent split than the reaction
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split. The model is able to provide very accurate predictions on unseen solvents with 295
training solvents whereas it has much higher errors on unseen reactions even with 26,448
training reactions. We believe this is because the chemical space of viable solvents is not as
nearly big as that of reactions. Furthermore, the reaction split is a more challenging task
since the model has to infer the TS information from the reactants and products. The fine-
tuned model was not separately tested on the solvent split as it was trained on all solvents
that are found in the fine-tuning set. Since the major limitation is on the reaction split, we
expect the fine-tuned model to have a similarly low error on unseen solvents.

Contrary to the earlier results on the pre-trained model, it is found that the RP-solv feature
has adverse effect on the fine-tuned model. It is likely that the model was able to learn
more comprehensive reaction embeddings from the fine-tuning data set and no longer needs
additional information on reactants and products. As a result, the RP-feature serves as
an unnecessary input and hinders the performance of the new model. It is surprising that
fine-tuning the model with a relatively smaller data set can lead to a completely different
outcome for the feature selection. Compared to the pre-trained model, the fine-tuned model
not only has better performance but also benefits from a reduced computational cost as it
no longer requires the RP-solv feature that needs to be calculated.

Table 3 shows that the best fine-tuned model achieves around 0.18 kcal/mol lower error
than the pre-trained model on the unseen experimental reactions. The performance gain is
relatively big considering the small size of the fine-tuning set compared to the size of the
pre-training set. The fine-tuning set contains bimolecular reactions that the pre-training set
lacks and includes more common classes of reactions while the pre-training set largely con-
tains uncommon reactions with high gas phase barrier heights (Ea > 50 kcal/mol).33 Hence,
even a relatively small number of fine-tuning data greatly enhances the model’s performance
on the experimental set, which mostly contains low-barrier reactions and several bimolec-
ular reactions. A similar result was observed in the work by Spiekermann et al.16 where
a model that was initially pre-trained with lower accuracy DFT data showed substantial
improvement on barrier height predictions after fine-tuning with a small number of higher
accuracy CCSD(T)-F12 data. Both their and our studies demonstrate that different types
of data sets can be best leveraged via transfer learning when only a limited amount of higher
quality or more relevant data is available. Transfer learning is particularly beneficial for our
study since we could avoid mixing the two data sets that differ in the level of theory used
for geometry optimizations and also put more emphasis on the data set that is considered
to be more relevant to real liquid phase systems.

It is also worthwhile to note that the model has similar or slightly lower errors on the
pre-training set reaction split after fine-tuning. Even though the pre-training and fine-
tuning sets differ in the level of theory used for geometry optimizations and the types of
reactions included, fine-tuning improves the model’s performance on the pre-training test set
as well. Our prior study31 demonstrated that the ∆∆G‡solv calculations using the COSMO-
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Figure 4: Model MAE vs the number of fine-tuning epochs. The model is trained with no
additional feature. The error on the pre-training set is evaluated on the reaction split test
set, and the error on the fine-tuning set is evaluated on the random split validation set.

RS method are not too sensitive to the level of theory used for geometry optimizations for
the 15 experimental reactions tested. Similar conclusion can be deduced from the current
result as the fine-tuning set, which is based on the M06-2X/cc-pVTZ geometries, still helps
or does not exacerbate the model’s predictions on the pre-training set, which is based on the
ωB97XD3/def2-TZVP geometries.

