Empowering extra fuel supply in *E. coli* by electron bifurcation for robust H₂, ATP and succinate production

Pattarawan Intasian¹, Chalermroj Sutthaphirom¹, Asweena Binlaeh¹, Jittima Phonbuppha¹, Juthamas Jaroensuk¹, Somjai Teanphonkrang¹, Thamonwan Woraruthai¹, Charndanai Tirapanampai¹, Warunya Onchan¹, Albert Schulte¹, Wolfgang Buckel²,³, Nopphon Weeranoppanant¹,⁴, Thanyaporn Wongnate¹, Jeerus Sucharitakul⁵ and Pimchai Chaiyen¹

Affiliations:

¹School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
²Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro, Philipps-Universität, Marburg, Germany
³Max-Plank-Institut für terrestrische Mikrobiologie, Marburg, Germany
⁴Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, 20131, Thailand
⁵Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand

*Corresponding author. Email: pimchai.chaiyen@vistec.ac.th

Abstract:

Microbial production of hydrogen (future ideal fuel and important gas for industries) under anoxic conditions has limited ATP availability and low efficiency. We engineered *E. coli* K12 to acquire a flavin-based electron bifurcation (FBEB) system, a bioenergetic route typically found in strict anaerobes, which uses NADH to generate low potential reduced ferredoxin and high potential butyryl-CoA. The oxygen-tolerant FBEB-*E. coli* showed higher H₂ and succinate production (2-4 folds), lower cellular reduction potentials, greater accumulation of cellular reductants and various metabolites, including ATP (up to a 7-fold increase). It could better tolerate prolonged and recycled usage of the engineered cell for H₂ and succinate production than the native strain. FBEB-*E. coli* could also use various substrates such as formate, D-glucose and food waste for H₂ and succinate production. This is a promising pathway to sustainable H₂ and succinate production. This work also demonstrates that *E. coli* with an extra electron bifurcation system is a robust synthetic biology host.

https://doi.org/10.26434/chemrxiv-2023-fz0lz ORCID: https://orcid.org/0000-0002-8533-1604 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0
One-Sentence Summary: Rewiring FBEB-\textit{E. coli} electron flux \textit{via} enhancement of cellular reductants and ATP leads to significantly higher H$_2$ and succinate production.

Keywords: hydrogen production, \textit{in vivo} ATP, synthetic biology, metabolic engineering, flavin-based electron bifurcation, electron-transferring flavoproteins, bioenergetics, bioenergy and biofuels, succinate production.
Introduction

Hydrogen (H₂) is regarded as a promising fuel for the future because of its zero-carbon emission¹ and high energy density compared to methane, gasoline and diesel². It can be used in various applications, including transportation, electricity, heat generation and chemical synthesis³. Global H₂ generation market is projected to grow from $150bn in 2021 to $220bn in 2028 (5.6% compound annual growth)⁴. However, 96% of the current global production is from fossil fuels (48% from natural gas steam reforming, 30% from crude oil partial oxidation and 18% from coal gasification)⁵ via high temperature using metal catalysts⁶. H₂ production from these industrial processes or from recently discovered resources⁷ is non-renewable and creates a large footprint of CO₂ emissions³. On the other hand, biological H₂ production is genuinely sustainable because the process can use renewable substrates and can be performed under mild conditions⁷. The ability of microbial cell factories to utilize low value feedstocks to produce valuable chemicals is regarded as a challenging goal for sustainable catalysis⁷,⁸.

In biological systems, H₂ is produced by hydrogenases which can be divided into three types based on their metal content, including [Fe] (with guanylylpyridinol cofactor)-, [FeFe]- and [NiFe]-hydrogenases⁹. The two latter hydrogenases typically catalyze the reversible conversion of 2H⁺ and 2e⁻ into H₂ and require electron supply from low reduction potential reductants such as reduced flavodoxin or reduced ferredoxin (Fd⁻) to fuel the H₂ production direction (Fig. 1A). Metabolic engineering to enhance H₂ production by hydrogenases is a highly active area of research. Recently, fusion of hydrogenases with photosynthetic system I (PSI) has resulted in 1.6-4 fold increases in hydrogen production in cyanobacteria¹⁰,¹¹. Facultative anaerobes such as Escherichia coli are also attractive for hydrogen production because they contain O₂-tolerant hydrogenases¹². [NiFe]-hydrogenases in E. coli are also involved in proton-pump and energy-coupling systems¹³. Engineering these microbes to improve H₂ production was mostly done by deleting enzymes competing for electron supplies or utilizing H₂. These, however, resulted in engineered cells weaker than the native ones in terms of growth rate and robustness, since several competitive pathways are important shunts for the cells (Table S1). Therefore, an alternative approach which avoids extensive gene deletion to improve H₂ production is desirable.

To sustainably boost the efficiency of compound production by E. coli, the level of energy currency, ATP, should be increased because it is required for maintaining various cellular activities¹⁴. In aerobes or facultative anaerobes, ATP is synthesized by oxidative phosphorylation (oxygen-dependent) and substrate-level phosphorylation (oxygen-independent). Although oxidative phosphorylation is more efficient than substrate-level phosphorylation, this pathway cannot operate under anoxic conditions. As a result, production of valuable compounds such as H₂ or succinates which require anaerobic conditions, often results in low productivity¹⁵,¹⁶. Under anaerobic conditions without nitrate, glycolysis is the main mechanism for producing ATP through substrate-level phosphorylation by phosphoglycerate kinase and pyruvate kinase; NADH produced thus needs to be reconverted into NAD⁺ to continue glycolysis and ATP synthesis. Therefore, we hypothesized that increasing the rate of NADH oxidation would improve intracellular ATP production.

