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Abstract  

While a multitude of deep generative models have recently emerged there exists no best 

practice for their practically relevant validation. On the one hand, novel de novo-generated 

molecules cannot be refuted by retrospective validation (so that this type of validation is 

biased); but on the other hand prospective validation is expensive and then often biased by the 

human selection process. In this case study, we frame retrospective validation as the ability to 

mimic human drug design, by answering the following question: Can a generative model 

trained on early-stage project compounds generate middle/late-stage compounds de novo? To 

this end, we used experimental data that contains the elapsed time of a synthetic expansion 

following hit identification from five public (where the time series was pre-processed to better 

reflect realistic synthetic expansions) and six in-house project datasets, and used REINVENT 

as a widely adopted RNN-based generative model. After splitting the dataset and training 

REINVENT on early-stage compounds, we found that rediscovery of middle/late-stage 

compounds was much higher in public projects (at 1.60%, 0.64%, and 0.21% of the top 100, 

500, and 5,000 scored generated compounds) than in in-house projects (where the values were 

0.00%, 0.03%, and 0.04%, respectively). Similarly, average single nearest neighbour similarity 

between early- and middle/late-stage compounds in public projects was higher between active 

compounds than inactive compounds; however, for in-house projects the converse was true, 

which makes rediscovery (if so desired) more difficult. We hence show that the generative 

model recovers very few middle/late-stage compounds from real-world drug discovery projects, 

highlighting the fundamental difference between purely algorithmic design and drug discovery 

https://doi.org/10.26434/chemrxiv-2023-lbvgn ORCID: https://orcid.org/0000-0003-2748-9742 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-lbvgn
https://orcid.org/0000-0003-2748-9742
https://creativecommons.org/licenses/by/4.0/


 

3 

 

as a real-world process. Evaluating de novo compound design approaches appears, based on 

the current study, difficult or even impossible to do retrospectively. 
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Introduction 

De novo generative drug design is a current technique of interest1 ,2 , not least due to cost 

pressures3  and current endeavours to integrate computational and experimental work into 

Design-Make-Test-Analyze (DMTA) cycles4. Looking back, de novo design algorithms have 

been developed since at least the 1980s5 . For some time, the mainstream method was the 

combination of fragment-like building blocks with genetic algorithms6,7. Nowadays, due to the 

rapid growth of computer hardware including GPU computing, machine learning and deep 

neural networks applied to molecular generative models have become tractable8,9,10.  

As with any method, validation – and how to perform validation in a practically relevant 

manner – has been discussed actively11. In the early stages of deep generative models, many 

researchers only concentrated on how the model produced novel compounds efficiently by 

copying the distribution of the training dataset, referred to as distribution-learning. Therefore, 

the principle performance metrics developed were validity, uniqueness, novelty, and diversity 

which are included in benchmarks such as MOSES and Fréchet ChemNet Distance 12 ,13 . 

However, in a practical drug discovery process, goal-directed optimization is much more 

important. The gold standard of measuring model performance would be to synthesize and test 

de novo molecules experimentally (and compare to a baseline control14 ); however, this is 

intractable for all models considering the experimental resource requirement, given the number 

of models available and the number of de novo molecules proposed2. Recently the CACHE 

initiative started, whose aim is to validate computationally suggested or generated compounds 

by experimental testing; however, this activity is limited in scope due to the cost of synthesizing 
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novel structures15. In order to fill the need for goal-directed benchmarking, Guacamol16 has 

been developed, which contains benchmarks such as rediscovery of and similarity to known 

active compounds. Although this benchmark is very practical for generative model utilized in 

lead optimization stage, the dataset is retrieved from ChEMBL17 and just removes the target 

compound from the training dataset, where then the task is to rediscover those removed 

compounds computationally. However, analogues may still remain in the training dataset (of 

which there are often many, given ChEMBL is constructed from publications which often 

contain SAR of related compounds), and suggested novel molecules may well be active 

although not being contained in the dataset, and hence also this type of validation has its 

shortcomings.  

A real-world interpretation of generative models in the drug discovery context remains difficult, 

and the current work attempts to better understand this by retrospectively applying performance 

measures to generative models applied to public and private drug discovery data sources. The 

objective of the task is hence to achieve late-stage project compounds, given information from 

early-stage compounds, in a limited number of steps, and hence in a sample-efficient way (for 

a more detailed recent evaluation of the sample efficiency of different methods see a recent 

study18). This early/late data split strategy is in analogy to ‘time-split’ validation in the QSAR 

area, where splitting data into training and test sets along the time domain has been proposed 

before19.  