However, the model can have very different outcomes depending on the number of fine-tuning
epochs used. In this work, the ML model was trained up to the chosen number of maximum
epochs, and the validation set was then used to determine at which epoch to stop the model
training. We used the maximum epoch of 80 for pre-training and used the smaller maximum
epoch of 10 for fine-tuning to prevent the pre-trained information from being completely
overwritten by the three reaction families used in the fine-tuning set. Moreover, the error
on the fine-tuning validation set plateaued out after 10 epochs (see Figure 4), and thus,
the maximum fine-tuning epoch was selected as 10 in our work. To investigate the effect of
fine-tuning epochs on the model performance, we trained additional models using different
maximum epochs and compared the results. Figure 4 shows that the error on the pre-training
set initially has a sharp drop as the model learns new reactions but gradually increases as the
number of maximum fine-tuning epochs increases. The error on the experimental set also
decreases at first but soon reaches a plateau at around 10 epochs. The result indicates that
the chosen epoch maintains a good balance between retaining previously learnt knowledge
and learning new data. At higher epochs, however, the model starts to lose prior knowledge
without much added benefits as it becomes biased toward the three reaction families found
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in the fine-tuning set. It is thus important to identify optimal epochs and hyperparameters
for the fine-tuned model if one seeks to preserve the pre-trained information.
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Figure 5: Parity plots of the predicted vs experimental krel values. (a) The pre-trained model
with the RP-solv feature. (b) The fine-tuned model with no additional feature. The errors
are reported in both log10(krel) and ∆G‡rel units.

The parity plots of the best pre-trained model (with RP-solv) and fine-tuned model (no
additional feature) are presented in Figure 5 for the experimental test set. It can be seen that
the predictions on the H-abstraction reactions are substantially improved after fine-tuning.
This was expected as the fine-tuning set primarily comprises H-abstraction reactions. We find
that fine-tuning also improves the predictions on other reactions such as [2+2] cycloaddition
and β-scission. The model, on the contrary, has relatively poor performance on Reactions
9, 12, and 13 (see Supporting Information Table S1 for details on the reactions). However,
considering that the reactants and TSs found in the experimental set are around twice as
large as those of the training sets, the model’s extrapolation capability is quite satisfactory.
Further improvement of the model is expected if more diverse and larger reactions become
available as training data. In this work, the model was trained with the calculated data,
which inherently have some errors. Our previous study showed that the COSMO-RS method
has a ∆G‡rel MAE/RMSE of around 0.4 kcal/mol (0.28 in log10 krel units) on these reactions.
This suggests that only a part of the prediction errors are due to the model performance,
and the rest are from the intrinsic calculation errors in the training data.

The parity plots and error histograms of the models on the pre-training set reaction split are
provided in Figure 6 for the ∆∆G‡solv predictions. The corresponding plots for the ∆∆H‡solv

predictions and for the solvent split are presented in Supporting Information Figure S4 and
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Figure 6: Parity plots and histograms of the ∆∆G‡solv errors on the 5-fold pre-training set
reaction split. (a) The pre-trained model with the RP-solv feature. (b) The fine-tuned
model with no additional feature. The MAE and RMSE are in kcal/mol. The numbers of
reactions, solvents, total data points found in the test set are provided. The top and right
subfigures on the parity plots show the distribution of computed and predicted values, and
the colorbars display the scale of the 2D kernel density estimate plots.

Figure S5. The test errors are centered around zero for both models, and the majority
of the errors fall within ±2 kcal/mol. Yet, higher errors are observed in regions where
the data are sparse. The pre-trained model predicts nearly zero ∆∆G‡solv values for many

reaction-solvent pairs whose computed ∆∆G‡solv values are highly negative. Such trend is less
pronounced in the fine-tuned model, but the model still tends to underpredict the magnitude
of the ∆∆G‡solv values when the computed ∆∆G‡solv have large positive or negative values. It
should be noted, though, that the model is compared with the computed values and not with
the true values. The ∆∆G‡solv of ±10 kcal/mol corresponds to around 7 orders of magnitude
difference between the liquid phase and gas phase rate constants at room temperature. Such
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large solvent effects are very rare for neutral reactions, and thus, it is possible that the
COSMO-RS method overpredicted the magnitude of the target values on some of these
extreme data points.

We further examined the outliers of the fine-tuned model on the pre-training set reaction
split. The top 20 reactions with the highest test errors are given in Supporting Information
Table S4 along with their gas phase barrier heights obtained from Grambow et al.33–35 It is
found that the majority of the outliers are unusual reactions such as those forming biradical
products, involving TSs with high ring strain, and with high barrier heights (Ea > 85
kcal/mol). These reactions are unlikely to occur in real condensed phase systems, and
therefore we expect the model to have lower errors on more feasible reactions.