We hypothesized that incorporation of flavin-based electron bifurcation (FEBE), a bioenergetic system used by strict anaerobes, would be able to increase the rate of NADH oxidation and accumulation of reductant inside the cell to facilitate H₂ production. FEBE has mainly been discovered during the past decade and has emerged as a new paradigm of energy metabolism¹⁷. Its roles under anoxic conditions are equivalent to its well-known aerobic counterpart, quinone-based electron bifurcation (QBE) found in cytochrome bc₁ (complex III of the oxidative phosphorylation) or cytochrome b₆f (plant photosynthesis). The FEBE system consists of a two
FAD-containing electron-transfer flavoprotein (EtfAB), butyryl-CoA dehydrogenase (Bcd), and ferredoxin (Fd)17,18. Its overall reaction converts NADH to generate a high reduction potential product (butyryl-CoA) through the Bcd reaction and a low reduction potential reduced ferredoxin (Fd-) (\textbf{Fig. 1B}).

In this work, we have created for the first time, a hybrid aerobic cell with an anoxic energy system, an FEBB-\textit{E. coli} K12, in which genes encoding for all components of FEBB from \textit{Acidaminococcus fermentans} were incorporated into \textit{E. coli} K12. We proposed that the hybrid FEBB-\textit{E. coli} K12 has a dual advantage: (1) to increase \textsubscript{H}2 synthesis by re-directing electron flow towards more Fd- production and (2) to boost intracellular ATP by increasing the rate of NADH oxidation \textit{via} EtfAB (an electron transfer component of FEBB) (\textbf{Fig. 1C}). The results showed that the oxygen-tolerant hybrid FEBB-\textit{E. coli} was indeed highly efficient and robust in \textsubscript{H}2 production, generating levels of \textsubscript{H}2 from formate and D-glucose \textasciitilde2-4 fold higher than the native \textit{E. coli} without affecting the growth kinetics. We analyzed the targeted metabolomics, the cellular reduction potentials and \textit{in vitro} hydrogen-producing activities (\textbf{Fig. 1D}). Targeted metabolomics analyses showed that FEBB-\textit{E. coli} has distinctly higher production of ATP (up to 7-fold with formate as a substrate) and dicarboxylic acids such as succinate (\textasciitilde2-4 fold with D-glucose as a substrate) than the native cell. We also found that FEBB-\textit{E. coli} can produce \textsubscript{H}2 and succinate from food waste with high productivity, illustrating its potential in future applications to support sustainable biotechnology (\textbf{Fig. 1E}).
Fig. 1. Rational design of electron rewiring/boosting system in *E. coli*. (A) *E. coli* K12 contains various subunits of hydrogenase-3 (Hyd-3). Hyd-3 can receive electrons from HycF (Fd-like protein subunit) and transfer them to the H₂-generating subunit (HycE)⁵. (B) FBEB system found in strict anaerobes such as *A. fermentans* generally consists of Fd, EtfAB and Bcd. (C) The hybrid electron boosting system was created by incorporating FBEB into *E. coli* to create FBEB-*E. coli* prototypes with different promoter arrangements. (D) In-depth investigation of FBEB-*E. coli* includes targeted metabolomics, hydrogenase activity assays, reduction potential measurement and evaluation of cell fitness and reusability. (E) FBEB-*E. coli* hybrid was tested for its ability to convert food waste for H₂ production.
Results
Rational design of electron rewiring/boosting system in E. coli.

To generate the engineered cell with robust production of H₂ and valuable metabolites, we first incorporated the FBEB system into E. coli K12. FBEB components from A. fermentans were chosen due to their well understood mechanism and their good expression in E. coli BL21-DE3. In E. coli K12, the HycB subunit in hydrogenase-3 (Hyd-3) can receive electrons from HycF (Fd-like protein subunit) and transfer them to the H₂-generating subunit (HycE). We hypothesized that Fd⁻ produced from FBEB can transfer electrons to the [4Fe-4S] redox center bound in HycB which can be further used for H₂ production. We also hypothesized that adding an extra route of NADH oxidation via EtfAB bifurcation would promote more ATP production because keeping a low ratio of NAD⁺/NADH would support continuation of glycolysis and substrate-level phosphorylation (see full explanation in Supplementary Text).

Three strains of FBEB-E. coli hybrids were constructed harboring fd, etfAB and bcd genes from A. fermentans into E. coli K12 W3110 (known H₂ producing strain) with different promoter arrangements (Method 1, Fig. 1C, Fig. S1, Table S2 and Table S3). Expression of these proteins is shown in Fig. S2, and the results (using the methods in Method 2 and 3) showed that the FBEB-E. coli hybrid which overexpressed Fd, Bcd, and EtfAB under two T7 promoters (cell prototype 4, Fig. 1C) generates the highest H₂. For native E. coli, the yield of hydrogen produced is known to be ~25-50% per formate and ~25% per d-glucose used. Our results showed that H₂ was produced with a 27.5%, 28%, 50% and 66% yield (per formate used) for the cell prototypes 1, 2, 3, and 4, respectively (Fig. S3). The results clearly indicate that overexpression of fd, bcd and etfAB are required for enhancing H₂ production. We thus defined the cell prototype 4 as the lead FBEB-E. coli hybrid and used it for further investigation in this study.

Productivity of FBEB-E. coli using formate as a substrate

Optimization of H₂ production from the FBEB-E. coli by adjusting pH, temperature, and CO₂ entrapment.

As pH can influence intracellular NADH/NAD⁺ dynamics, reduction potentials, and physiological functions of bacteria, we first measured H₂ produced by FBEB- and native E. coli at 37 °C and various pHs (4.5 to 8) as described in Method 4 and Supplementary Text. The data in Fig. S4A showed that pH 6.0 and 6.5 gave the best yield of hydrogen production. For temperature effects, we found that at pH 6.0, the temperature at 37 °C gave the highest yield per formate used (80%) (Fig. S4B).

As the removal of CO₂ would decrease the amount of product accumulated and drive the thermodynamics of the reaction towards H₂ production, we set up a CO₂-entrapping system using saturated Ca(OH)₂ solution to remove CO₂, a co-product from the formate hydrogenlyase (FHL) reaction (illustrated in Fig. S4C). We found that at 37 °C, pH 6.0 and using CO₂ entrapment, FBEB-E. coli gave a 100% yield of hydrogen produced from formate while the native cell only gave a 40% yield (Fig. 2A and Fig. S5). The amount of CO₂ produced in the air space of the cell chamber was also higher for FBEB-E. coli, showing a similar trend as H₂ production (Fig. 2B), confirming that the increased amount of H₂ in the engineered cell was produced through FHL activities, which generate H₂ and CO₂ from formate equivalently.
Oxygen tolerance of FBEB-<i>E. coli</i>.