However, drug discovery is not ligand discovery, and drug discovery does not only consist of 

optimizing a single objective in a proxy assay system20 . More specifically, during the lead 
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optimization stage of a drug discovery project, multiple-parameter optimization (MPO), for 

parameters such as primary target activity, activity against off-targets, and also 

physicochemical and ADME properties such as permeability, intrinsic clearance, solubility etc. 

need to be optimized simultaneously21, an area which has found consideration only in few 

computational studies22,23. In reality the MPO process is very complicated in a drug discovery 

project, because the target profile could be easily changed (and even multiple times) during the 

course of a project, where new problems appear every step along project progress (Figure 1)24. 

In this work, we attempted to see whether generative models can be validated retrospectively, 

on the one hand with public data mapped onto a pseudo-time axis, and on the other hand with 

real-world project data from different projects in a pharmaceutical company.   

Regarding the architecture of the deep generative model, we decided to use one of the widely 

used approaches in the field, namely REINVENT 25 , 26 . Recently, many architectures of 

generative models for de novo design have been published such as recurrent neural network 

(RNNs)27, convolutional neural network (CNNs)28,29 and graph convolutional neural network 

(GCNN)30. In the drug discovery field, although there are many models including variational 

auto encoder (VAE)1, and Generative Adversarial Networks (GAN)31, due to the success of 

NLP, which was driven by many techniques like long-short time memory (LSTM)32, gated 

recurrent unit (GRU) 33  and attention mechanism 34 , language models have found great 

resonance22,23, 35 , 36 . Of those language models we here chose REINVENT, an RNN-type 

language model with the ability to perform goal-directed optimization through fine-tuning and 

reinforcement learning, due to its availability and wide use37,38,39,40,41,42,43.  
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Figure 1 An example of a trajectory of compounds from hit identification to clinical 

candidate.  

It can be seen that multiple properties matter in optimization (where in particular the X-axis 

subsumes a large number of additional properties), and that optimization is usually not linear 

in practice. 
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Materials and Methods 

Dataset 

For the public dataset, data for five targets were selected from Excape-DB44, namely for DRD2 

(Dopamine Receptor D2, 4,341 active compounds), GSK3 (Glycogen synthase kinase 3, 4,646 

active compounds), CDK2 (Cyclin-dependent kinase 2, 2,065 active compounds), EGFR 

(Epidermal Growth Factor Receptor, 4,777 active compounds), and ADRB2 (Adrenergic 

receptor β2, 2,616 active compounds). The rationale was to select datasets which have been 

well studied in previous publications and which include more than 1,000 compounds 

individually with pXC50 values. For the in-house dataset, six projects were collected from 

TEIJIN Pharma’s in-house database which also include more than 1,000 compounds 

individually. These are named here as A, B, C, D, E, and F. Figure 2 and Table S1 show the 

number of compounds for each dataset, separated by activity values and ‘early’, ‘middle’ and 

‘late’ stage annotations, further details of which are explained in the following.  
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Figure 2 The datasets used in this study include wide range of activity.  

The thresholds for activity classes generally are pXC50 values of less than 6 for low, over 6 to less than 7 for middle, over 7 to less than 8 for high, 

and over 8 for ultra-high compound activity. 
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Time Series Pre-Processing 

Public Dataset 

The public dataset utilized in this study was derived from ExCAPE-DB. All targets are well-

studied and include more than 1,000 bioactivity data points with pXC50 values. The simplified 

molecular-input line-entry system (SMILES) strings were obtained from ExCAPE-DB for all 

molecules, and canonicalized using the RDKit (version 2020.09.01) component “RDKit Canon 

SMILES” and “Speedy SMILES De-salt” in the KNIME (version 4.3.4). However, this public 

database contains no ‘project registration date’ and the compounds deposited in the underlying 

databases (ChEMBL17 and PubChem45) are usually done by publication or grouped upload, not 

reflecting realistic project time series optimization. Therefore, in order to mimic the time series 

of a practical drug discovery process that increases the activity with time elapsed, data was 

mapped onto a ‘pseudo-time axis’ as follows. We transformed the data by principle component 

analysis (PCA) using Datawarrior (ver 5.2.1)46, and then the following three steps. (1) The 

canonical SMILES of the public dataset were input to calculate the FragFp47 fingerprints. The 