5 Conclusions

We developed a machine learning model that can provide fast and accurate predictions
of kinetic solvent effects for a wide range of neutral reactions and solvents. A large set of
training data were generated using the COSMO-RS method for over 28,000 reactions and 295
solvents. The performance of the model was evaluated with both calculated and experimental
data using rigorous data splits. The model achieves the MAEs of 0.71 and 1.03 kcal/mol
on unseen reactions for the prediction of solvation free energy and solvation enthalpy of
activation (∆∆G‡solv, ∆∆H‡solv), respectively, relative to the COSMO-RS calculations. The
model is shown to provide reliable predictions of relative rate constants when tested on the
experimental set that contains unseen reactions with much bigger molecules than those found
in the training set. We also demonstrate that different types of data sets can be effectively
used via a transfer learning approach to refine the predictions.

The presented model can be used to estimate the relative rate constants between a gas phase
and a liquid phase or between two solvents for a temperature range of around 250 K to 400
K. If a rate constant in one solvent or in a gas phase is known for a reaction, our model
outputs can be used to estimate absolute rate constants in many different solvents for a
given reaction. One of the advantages of the model is that it only needs the atom-mapped
reaction SMILES and solvent SMILES as inputs, which are more amenable for automatic
high-throughput predictions in comparison to requiring optimized 3D geometries as input.
We anticipate the model to be particularly useful for the design of chemical processes and
automatic construction of reaction mechanisms where fast estimations of kinetic parameters
and solvent screenings are needed for a large number of reaction-solvent pairs.
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6 Data and model availability

All data sets and the fine-tuned ML model can be found through Zenodo: https://zenodo.
org/record/8049537. A sample script for making ∆∆G‡solv and ∆∆H‡solv predictions with
the fine-tuned ML model can be found at https://github.com/yunsiechung/chemprop/

tree/RxnSolvKSE_ML. The data sets and model are open access and distributed under the
terms and conditions of the Creative Commons Attribution (CC BY 4.0) license (https:
//creativecommons.org/licenses/by/4.0/).

Acknowledgement

The authors gratefully acknowledge the support of Eni S.p.A. for funding this research
and the MIT SuperCloud Lincoln Laboratory Supercomputing Center69 for providing HPC
resources. The authors also thank Professor Richard West and his group for providing the
reaction data set, Oscar Wu for his help on data compilation, and Kevin Spiekermann for
suggestions that improved this manuscript.

References

(1) Vermeire, F. H.; Aravindakshan, S. U.; Jocher, A.; Liu, M.; Chu, T.-C.; Hawtof, R. E.;
Van de Vijver, R.; Prendergast, M. B.; Van Geem, K. M.; Green, W. H. Detailed Kinetic
Modeling for the Pyrolysis of a Jet A Surrogate. Energy Fuels 2022, 36, 1304–1315.

(2) Payne, A. M.; Spiekermann, K. A.; Green, W. H. Detailed Reaction Mechanism for
350–400 ◦C Pyrolysis of an Alkane, Aromatic, and Long-Chain Alkylaromatic Mixture.
Energy Fuels 2022, 36, 1635–1646.

(3) Edeleva, M.; Van Steenberge, P. H.; Sabbe, M. K.; D’hooge, D. R. Connecting gas-phase
computational chemistry to condensed phase kinetic modeling: The state-of-the-art.
Polymers 2021, 13, 1–39.

(4) Chatelain, K.; Nicolle, A.; Ben Amara, A.; Catoire, L.; Starck, L. Wide Range Exper-
imental and Kinetic Modeling Study of Chain Length Impact on n-Alkanes Autoxida-
tion. Energy Fuels 2016, 30, 1294–1303.

(5) Wu, H.; Grinberg Dana, A.; Ranasinghe, D. S.; Pickard, F. C.; Wood, G. P. F.; Ze-
lesky, T.; Sluggett, G. W.; Mustakis, J.; Green, W. H. Kinetic Modeling of API Oxi-
dation: (2) Imipramine Stress Testing. Mol. Pharm. 2022, 19, 1526–1539.