An advantage of using <i>E. coli</i> for producing H₂ is that cells can be grown under aerobic conditions, allowing fast biomass production and convenient culture. To initiate H₂ production, the culture is normally switched to anaerobic conditions to maximize activities of hydrogenases after adding lactose to induce expression of FBEB. We tested the ability of FBEB-<i>E. coli</i> to tolerate oxygen by re-exposing FBEB-<i>E. coli</i> to air for 0.5, 1, 2 and 4 hours (as described in Method 4). The systems were then purged with N₂ for 30 minutes to reactivate hydrogenase activities and H₂ production was measured in comparison to the condition under strict anaerobiosis. The results clearly showed that the oxygen exposure did not affect H₂ production by FBEB-<i>E. coli</i> (Fig. S6). All systems showed similar levels of H₂ production, indicating that FBEB-<i>E. coli</i> can tolerate oxygen well and should allow feasible design for H₂ production in the future.

Mechanisms underlying the superior H₂ production.

Identification of changes in metabolites of FBEB-<i>E. coli</i> using targeted metabolomics

To investigate further into the mechanisms underlying the improvement of H₂ production in FBEB-<i>E. coli</i>, 30 metabolites related to targeted pathways when using formate as a substrate were analyzed (Supplementary Data S1). Fig. 2C shows metabolomics data analyzed by two-way ANOVA. The heatmaps display levels of 24 compounds (excluding fatty acids) found in FBEB-<i>E. coli</i> compared to the native <i>E. coli</i> at 0-3 hours. Absolute concentrations of compounds displaying high ratio differences are shown in Fig. 2D. We also measured concentrations of selected fatty acids (propionate, tetradecanoate and octadecanoate) (Fig. 2E).

The results indicate that the incorporated FBEB functions in <i>E. coli</i> K12 as expected. Metabolites in the glycolysis and the tricarboxylic acid (TCA) cycle such as citrate and glucose-6-phosphate are similar between the two cell types, implying that FBEB does not interfere with these two pathways when formate was used as a substrate. However, FBEB-<i>E. coli</i> displayed much higher levels of ATP, NAD⁺ and succinate than the native <i>E. coli</i>, while NADH and NADPH were lower in the FBEB-<i>E. coli</i> than in the native <i>E. coli</i>.

We noted the distinctively high level of ATP (see chromatogram in Fig. S7) in FBEB-<i>E. coli</i>, which was ~2-times higher at 0 hour, 3-times higher at 1 hour, and 7-times higher at 2 hours. This ATP enhancement might be explained by two plausible mechanisms. The first mechanism is possibly from the presence of a low ratio of NADH/NAD⁺ (0.1 at 1 hour and 0.22 at 3 hours) in FBEB-<i>E. coli</i>. Under anaerobic conditions, the NADH/NAD⁺ ratio is typically ~0.7 due to low NAD⁺ regeneration which is different from the NADH/NAD⁺ ratio of <0.1 found under regular aerobic conditions where ATP production is active²⁴. We propose that in FBEB-<i>E. coli</i>, which contains the extra NADH oxidation pathway provided by EtfAB to keep the level of NADH/NAD⁺ at ~0.1-0.22, ATP production is promoted by substrate-level phosphorylation in glycolysis. The second mechanism possibly can be attributed to the high level of H₂ in FBEB-<i>E. coli</i> which can be oxidized by hydrogenases (possibly types 1 and 2 in <i>E. coli</i>) to create an electrochemical gradient of H⁺, leading to ATP synthesis by the H⁺/K⁺ pump and ATPase (involving ATP hydrolysis/synthesis and transportation of ions across the membrane of cells)²⁵.

Interestingly, FBEB-<i>E. coli</i> produced a significantly higher level of succinate (a valuable compound for industry) than the native <i>E. coli</i>. Normally, succinate is produced through the reductive branch of the TCA cycle, the glyoxylate pathway and the oxidative TCA cycle. The reductive branch produces succinate by coupling phosphoenolpyruvate (PEP) and CO₂ to produce oxaloacetate (OAA) as a starting compound. As our analysis (Fig. 2C) did not detect significant differences in OAA between the two cell types, the high amount of succinate produced by FBEB-
E. coli may also come from other metabolic shunts. H₂ produced from formate was previously reported to enhance succinate production²⁶. We propose that H₂ can be oxidized by Hyd-2 to generate a proton gradient. HybB which is the integral membrane subunit of Hyd-2 can then convert oxidized menaquinol (MK) to MKH₂ (reduced form). The resulting MKH₂ is then re-oxidized by fumarate reductase to convert fumarate into succinate²⁶, increasing the level of succinate production in FBEB-E. coli.

FBEB-E. coli showed higher levels of crotonyl-CoA at 0 hour and butyryl-CoA at 1 hour than the native E. coli; these data may be linked to the higher amounts of long chain fatty acids produced by FBEB-E. coli. The native E. coli contains thiolases²⁷ and a bifunctional fadB gene encoding for 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase²⁸ that catalyze production of crotonyl-CoA from acetyl-CoA. The system provides a high potential electron acceptor crotonyl-CoA for FBEB to function inside E. coli. The data in Fig. 2D indicate that at the beginning of H₂ production in FBEB-E. coli, crotonyl-CoA was converted into butyryl-CoA which decreased later. The decreased level of butyryl-CoA at the later time points implies that the compound is used for downstream synthesis of other metabolites. The data (Fig. 2E and Fig. S8) showed that FBEB-E. coli produced higher amounts of long chain fatty acids such as tetradecanoate, hexadecanoate and octadecanoate while the native E. coli produced higher amounts of propionate. Butyrate could not be detected in either strain, consistent with the previous work which found that butyrate could not be detected in the native E. coli²⁹. We propose that the extra synthesis of butyryl-CoA via the FBEB system supports fatty acid synthesis. For the native E. coli with no extra synthesis of butyryl-CoA, the pathway towards biosynthesis of propionate is more active. This is possibly linked to production of succinate and succinyl-CoA intermediates via the TCA cycle (in order to synthesize GTP) as previously reported³⁰. Full analysis of the targeted metabolomics of the two cell systems are described in the Supplementary Method 1.