FragFP fingerprints were used to calculate the normalized PCA scores of 3 components. (2) 

Then, these scores and pXC50 value of each compound was used to obtain another PCA score 

of 3 components. These 3 final PCA scores hence include information on both similarity of 

compounds in fingerprint space as well as bioactivity. (3) Finally, the Euclidean distance of all 

compounds in each dataset to the compound that has lowest pXC50 value was calculated using 

the final 3 PCA scores. This process introduces an ordering of compounds in bioactivity space 

(from low to high potency), as well as chemical space (from a low potency starting point, to 

high potency compounds with increasing dissimilarity to the starting point). We are aware that 

this process does not necessarily resemble a real-world drug discovery project, but it at least 

represents compound progression towards higher-potency compounds, which, given the 
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limited availability of public domain timestamped project data is the only practically feasible 

option we were able to identify for a public dataset. Then, the datasets were divided by both 

the activities and pseudo-stages.  

To categorize the activities, pXC50 thresholds for activity classes in most projects are less than 

6 for “low”, over 6 to less than 7 for “middle”, over 7 to less than 8 for “high”, over 8 for “ultra-

high”. To categorize the stages for public projects already transformed into a pseudo time-series, 

those from the beginning of the compounds to 50%, 25% (accumulated from 50% to 75%), and 

25% (accumulated from 75% to 100%) were classified into early, middle and late stage, 

respectively. As an example, Figure 3 shows the DRD2 dataset, with compounds classified 

across the different stages of the drug discovery ‘project’ mapped onto the pseudo-time axis, 

as well as the different bioactivity ranges used in this work. 
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Figure 3 An example of data division according to stages and bioactivities.  

The region of α that consists of more than middle activity compounds in the stage of early corresponds to the training dataset for fine-tunning to 

produce focused agent. The region of β consists of low and middle activity compounds in the middle and late stage, and the region of γ consists of 

more than high activity compounds in the middle and late stage. The X-axis is unitless. 
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In-house Dataset 

The in-house dataset was retrieved from TEIJIN Pharma Ltd’s Database, and we selected 6 

projects (A to F) which have more than 1,000 bioactivity datapoints of pXC50 values. The date 

of completed synthesis for in-house compounds was recorded in the TEIJIN database for a 

given project. Consequently, being different from public dataset, we directly used the date for 

the time-series of the in-house dataset. An additional difference from the public dataset was 

that we know there was at least one additional property to be improved for each project that 

was not on-target activity, such as metabolism, physicochemical properties, etc., and this can 

even change at different timelines of the project21. Hence a second objective of using this 

dataset, apart from benchmarking generative models, was to evaluate to what extent the 

structures generated by de novo generative models actually follow the optimization trajectory 

across a set of real-world drug discovery projects. Regarding data classification along the 

bioactivity axis, for projects A, B, C, D, the setting of activity classification was the same as 

public dataset. However, for projects of E and F, given the bioactivity distribution in those 

cases, thresholds for activity classes have been set to less than 7 for “low”, over 7 to less than 

8 for “middle”, over 8 to less than 9 for “high”, over 9 for “ultra-high”. As for the classification 

of stages of in-house projects, 500 or 1,000 was selected based on the progression of bioactivity 

in order to evenly split activity groups. 

 

Regional Classification and Similarity Analysis 

In order to establish ‘project progress’ with respect to potency, we next defined intervals α, β 

and γ (as shown in Figure 3 for the DRD2 dataset) in bioactivity space as follows. The region 

α is compounds with over middle activity in the early stage, while the region β is compounds 
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with low and middle activity in the middle and late stage and region γ is compounds with high 

and ultra-high activity in the middle and late stage. We then analyzed progression in the 

bioactivity domain across different project stages (i.e., to which extent potency could be 

optimized by the model) by calculating the average similarity of generated molecules to the 

single nearest neighbour (aSNN) present in a given part of the dataset, based on the Tanimoto 

similarity of Morgan fingerprints using RDKit12,48 and with the aSNN calculations performed 

as implemented in MolScore39. 

 

Model Training 

We used REINVENT26 as a de novo generative design strategy, given its wide use in the field49. 