(6) Yang, J.; Smith, M. C.; Prendergast, M. B.; Chu, T.-C.; Green, W. H. C14H10 poly-
cyclic aromatic hydrocarbon formation by acetylene addition to naphthalenyl radicals
observed. Phys. Chem. Chem. Phys. 2021, 23, 14325–14339.

19

https://doi.org/10.26434/chemrxiv-2023-f20bg ORCID: https://orcid.org/0000-0002-3097-010X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://zenodo.org/record/8049537
https://zenodo.org/record/8049537
https://github.com/yunsiechung/chemprop/tree/RxnSolvKSE_ML
https://github.com/yunsiechung/chemprop/tree/RxnSolvKSE_ML
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26434/chemrxiv-2023-f20bg
https://orcid.org/0000-0002-3097-010X
https://creativecommons.org/licenses/by/4.0/


(7) Lu, T.; Law, C. K. Toward accommodating realistic fuel chemistry in large-scale com-
putations. Prog. Energy Combust. Sci. 2009, 35, 192–215.

(8) Sumathi, R.; Carstensen, H.-H.; Green, W. H. Reaction Rate Predictions Via Group
Additivity. Part 3: Effect of Substituents with CH2 as the Mediator. J. Phys. Chem.
A 2002, 106, 5474–5489.

(9) Saeys, M.; Reyniers, M.-F.; Marin, G. B.; Van Speybroeck, V.; Waroquier, M. Ab
initio group contribution method for activation energies for radical additions. AIChE
J. 2004, 50, 426–444.

(10) Van de Vijver, R.; Sabbe, M. K.; Reyniers, M.-F.; Van Geem, K. M.; Marin, G. B. Ab
initio derived group additivity model for intramolecular hydrogen abstraction reactions.
Phys. Chem. Chem. Phys. 2018, 20, 10877–10894.

(11) Gao, C. W.; Allen, J. W.; Green, W. H.; West, R. H. Reaction Mechanism Genera-
tor: Automatic construction of chemical kinetic mechanisms. Comput. Phys. Commun.
2016, 203, 212–225.

(12) Johnson, M. S.; Dong, X.; Grinberg Dana, A.; Chung, Y.; Farina, D.; Gillis, R. J.;
Liu, M.; Yee, N. W.; Blondal, K.; Mazeau, E.; Grambow, C. A.; Payne, A. M.; Spieker-
mann, K. A.; Pang, H.-W.; Goldsmith, C. F.; West, R. H.; Green, W. H. RMG Database
for Chemical Property Prediction. J. Chem. Inf. Model. 2022, 62, 4906–4915.

(13) Grambow, C. A.; Pattanaik, L.; Green, W. H. Deep Learning of Activation Energies.
J. Phys. Chem. Lett. 2020, 11, 2992–2997.

(14) Heinen, S.; von Rudorff, G. F.; von Lilienfeld, O. A. Toward the design of chemical
reactions: Machine learning barriers of competing mechanisms in reactant space. J.
Chem. Phys. 2021, 155, 064105.

(15) Heid, E.; Green, W. H. Machine Learning of Reaction Properties via Learned Rep-
resentations of the Condensed Graph of Reaction. J. Chem. Inf. Model. 2022, 62,
2101–2110.

(16) Spiekermann, K. A.; Pattanaik, L.; Green, W. H. Fast Predictions of Reaction Barrier
Heights: Toward Coupled-Cluster Accuracy. J. Phys. Chem. A 2022, 126, 3976–3986.

(17) Johnson, M. S.; Green, W. H. A Machine Learning Based Approach to Reaction Rate
Estimation. ChemRxiv 2022, DOI: 10.26434/chemrxiv-2022-c98gc.

(18) Pan, X.; Yang, J.; Van, R.; Epifanovsky, E.; Ho, J.; Huang, J.; Pu, J.; Mei, Y.; Nam, K.;
Shao, Y. Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and
Enzyme Reactions. J. Chem. Theory Comput. 2021, 17, 5745–5758.
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