Measurement of cellular reduction potentials

We next measured the cellular reduction potentials (Eₘ) of FBEB-E. coli compared to the native E. coli. We expect that Eₘ in FBEB-E. coli would be lower than the native one because of the increase of Fd⁻ reductant and the low ratio of NADH/NAD⁺ in the system. It was previously reported that alteration of levels of reductants and oxidants such as NADH/NAD⁺, NADPH/NADP⁺, 2GSH/GSSG and ubiquinoneₐₚ/ubiquinoneₐₙ ratios can influence cellular Eₘ. We also propose that lowering of Eₘ would facilitate formation of H₂ by hydrogenases.

We determined Eₘ using a redox probe and addition of redox mediators (Supplementary Method 2). System reduction potentials (Eₛₑₚ) of the native E. coli and FBEB-E. coli after protein overexpression were −48.9 mV and −108.3 mV, respectively. During bioconversion, the Eₛₑₚ of the FBEB-E. coli remained ~ 50-60 mV more negative than the native E. coli throughout 3-hours (Fig. 2F). These results are explained more in detail in the Supplementary Text. These observations clearly confirm the ability of FBEB to decrease the overall reduction potential of E. coli, possibly due to the high accumulation of reductants. This type of cellular physiology would facilitate H₂ production. It should be noted that the lower reduction potential may also indirectly support ATP formation due to the change of proton motive force. It was previously reported that ATPase activity and membrane proton conductance increase when Eₘ decreases³².

Altogether, the results from targeted metabolomics and redox potential measurement have clearly elucidated that the increase of H₂, ATP and succinate inside FBEB-E. coli was indeed due to the activities of FBEB which enables the cell to possess an extra energetic path to operate under anaerobic conditions and in turn enhance production of H₂, ATP and succinate in E. coli (illustrated in Fig. 2G).
Fig. 2. Mechanisms underlying the superior H\textsubscript{2} production. (A) and (B) H\textsubscript{2} and CO\textsubscript{2} produced under the optimum conditions. (C) Comparison of intracellular metabolites from FEBB- and native E. coli at 0- and 3-hours during the bioconversion process. All metabolite standards were selected from the pathways involved. The first group is related to glycolysis (G6P, G3P, DHAP, PEP, 3-phosphoglycerate and pyruvate), and the second group consists of compounds involved in the TCA cycle (OAA, citrate, acetyl-CoA, \(\alpha\)-ketoglutarate and succinate). The third group are compounds...
involved in FBEB reactions, including NADH, crotonyl-CoA and butyryl-CoA. The fourth group includes ATP and GTP, while the fifth group are common cofactors including FAD, NAD^+, NADH, NADP^+, NADPH, GSH, PLP and CoA. The last group consists of compounds related to fatty acid synthesis pathways (glycerol-3-phosphate, propionate, butyrate, decanoate, tetradecanoate, hexadecanoate and octadecenoate). Among the 24 compounds, only 12 compounds were detected in the intracellular extract. The undetectable compounds (displayed by cross signs) possibly existed at very low levels under anaerobic bioconversion process (below the limit of detection). The magnitude of the difference ratio between the two cell types is represented by the intensity of the blue color on the heat map. (D) Concentrations of detected metabolites are shown on the left axis except for succinate which are shown on the right axis. (E) Short-chain (propionate) and long-chain (tetradecanoate and octadecenoate) fatty acids concentrations detected at 1 and 2 hours are shown in the right panel. (F) E_{sys} of native E. coli and FBEB-E. coli during H_2 production. (G) Proposed mechanisms underlying the boosting of electron flows in FBEB-E. coli.

Investigation of hydrogenase activities and reductants accumulated inside FBEB-E. coli and native E. coli

To validate that incorporated FBEB did not interfere with endogenous expression of hydrogenases, we measured *in vitro* hydrogenase activities in the supernatants of native- and FBEB-E. coli lysates (as described in Supplementary Method 3, Fig. 3A and Supplementary Text). Using sodium dithionite as a reducing agent and methyl viologen (MV) as an electron mediator, the same H_2 levels were observed in both cell lysates (Fig. 3B). The data indicate that both cell types expressed the same level of hydrogenases, and FBEB did not interfere with the hydrogenase expression.

We then measured the reductants accumulated inside the cell which can facilitate the formation of H_2. Formate was added into both cell lysates, and H_2 was measured. FBEB-E. coli lysate produced twice the levels of H_2 of the native E. coli, similar to the ratio of H_2 production *in vivo* (Fig. 2A). This indicates that the lysate of FBEB-E. coli contains more reducing equivalents to produce H_2, possibly in the form of Fd^−. We further added NADH and crotonyl-CoA and compared it to the reaction with only formate added (Fig. 3C). The results did not show an increase in H_2 compared to the system with only formate added, implying that after cell lysis, FBEB cannot catalyze the electron transfer reaction to accumulate more of the reductant (Fd^−) for H_2 enhancement as it could *in vivo* (Fig 3D). Therefore, the advantage of FBEB anoxic energy metabolisms to enhance H_2 production is best done *in vivo*. This possibly is attributable to the enhancement of FBEB through lowering of cellular reduction potentials and oxidation of H_2 in association with ATPase activity and modified H^+ gradient as explained in the previous section.
Fig. 3. *In vitro* assays of hydrogen production by supernatant from FBEB-*E. coli* and native *E. coli* lysates. (A) Hydrogenase assay through redox dye (B) *In vitro* H₂ production using MV reduced by sodium dithionite. (C) The hydrogenase assay through electron bifurcation (D) *In vitro* hydrogen production activity using electrons from various types of cell lysates. The negative controls were supernatant from lysates of native *E. coli* and FBEB-*E. coli* without formate addition. Formate was added into the system to observe H₂ produced by both cell lysates. NADH, crotonyl-CoA and formate were added into the reactions of lysates of FBEB-*E. coli* and native *E. coli* to compare with the system with only formate added.