Figure 4 shows the workflow of this study using the REINVENT framework, which is 

described in more detail as follows:  

(i) Pretraining of Prior Model 

Compounds were prepared in accordance with the REINVENT pipeline26 as standardized non-

isomeric SMILES. The Prior network was pre-trained on a dataset of 1,442,368 compounds 

derived from ChEMBL where the molecules were restrained to containing between 10 and 50 

heavy atoms and elements {H, B, C, N, O, F, Si, P, S, Cl, Br, I}17. Only for public dataset, the 

compounds included in the ChEMBL dataset were omitted. In the pre-training, the Prior 

network was trained for a total of 10 epochs with a batch size of 128 with an adaptive learning 

rate starting from 0.0005. All other settings were set to default26. All neural network training 

was conducted on an NVIDIA GeForce GTX 1650 Ti. 

(ii) Data Preparation and Transformation 
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We next utilized the dataset of each project (either public or in-house) for fine-tuning, whose 

compounds were also processed as described in (i). Since the purpose of fine-tuning is to focus 

on the higher activity compounds, the compounds chosen for this step were early-stage 

compounds with above-average activity (region α).  

(iii) Model Generation and Training 

For focused agent network 

The Pre-trained prior network obtained in (i) was fine-tuned by the compounds prepared in (ii), 

and the model obtained here was called the Focused Agent network. During fine-tuning, the 

pre-trained prior network was trained for a total of 10 epochs with a batch size of 128 with an 

adaptive learning rate starting from 0.0005. The other settings were adopted as default26.  

Random Forest model for the reinforcement learning scoring function  

All compounds in the early stage were used to build a classification model which was used as 

the scoring function for reinforcement learning (RL) to optimize. Compounds possessing above 

average activity were classified as active and those below average activity classified as inactive. 

The dataset was divided into 70% training and 30% test, and ECFP6 descriptors50 (1,024 bit, 

radius: 3) were generated using RDKit (version 2020.09.01) Chem functions48 while a Random 

Forest (RF) (Python (ver. 3.7.10), scikit-learn (ver 0.24.2) library RandomForest) 

ensemble.RandomForestClassifier function was used for machine learning51(Figure S1). The 

parameters of RF were set as follows; max_depth: 20, n_estimator: 100, others: default setting. 

RL was performed for 500 steps with a sigma value of 128 and learning rate of 0.0001.  

(iv) Compound Generation 
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The compounds were generated from the Focused Agent network from (iii) and scored by the 

in silico classification model from (iii) repeatedly as the RL framework. 5,000 de novo 

molecule were sampled in total from the final network. The highest-ranked 100 and 500 

compounds were selected according to the in silico classification score for subsequent analysis. 

(v) Evaluations 

As basic metrics, validity, uniqueness and novelty were calculated for all runs which have also 

been used in previous work12,16. Validity is the fraction of correctness that a SMILES string 

translates to a real structure. Low validity is indicative of a poorly behaving model that has 

struggled to learn the SMILES grammar. Uniqueness is the fraction of unique molecules, where 

non-unique molecules are defined as having canonical SMILES that match those previously 

sampled or in the same batch. Low uniqueness is indicative of a poorly behaving model that is 

‘stuck’ in a particular region of chemical space. Novelty is the ratio of valid, unique canonical 

SMILES not present in the training dataset (pre-training: ChEMBL, fine-tuning: above average 

activity compound in the early stage of each project which locates in region α), and low novelty 

indicates the model cannot generalize beyond the training data, which is precisely the aim of 

de novo design. All these calculations were implemented in Python 3.7.10 using the original 

code following the equations below, Eq. 2 to 4, where Ngen represents the number of generated 

compounds, Nval represents the number of valid compounds, Nuni represents the number of 

unique compounds in generated compounds, and Nunk represents the number of unknown 

compounds in generated compounds52.  

𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 (%)  =
𝑁𝑣𝑎𝑙

𝑁𝑔𝑒𝑛
× 100   (Eq. 1) 

𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 (%) =
𝑁𝑢𝑛𝑖

𝑁𝑣𝑎𝑙
× 100   (Eq. 2) 
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𝑁𝑜𝑣𝑒𝑙𝑡𝑦 (%) =
𝑁𝑢𝑛𝑘

𝑁𝑢𝑛𝑖
× 100    (Eq. 3) 

Finally, the highest-scored compounds selected from (iv) were evaluated by the following 

metrics. The calculation of these metrices was implemented in Python 3.7.10.  

1. Rediscovery ratio, defined as Eq.4, in order to assess whether experimentally confirmed 

highly- or ultra-highly active compounds were generated, where Nredis represents the 

number of generated compound which agree with the real high or ultra-high activity 

compound in the middle or late stage. 

𝑅𝑒𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 (%) =
𝑁𝑟𝑒𝑑𝑖𝑠

𝑁𝑔𝑒𝑛
× 100   (Eq. 4) 

2. aSNN in the middle stage, to evaluate whether generated compounds were similar to 

compounds from the middle stage of a given project with high or ultra-high activity.  

3. aSNN in the late stage, to evaluate whether generated compounds were similar to 

compounds from the late stage of a given project with high or ultra-high activity 

(which means that the generative model behaves similarly to ‘real world’ projects, to 

the extent captured by the data used in this work and at that stage). 
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Figure 4 Workflow of this study (for details see main text).  

As options, Inception and diversity filter (DF) could be used in the sampling process of (iv).  
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Generative Models and Options 

Control experiment: Prior Network Only 

As a baseline to compare to RL we generated compounds from the pre-trained prior network 

only, called “Control” in the following. The aim of this baseline was to investigate the effect 

of fine-tuning and reinforcement learning using the dataset prepared in this study. 

Reinforcement Learning (RL) 

This represents the ‘vanilla’ approach of this work, employing only Reinforcement Learning. 

Diversity Filters (DF) 

The next variation was the use of a “diversity filter (DF)” 26, which has been shown before to 

give an increase in the structural diversity of compounds generated42,53. The parameters of DF 

were set to default as follows; name: IdenticalMurckoScaffold, nbmax: 25, minscore: 0.4, 

minsimilarity: 0.4. This run is called “RL-DF”.  

Inception 

The purpose of “Inception” 26 is to keep track of previously well scored compounds and to 

randomly expose a subset of them to the agent, thus helping to direct the learning. The 

parameters of Inception were set as follows; memory_size: 20, sample_size: 5. In this study, 

30 compounds that were at least of ’high’ activity in early stage were used. 

Consequently, there are five different ways the generative model was run, which were Pre-

trained prior network (Control), RL, RL-DF, RL-Inception, RL-DF-Inception. 

Compound Clustering 
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To investigate the profiles of the activity of real (public and in-house) compounds according to 

the time elapsed quantitatively, we used compound k-means clustering as implemented in 

sklearn.cluster using ECFP6 fingerprints calculated using RDKit48 and cluster size: 10. Then, 

we counted the number of compounds in each cluster and in each region (α, β and γ in Figure 

3).  

Furthermore, to understand the chemistry of generated compounds, we examined it by visual 

inspection, using DRD2 compounds as an example. From each cluster the centroid structure  

of each cluster was selected as a representative, and the structure which has the highest pXC50 

value was selected as the highest-scoring structure of its cluster. 

 

  

https://doi.org/10.26434/chemrxiv-2023-lbvgn ORCID: https://orcid.org/0000-0003-2748-9742 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-lbvgn
https://orcid.org/0000-0003-2748-9742
https://creativecommons.org/licenses/by/4.0/


 

21 

 

Results and Discussion 

Dataset Characterization across The Bioactivity and Time Domain 

We firstly aimed to understand the distribution of our datasets across the time and bioactivity 

domain, the results of which are shown in Figure 5. For the public projects, the aSNN between 

α and γ are much higher (by around 0.1) than those between α and β. However, for the in-house 

projects, the aSNN between α and γ were mostly similar to, or lower than, values between α 

and β except for project C. The underlying reason is likely that chemical series from 

publications including high-activity ligands were quite different from those with lower 

activities (hence giving area β a different composition), which is the result of different ligands 

(which different activity) being reported in different publications, w.r.t. both chemistry and 

publication date, given that those were the criteria used for dataset assembly here. On the other 

hand, for the in-house dataset this wasn’t really the case, meaning that in relatively more cases 

late-stage high-activity space was still in a chemical area similar to that occupied at project 

start (although the situation is quite different for different projects). It can clearly be seen that 

both classes of datasets hence behave differently, which is entirely expected from the way they 

were constructed (see methods section for details).  
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Figure 5 Average of single nearest neighbour similarity (aSNN) between training and test compounds for all projects for low or high 

activity real compounds were largely different from public and in-house projects.  