FBEB-*E. coli* has superior cell fitness than native *E. coli*.

We next compared the recyclability and growth kinetics of FBEB-*E. coli* and native *E. coli*. In the past, most of the H₂ enhancement in bacteria were accomplished by deleting multiple genes, generally resulting in negative effects on cell fitness. These engineered cells thus have not been able to demonstrate their real production capability including such things as a prolonged bioconversion process or cell recyclability. Herein, we tested cell recyclability by growing both cells in comparison and monitoring H₂ production under anaerobic conditions for 9 hours per cycle (adding formate every 3 hours) (*Supplementary Method 4*).

The cell suspension was prepared as shown in Fig. 4A. The results indicate that FBEB-*E. coli* could maintain 100% H₂ productivity without adding any carbon source (except formate substrate) for up to 3 cycles, while the productivity of native *E. coli* was affected significantly since the second cycle (Fig. 4A). Hydrogen was produced at an 83% yield by FBEB-*E. coli* which was 4-times higher than the native cell (19% yield) at the third cycle. After five recycling cycles, the H₂ production and productivity of FBEB-*E. coli* was around 60% compared to the first cycle and its activity was 5-times better than the native *E. coli* which was severely affected after three cycles (Fig. 4B). These results clearly showed that FBEB helped improve hydrogen production and promoted cell endurance. When comparing growth kinetics of both cell types by measuring cell viability using colony forming units (CFU) assays, the results showed that the growth kinetics of FBEB-*E. coli* and native *E. coli* were similar (Fig. 4C). Altogether, these results clearly
demonstrate that the addition of the FBEB system into *E. coli* does not affect its growth kinetics but rather creates the engineered cell with superior H₂ production and cell fitness which is more suitable for future industrial applications.

Fig. 4. Comparison of cell fitness between FBEB-*E. coli* and native *E. coli*. Hydrogen productivity at various cell recycling stages is shown in (A) and (B), respectively. Cell growth kinetics measured by colony forming unit (CFU) is shown in (C).

Analysis of targeted metabolomics of FBEB-*E. coli* using D-glucose as a substrate for H₂ and succinate production

As D-glucose is an abundant, low-cost carbon source, we investigated H₂ production and targeted metabolomics from D-glucose as described in **Supplementary Method 1**. From 4 mM D-glucose (0.24 mmol), FBEB-*E. coli* produces 0.22 mmol H₂ (45.8% yield), which was 1.83-times higher than the native *E. coli* (0.12 mmol or 25% yield) (**Fig. 5**). To investigate the effects of the FBFB system in *E. coli*, 38 metabolites (**Supplementary Data S1**) were used for targeted metabolomics analysis. Full explanation of the analysis is described in **Supplementary Text**.

Almost all metabolites in the glycolysis were up-regulated in FBEB-*E. coli* compared to native *E. coli*. FBEB-*E. coli* utilized D-glucose faster and produced higher amounts of G6P, 3-phosphoglycerate, PEP and pyruvate than the native *E. coli*. These data were consistent with a lower ratio of NADH/NAD⁺ in FBEB-*E. coli* than in native *E. coli* at 0-1 hours, promoting the continuation of glycolysis enzymes activities. However, after 3 h, the NADH/NAD⁺ ratio of FBEB-*E. coli* rose to be higher than native *E. coli*, possibly because reducing equivalents in the FBEB-*E. coli* system reached a sufficient level for H₂ production.

For metabolites in mixed-acid fermentation, FBEB-*E. coli* utilized formate faster than the native cell. The amount of succinate produced in FBEB-*E. coli* is very high (3.53 mM) (see chromatogram in **Fig. S9**) and much higher than the results when using formate as substrate at 2
hours (5.2-fold). This is probably because D-glucose can be metabolized to form pyruvate, a carbon precursor for succinate production.

Levels of all amino acids analyzed except valine and leucine were similar between FBEB-E. coli and native E. coli. The levels of valine and leucine in FBEB-E. coli were found to be higher than the native cell, possibly due to the increase of their precursors i.e. pyruvate. These data indicate that cell fitness in FBEB-E. coli is not affected but rather better than that of E. coli.

Interestingly, the acetate level in FBEB-E. coli is much lower than in native E. coli. It implies that acetate shunt was not activated in FBEB-E. coli, possibly due to enough ATP being produced. This effect is advantageous because the high acetate concentration can inhibit cell growth34. Using D-glucose as a substrate, ATP was undetectable in both cell types, in agreement with previous literature noting that the ATP level in fermentative cells is generally very low35. Nevertheless, the low level of acetate and the active production of H\textsubscript{2} and succinate in FBEB-E. coli indicates that its ATP level is sufficient.

The lactate level in FBEB-E. coli was also lower than in native E. coli, indicating that the lactate shunt to regenerate NAD+ was not very active. Generally, lactate is produced by LDH to regenerate NAD+ to continuously drive synthesis of ATP from glycolysis36. The low amount of lactate in FBEB-E. coli strongly suggests that the rate of NADH oxidation is enough.

Altogether, the FBEB system from strict anaerobes can function well inside E. coli as an extra energy supply system to generate sufficient ATP, maintain high levels of metabolites necessary for cell growth and fitness and result in high production of succinate. Therefore, FBEB-E. coli demonstrates a proof-of-concept of incorporating an extra energy system in metabolic engineering for boosting efficiency and robustness of a whole cell biocatalyst.
Fig. 5. Changes of intracellular metabolites analyzed by targeted metabolomics using D-glucose as a substrate. Intracellular metabolites of native *E. coli* and FBEB-*E. coli* were analyzed between 0 and 3 hours.
Ability of FBEB-\textit{E. coli} to produce hydrogen from heterogenous and ubiquitous substrates (food waste)

Food waste management is a key environmental issue globally because it is generated at a rate of around 1.03 billion tons per year37. Its disposal in landfills contributes to air and water pollution and 14.5\% of overall methane emission38 (Fig. 6A). As food waste contains a high content of D-glucose as well as other compounds, we therefore explored the ability of the FBEB-\textit{E. coli} cell to produce H\textsubscript{2} and succinate from food waste.