It can be seen that the profiles in Public dataset (aSNN of α-β < α-γ) was different from in-house (mostly, aSNN of α-β > α-γ). The cut-off values 

of aSNN considered similar was set to be 0.3.
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Metrics of Generated Compounds (Validity, Uniqueness, and Novelty) 

Next, we calculated the validity, uniqueness, and novelty of the generated compounds. The 

results for RL are shown in Table S2. The validity for each target was over 98%. The uniqueness 

of generated compounds for the public dataset was relatively high, from 39.4% (GSK3) to 

82.2% (DRD2), while the corresponding value for the in-house datasets was much lower, 

ranging from 15.1% (project F) to 50.9% (project E). The novelty of each target was over 70% 

(for detailed results see Table S3-S5). Through all the runs, regardless of targets, the validity 

and novelty were high enough, over 95% and 70%, respectively, which are appropriate in 

practice. The lower uniqueness values in in-house datasets ranging from 15.1% (project F) to 

50.9% (project E) might reflect more congeneric compounds used in focused learning 

compared to the combination of different publications in public datasets. Across projects, the 

uniqueness of the RL-inception runs were lower than the other runs, from 36.4% (GSK3) to 

59.8% (DRD2) for the public dataset, and from 19.4% (project F) to 40.8% (project E) for the 

in-house dataset which is lower than for the original RL runs. However, if the DF was used as 

an option, the low uniqueness was completely recovered, both for the RL-DF run, as well as 

the combination with Inception, with values ranging from 99.0% (project B) to 99.8% (CDK2) 

for the RL runs, while values for RL-DF-inception ranged from 96.8% (project B) to 98.5% 

(DRD2 and ADRB2). This underlines the importance of using diversity filters to ensure 

uniqueness of generated structures across the different situations considered here40. 

 

Rediscovery  

We next analyzed the rediscovery rates of generated compounds using RL alone, the results of 

which are shown in Figure 6. For public projects, other than GSK3, we could find compounds 
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identical to real high activity compounds. The percentage of rediscovery for DRD2, CDK2, 

EGFR, and ADRB2 were 0.30%, 0.13%, 0.52%, and 0.09% for all 5,000 generated compounds, 

respectively; when using the in silico classification score 1.0%, 0.8%, 1.0%, and 0.4% of the 

500 highest-scored generated compounds represent to known actives, while this was the case 

for 2%, 3%, 2%, and 1% for the top 100 scored generated compounds, respectively. For in-

house projects, only the generative models for project A and B could find identical compounds 

to the real high activity compounds. The percentage of rediscovery in project A and B were 

0.10%, and 0.15% for all 5,000 generated compounds; when using in silico classification scores 

for further selection 0.20% and 0.00% of the top 500 scored generated compounds represent 

known actives, while the top 100 scored generated compounds had no rediscovery (more 

details are shown in Table S6). This decrease of rediscovery shows the prospective performance 

of QSAR models is too poor to achieve enrichment in this case, performing marginally better 

than random (Figure S1). Hence, we consistently find that rediscovery was much higher for 

public projects than in-house projects. Rediscovery was less than 1% for all generated 

compounds, and less than 3% for the top 100 scored compounds (Figure 6), which is 

significantly lower than in a previous study: In work by Segler et. al.54 where the rediscovery 

ratio was around 10% for two bioactivity endpoints (which were growth inhibition endpoints 

though, namely inhibitory activity for Plasmodium falciparum and Staphylococcus aureus). 

However, methodological differences exist: In this previous study the test dataset was selected 

randomly and removed from the training dataset, which means that congeneric compounds 

might still exist in the training dataset, and then the generative models were fine-tuned. This 

explains the high rediscovery rates; however, this situation doesn’t really resemble a real-world 

drug discovery situation. On the other hand, in a study performed by Atance et. al.55, which 

removed a test dataset for DRD2 completely from the training dataset, the percentage of 

rediscovery was less than 1%; the condition of this study was more similar to ours with respect 
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to conditions and results obtained.  