Food waste was first hydrolyzed into D-glucose by 2.5\% phosphoric acid, and the resulting mixture was sterilized to inhibit the growth of natural microbes (Supplementary Method 5) and the substrate concentrations were optimized (Fig. S10). The bioconversion using FBEB-\textit{E. coli} and native \textit{E. coli} were carried out with the same amount of pretreated food waste (equivalent to 0.1 mmol D-glucose) added into the system every 3 hours. The results (Fig. 6B) showed that FBEB-\textit{E. coli} could produce 0.43 mmol H\textsubscript{2} from 0.6 mmol D-glucose in food waste with the high productivity (0.375 mmol H\textsubscript{2}/g dry cell weight/hour during 6-9 hours) compared to the native \textit{E. coli} which could only produce H\textsubscript{2} of 0.2 mmol from 0.6 mmol D-glucose in food waste with H\textsubscript{2} productivity of 0.12 mmol H\textsubscript{2}/g dry cell weight/h during 6-9 hours (Fig. 6C). FBEB-\textit{E. coli} also produced 2.5 times higher succinate than of the native-\textit{E. coli} (Fig. 6D). Altogether, these results clearly demonstrate the robustness and efficiency of FBEB-\textit{E. coli} for using food waste as feedstock to generate high value products such as H\textsubscript{2} and succinate. Our work herein also presents a promising and sustainable technology to convert problematic organic waste into valuable products, fully aligned with a circular and green economic model.
Fig. 6. Exploring the ability of FBEB- *E. coli* to produce H₂ and succinate from food waste. Hydrogen production using food waste as a substrate (A). Accumulated hydrogen (B) and productivity (C) were measured during 12-h bioconversion. D-Gucose consumption and succinate production from food waste is shown in (D).

Discussions and conclusion

Our work demonstrates for the first time that by incorporating the FBEB energy system commonly found in strict anaerobes into oxygen-tolerant *E. coli*, a hybrid FBEB-E. coli with high productivity of H₂ and succinate production and optimal cell robustness could be obtained. Because the midpoint potential (*Eₘ*) of FBEB is about 400 mV more negative than that of QBEB, the addition of FBEB would also lower the cellular reduction potential and increase the pool of Fd⁻ which can serve as reductant for the FHL complex of *E. coli* to produce H₂. Analyses using reduction potential measurement, hydrogenase activity assays and targeted metabolomics have shown that these metabolic enhancements are achieved through extra accumulation of cellular reductant, enhanced NADH oxidation by EtfAB and increased levels of cellular ATP. FBEB-E. coli can use various compounds such as formate, D-glucose and food waste as substrates.

The FBEB-E. coli system is among the best metabolically engineered oxygen-tolerant facultative anaerobes for H₂ production in terms of yield, cell growth and robustness (Table S1), possibly due to the extra fueling effects by the incorporated FBEB (Fig. 2). Although the system still cannot produce H₂ as high as *Clostridia*, its ability to grow under aerobic conditions offers an advantage for scaling up in the future. The tolerance of the *E. coli* system towards oxygen...
exposure without the requirement of light input also offers an advantage over H₂ production by cyanobacteria which is sensitive to oxygen inactivation and requires light for growth.⁴⁰

The increased cellular reductant (Fd_{red}) and the lowering of Eₘ in FBE-E. coli is possibly linked to the FHL complex or Hyd-3 to synthesize H₂. FHL shares a sequence similarity with the membrane-bound hydrogenases Pyrococcus furiosus, which is known to accept electrons from reduced Fd⁴¹. It was previously shown that the fusion of E. coli Hyd-3 with Thermotoga maritima Fd could lead to more H₂ production when co-expressed with T. maritima pyruvate-ferredoxin oxidoreductase (PFOR).⁴²

The ability of FBE to boost up cellular levels of ATP highlights its potential to be used as a generic tool for other synthetic biology systems in the future. We proposed that the ATP boosting by FBE is linked to activities of H₂ oxidizing hydrogenases and H⁺/K⁺ ATPase. It was previously reported that the increased H₂ can cause a higher ratio of 2H⁺/K⁺⁴³. When hypF (the maturation factors for Hyd-1, 2 and 3) was mutated to disrupt production of hydrogenases, total ATPase activity was decreased ~27% at pH 7.5 and ~45% pH 5.5⁴⁴. Production of cellular or in vitro ATP is desirable for biocatalysis and synthetic biology. Although in vitro ATP regeneration can be simply done using reactions of kinases and phosphate donors such as PEP, acetyl phosphate or polyphosphate⁴⁵, enhancing in vivo ATP is more complicated because it involves various reaction components, pH control (ATP/ADP ratio can be enhanced under acidic conditions), and requires controlling of the respiratory chain reactions.⁴⁶ Therefore, the ability of the FBE system to increase cellular ATP makes it attractive as a generic synthetic biology tool to boost up cellular ATP in other metabolically engineered cells which is required to be operated other anaerobic fermentation processes in the future.

Our results presented herein also demonstrate the ability of FBE-E. coli to produce succinate, one of the top 10 biochemicals for the future⁴⁷. In the past, several natural facultative anaerobes or aerobes such as Actinobacillus succinogenes, Basfia succiniciproducens and Aspergillus niger could be used to produce high titers of succinate.⁴⁸ A. succinogenes 130Z produces succinate from xylose up to 0.78 g/g D-xylose or 39.6 g/L within 1550 hours⁴⁹ while B. succiniciproducens produces succinate up to 1.02 g/g glycerol or 5.21 g/L titer within 80 hours under anaerobic conditions. Our system here could produce 3.5 mM succinate from 5 mM D-glucose (equivalent to 0.65 g/g D-glucose or 4.13 g/L titer) within only 3 hours. Although the yield and titer of FBE-E. coli are less than the industrial strains, the production rate of FBE-E. coli is much faster. It should be noted that the current FBE-E. coli has not been engineered to produce succinate as the main product. With proper metabolic engineering for succinate production, FBE-E. coli should hold its promise for robust production of succinate in the future.