We found that rediscovery (the percentage of known actives present in the de novo-generated 

compounds), was greater in public projects (1.60%, 0.64%, and 0.21% of the top 100, 500, and 

all 5,000 generated compounds, respectively) than that in in-house projects (where the values 

were 0.00%, 0.03%, and 0.04%, respectively). This shows that the public dataset which was 

mapped on a pseudo-time axis behaves fundamentally different from a real-world drug 

discovery project, leading to very different numerical results. 
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Figure 6 Rediscovery of compounds was significantly higher for public projects than in-house projects in the reinforcement learning (RL) 

setting. For further details see Table S6. 
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Similarity Analysis of Generated Compounds to Middle Stage Compounds 

To investigate whether the generative model can produce compounds similar to known actives, 

we next calculated the aSNN (average Similarity of the Nearest Neighbour) between the 

generated compounds and known active compounds. The aSNN between generated compounds 

and the real compounds which belong to the middle stage are shown in Figure 7. For the public 

projects, given all of 5,000 generated compounds, aSNN through the projects of high/ultra-

high activity compounds were much higher than that of low/middle activity compounds (the 

average of aSNN across projects for low/middle/high/ultra-high activity was 

0.304/0.367/0.420/0.408, respectively)56. Hence, for the public dataset, and given the particular 

way this dataset was constructed, optimization towards the single objective of primary target 

activity was possible. For the in-house projects those trends were inconsistent (the average of 

aSNN across projects for low/middle/high/ultra-high activity was 0.431/0.425/0.427/0.348, 

respectively). For project A and B the aSNN to high activity compounds was higher than the 

corresponding value for low/middle activity compounds; however, for  projects C to F the 

aSNN of generated compounds to high/ultra-high compounds was conversely lower than that 

to low/middle activity compounds (Figure 7A). We can hence conclude that both datasets 

behaved very differently: While for the public dataset evolution towards the chemical space of 

higher-potency compounds was generally possible, this was not the case for the in-house 

projects analyzed. 

Next we analyzed the compounds selected by the in silico classification model to investigate 

the effect of this data processing step. For the public dataset we found that the aSNN of the 500 

compounds highest ranked by the in silico classification model was much higher than when all 

generated compounds were used, namely the compounds generated were more similar to the 

ultra-high activity compounds (the average of aSNN through projects for 
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low/middle/high/ultra-high activity was 0.329/0.424/0.531/0.540, respectively). For the in-

house projects the compounds generated were more similar to the high activity compounds as 

well, but this is not the case for ultra-high activity compounds (the average of aSNN through 

projects for low/middle/high/ultra-high activity was 0.527/0.534/0.543/0.442, respectively). 

This trend held for the 100 compounds highest ranked by the in silico classification model, 

where the aSNN across projects for low/middle/high/ultra-high activity was 

0.343/0.443/0.531/0.540 (for public data) and 0.563/0.579/0.602/0.489 (for in-house data), 

respectively. Especially for GSK3 and CDK2, the aSNN of high/ultra-high compounds was 

more than two times higher than when using all generated compounds (Figure 7B, C). 

Furthermore, in project C and F when using top 100 scoring, the aSNN of high activity 

compounds were higher than that of low/middle activity compounds (Figure 7C). Hence we 

can conclude that filtering by an in silico classification model has an overall beneficial effect 

to select higher activity compounds across most of the public and in-house datasets, with the 

magnitude of the effect widely varying. 
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Figure 7 Average of the single nearest neighbour similarity (aSNN) between generated 

compounds and test compounds in the middle stage for all projects in reinforcement 

learning (RL) for (A) all 5,000 compounds generated, for (B) the highest-scored 500 

compounds by an in silico classification model, and the (C) highest-scored 100 scored 

compounds by an in silico classification model. 

It can be seen that activity model selection generally increases aSNN, with the magnitude of 

the effect widely varying across projects. The cut-off values of aSNN considered similar was 

set to be 0.3. 
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Similarity Analysis of Generated Compounds to Late Stage Compounds 

Next, we analysed the aSNN between generated compounds and the real compounds which 

belong to the late project stage, which usually means both greater chemical evolution, and more 

bioactive (or generally optimized, with respect to the objective properties) compounds. 

Generally speaking, the assumption was that the more time elapsed, the more difficult it will 

be for the model to generate compounds similar to real late-stage project compounds. The 

results of this analysis are shown in Figure 8. It can be seen that the value of most aSNNs was 

lower than those in the middle stage (Figure 7). In the public projects, given all of 5,000 

generated compounds, the aSNN of generated compounds to high/ultra-high activity 

compounds was higher than that to low/middle activity compounds (the average of aSNN 

values across projects for low/middle/high/ultra-high activity being 0.259/0.297/0.341/0.404, 

respectively). However, this was not the case with the in-house projects, with the average aSNN 

values across projects for low/middle/high/ultra-high activity being 0.376/0.357/0.361/0.311, 

respectively (Figure 8A). Hence, we can conclude that again both types of projects behave 

differently; for the public dataset evolution towards the chemical space of higher-potency 

compounds was generally possible, but not so for the in-house projects. 