Altogether, we have shown that FBE-E. coli is among the best metabolically engineered oxygen-tolerant bacterial H₂ production system reported to date. The system also provides the dual advantages of hydrogen and succinate production from renewable sources such as D-glucose and food waste. The system’s ability to increase cellular ATP levels also paves the way for the future to explore more applications of FBE, a conserved energetic system from anaerobes, with oxygen-tolerant cells. We envision that empowering oxygen-tolerant cells with FBE is equivalent to providing cells with an extra fuel engine to cope with cellular energy manipulations under anoxic conditions.
Materials and Methods

Materials

All laboratory chemicals were purchased from Tokyo Chemical Industry (TCI), Sigma-Aldrich, Merck or HiMedia. For molecular biology work, E. coli XL1-Blue was used as a host for plasmid preparation. Restriction enzymes, T4 DNA ligase, PCR kits, plasmid extraction kits, Gibson Cloning kits, and other molecular biology reagents were purchased from FAVORGEN or New England Biolabs (NEB). DNA sequencing was performed by 1st BASE DNA Sequencing Service (Malaysia). E. coli K12 W3110 (ATCC® 27325™) purchased from American Type Culture Collection (ATCC) was used for whole-cell production of H₂ and for analysis of intracellular metabolites. pET11a and pUC18T-mini-Tn7T-Gm were used for plasmid construction. The construction of plasmids used in this study is described in Methods.

Methods

1. Construction of pUC18T-fd-etfAB-rnap, pUC18T-fd-bcd-etfAB-T7-rnap and pUC18T-fd-bcd-T7-etfAB-rnap plasmids

The overall constructs of expressions systems are illustrated in Fig. S1. E. coli K12 W3110 was used as the cell prototype 1. fd, etfA, etfB and bcd genes from A. fermentans (NCBI Reference Sequences WP_012938723.1, UEA72443.1, UEA72444.1 and UEA71549.1) were used for expression of ferredoxin, electron transfer flavoprotein (subunit alpha and beta) and butyryl-CoA dehydrogenase, respectively in E. coli K12 W3110. For plasmid construction, the pET11a-etfAB plasmid was digested by Xbal, and the fd gene was amplified using fd1_F and fd1_R as primers for PCR (Table S2). Next, fd was assembled with pET11a-etfAB using a Gibson assembly kit to yield the pET11a-fd-etfAB plasmid. Then, the pET11a-fd-etfAB plasmid was amplified spanning from the position of T7 promoter (in front of fd) to T7 terminator to obtain a DNA piece spanning the T7 promoter through fd-etfAB gene and the T7 terminator using T7-fd-etfAB-T7ter_F and T7-fd-etfBA-T7ter_R primers. The resulting DNA product was assembled into pUC18T-mini-Tn7T-Gm containing a T7 RNA polymerase which was pre-digested by PstI to yield the pUC18T-fd-etfAB-T7-rnap plasmid (the plasmid for the cell prototype 2).

For constructing the plasmid of the cell prototype 3 (pUC18T-fd-bcd-etfAB-T7rnap), the pET11a-etfAB plasmid was digested by Xbal. Then, fd was amplified using fd2_F and fd2_R primers, and bcd was amplified using bcd_F and bcd_R as primers in PCR (Table S2). These two pieces of genes were assembled with pET11a-etfAB using a Gibson assembly kit to yield the pET11a-fd-bcd-etfAB plasmid. The pUC18T-mini-Tn7T-Gm containing T7 RNA polymerase was then digested by PstI, and the fd-bcd-etfAB gene piece was amplified from the pET11a-fd-bcd-etfAB using T7-fd-bcd-etfAB-T7ter_F and T7-fd-bcd-etfAB-T7ter_R as primers. Lastly, the DNA product was assembled into pUC18T-mini-Tn7T-Gm-T7RNAS using a Gibson assembly kit.

For constructing the plasmid of cell prototype 4 (pUC18T-fd-bcd-T7-etfAB-T7rnap), pUC18T-mini-Tn7T-Gm containing T7 RNA polymerase was cut by PstI. A DNA product of the T7 promoter-fd-bcd was then amplified from the pUC18T-fd-bcd-etfAB-T7rnap plasmid using T7 promoter-fd-bcd_F and T7 promoter-fd-bcd_R as primers for PCR (Table S2). Another T7 promoter gene was then amplified using T7 promoter_F and T7 promoter_R primers. The gene encoding for EtfAB was amplified using etfAB_F and etfAB_R primers. After that, these three pieces of DNA products were assembled with pUC18T-mini-Tn7T-Gm-T7RNAS using a Gibson
assembly kit to yield the pUC18T-fd-bcd-T7-ETFAB-T7rnap plasmids. All steps for constructing the overexpression systems are illustrated in Fig. S1.

2. Preparation of *E. coli* whole-cell biocatalyst and bioconversion process

The recombinant plasmids (15 ng) were transformed into *E. coli* K12 W3110 and the cells were grown on an LB agar plate at 37 °C for 16-18 hours using 100 μg/mL ampicillin selection. Then, a single colony was inoculated into LB broth supplemented with carbon source and other necessary elements (30 mM D-glucose, 2 μM sodium selenite, 2 μM ammonium molybdate and 500 μM nickel (II) chloride). The culture was shaken at 37 °C for 16-18 hours under aerobic conditions. Then, 1% starter was inoculated into 80 mL of LB broth supplemented with metal elements at the same concentrations as the starter (except D-glucose). This culture was then removed oxygen by equilibrating a solution in an anaerobic glove box. The container was capped and shaken at 37 °C until the OD₆₀₀ reached 0.6-0.8. Then, 1 mM lactose was added to induce protein expression and the cells were further grown under anaerobic conditions for 8 h. After that, the culture was centrifuged at 4 °C, 3900 × g for 20 min and used for a bioconversion process. The resulting pellet was resuspended in 100 mM potassium phosphate buffer pH 6 and adjusted OD₆₀₀ of the suspension to 2. Next, either formate or D-glucose was added into the cell suspension as a substrate in a 60 mL capped vial. The reaction was shaken at 37 °C at 220 rpm. Then, hydrogen gas was analyzed using GC-TCD, formate was analyzed using HPLC-DAD, and D-glucose was analyzed using HPLC-RID.

3. Product and substrate analysis

Hydrogen gas in the head space of the reaction was taken at various time points to analyze levels of H₂ and CO₂ using GC-TCD. Gas volume was measured using 50 mL syringes. Hydrogen gas was analyzed using GC-TCD with a CP-Mol Sieve 5A column from Agilent. Nitrogen gas was used as a carrier gas with a flow rate of 4 mL/min. An injection temperature of 120 °C and detector temperature of 250 °C were used. The oven temperature was set at 40 °C with holding for 3 min. For formate and D-glucose detection, 1 mL cell suspension was centrifuged at 4 °C, 3900 × g for 20 min. The supernatant was filtrated using a 0.22 μm nylon syringe filter. Then, the sample was analyzed using HPLC-DAD (the absorbance was measured at 210 nm) and HPLC-RID with Hi-Plex H column (Agilent) using 0.01 M H₂SO₄ as a mobile phase (isocratic mode, with a flow rate of 0.3 mL/min (the total time of 30 min).

4. Investigation of pH, temperature and air tolerance of hydrogen production

To investigate the optimal pH and temperature for hydrogen production, the pUC18-fd-bcd-T7-ETFAB-rnap plasmid was transformed into *E. coli* K12 W3110 to obtain FBEB-*E. coli*, and grown on an LB agar plate at 37 °C for 16-18 hours in the presence of 100 μg/mL ampicillin. Then, a single colony was inoculated into 5 mL LB broth supplemented with carbon source, trace element and 100 μg/mL ampicillin. The culture was grown at 37 °C for 16-18 hours. Then, the starter was inoculated into 80 mL LB media and induced by adding 1 mM lactose when OD₆₀₀ of the culture reached 0.6-0.8. After the cells were grown for 8 hours with shaking at 37 °C, they were resuspended in the three-component buffer (Tris, MES and acetate) at various pHs (4.5 to 8). After adding 0.4 mmol formate substrate in all reactions, the amount of hydrogen produced was measured at different intervals. To identify the optimal temperature, the hydrogen production at various temperatures (25, 30, 37 and 42 °C) was measured at different time periods.
As *E. coli* is a facultative anaerobe, their ability to tolerate O\textsubscript{2} while still maintaining H\textsubscript{2} production was tested. FBEB-*E. coli* was prepared as described in Section 2 above. Then, the pellet was resuspended in 100 mM potassium phosphate buffer pH 6, and the cells were exposed to air at various time periods (0.5, 1, 2 and 4 hours) before purging the system with N\textsubscript{2} for 30 min. Then, H\textsubscript{2} production by each type of cells at various time periods (0, 1, 2 and 3 hours) was measured in comparison to the condition in which cells were kept anaerobically all the time after the induction. Measurements of H\textsubscript{2} production in the capped vials were done after the anaerobiosis was initiated for 0, 1, 2 and 3 hours. A diagram explaining experimental procedures and the results are shown in Fig. S6.

5. Increasing hydrogen production by removing CO\textsubscript{2} from the system

As CO\textsubscript{2} produced in a 100 mL bottle (closed system) can be accumulated and the high concentration of CO\textsubscript{2} would not favor the forward direction hydrogen production according to thermodynamic principles, we thus adjusted the conditions to lower the gas partial pressure to facilitate hydrogen production. Suspension of FBEB-*E. coli* (60 ml) was prepared as previously mentioned. The cell suspension was adjusted to obtain a final OD\textsubscript{600} of 2 in 100 mM potassium phosphate buffer, pH 6 and then removed oxygen by equilibrating the solution in an anaerobic glovebox. Formate (0.4 mmol) was added to initiate the reaction. The bottle was connected to another trapping apparatus to allow gases produced (H\textsubscript{2} and CO\textsubscript{2}) to pass through a solution of 20 mmol calcium hydroxide to trap CO\textsubscript{2} in the form of CaCO\textsubscript{3} (see Fig. S4). Therefore, the headspace of the first chamber and the calcium hydroxide trap contained mainly hydrogen as a gas product. Hydrogen and formate were analyzed using GC-TCD and HPLC-DAD, respectively while a total gas volume in the last chamber was measured using a gas-water substitution method.

Author Information

Corresponding Author

*E-mail: pimchai.chaiyen@vistec.ac.th

Notes

A patent related to this work has been filed.

Methods Summary

A full description of the methods can be found in Supporting Information.

Acknowledgments

We thank Kridsadakorn Prakinee for critical reading and helpful comments for the manuscript. All graphs were generated with GraphPad Prism, and photos were generated with bioRENDER.

Funding

Vidyasirimedhi Institute of Science and Technology (PI, CS, AB, JP, JJ, ST, TW, CT, AS, TWongnate, NW and PC)
Chulalongkorn University (JS)
National Research Council of Thailand Grant NRCT5-RSA63025-02 (TW)
NSRF via the Program Management Unit for Human Resources & Institutional Development (PMU-B) Research and Innovation grant number B05F640089 (PC)
Thailand Science Research Innovation, KasikornBank Public Company Limited (PC, TWongnate and NW)
Author contributions
Conceptualization: PC
Methodology: PI, CS, AW, JP, JJ, ST, CT, JS, PC
Investigation: PI, CS, AW, JP, JJ, ST, TW, WO
Supervision: PC, JS, TWongnate, NW, AS
Writing–original draft: PI, PC
Writing–review & editing: PI, ST, AS, WB, TWongnate, NW, JS, PC

References

Hydrogen generation by market size, share & COVID impact analysis, by type (on-site and portable), by technology (stream methane reforming, water electrolysis, partial oil oxidation, and coal gasification), by application (ammonia production, petroleum refinery, methanol production, transportation, power generation, and others), and regional forecast, 2021-2028. (https://www.fortunebusinessinsights.com/industry-reports/hydrogen-generation-market-100745 , 2021).