Then, to investigate the effect of score filtering, we analyzed the top scored of the generated 

compounds. Although the absolute value of aSNN was higher when we using top 500 (with the 

average aSNN across projects for low/middle/high/ultra-high activity being 

0.281/0.336/0.402/0.516 for the public datasets and 0.455/0.429/0.441/0.370 for the in-house 

datasets) as well as the top 100 compounds (with the average of aSNN across projects for 

low/middle/high/ultra-high activity being 0.289/0.349/0.414/0.517 for the public datasets and 

0.490/0.464/0.479/0.394 for the in-house datasets), there were not as drastic changes compared 

to those in the middle stage when performing the same analysis (Figure 7B, C and Figure 8B, 
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C). We can conclude that score filtering in the late stage is more difficult compared to the 

middle stage, and this might be derived from the greater time elapsed (and hence chemical 

space evolving) since the generation of the models. 

In absolute terms, a similarity above ca. 0.3 in ECFP4/Tanimoto space (as a broad rule of 

thumb) often indicates similar bioactivity57, which was in many cases reached by the current 

projects. Hence, in absolute terms, it seems that the chemistry generated should be suitable for 

drug discovery.  

However, public and in-house projects behaved vastly different throughout the current analysis, 

which is understandable given the differences in how both datasets were constructed. For in-

house datasets, the aSNN were mostly higher than 0.3; however, the aSNN to the real high or 

ultra-high active compounds was across projects consistently lower (Figure 7 and Figure 8) 

than to the real low or middle active compounds. This could be influenced by the somewhat 

artificial setup of this study, where we focused on a single objective, namely on-target activity; 

however, during any practical drug discovery project the consideration of multiple (and often 

competing) objectives is inevitable20. This is supported by the analysis shown in Figure 5, 

where it is clear that in real projects compound evolution does not simply follow an 

optimization of on-target activity. Consequently, it is more difficult to reproduce a compound 

trajectory from real-world project data, compared to that of just optimizing on-target activity, 

which is what we consistently also observe from our results in this study.   
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Figure 8 Average of single nearest neighbour similarity (aSNN) between generated 

compounds and test compounds in the late stage for all projects using reinforcement 

learning (RL) for (A) all 5,000 compounds generated, (B) the top 500 scored compounds 

by an in silico classification model, and (C) the top 100 scored compounds by an in silico 

classification model.  

It can be seen that, generally speaking, values are lower than in Figure 6 for middle-stage 

compounds, and hence long-term compound evolution is much more difficult to model than 

short-term compound evolution. The cut-off values of aSNN considered similar was set to be 

0.3.
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Accuracy of In Silico Classification Models Did Not Affect The Result of Rediscovery and 

aSNN 

Next, we investigated the relationship between in silico classification model predictivity and 

rediscovery/aSNN, to evaluate whether better bioactivity models also lead to higher values 

across these performance measures. The results of this analysis are shown in Figure S1A. It 

can be seen that balanced accuracies for the public dataset ranged from 0.660 (EGFR) to 0.747 

(ADBR2), while those for the in-house dataset ranged from 0.708 (project F) to 0.828 (project 

A). Consequently, the balanced accuracy for the in-house dataset was a bit of higher than for 

the public dataset; however, in absolute terms, all of the balanced accuracies were high and all 

the in silico classification models obtained were considered to be worth being applied. However, 

converse to model performance, the rediscovery and aSNN obtained were actually higher in 

public projects than in-house ones (Figure 6, Figure 7, and Figure 8). We think this is inevitable 

since we evaluated the predictive models using the early stage compounds selected randomly 

as the external test set, given that using middle or late stage data as training or validation dataset 

would lead to information leakage during model generation and evaluation. So, finally the 

predictivity of in silico classification models could be worse for the later stage compounds than 

when we investigated it as a post-hoc analysis in Figure S1B. Our results suggest that solely 

based on the performance metrics of the in silico model on the external dataset we are not able 

to predict the success of RL generative models, because there was no relationship between 

balanced accuracy (on early-stage compound information available) and rediscovery/aSNN. 

 

The Effect of Diversity Filter and Inception on Performance for Rediscovery and aSNN 

We next investigated whether variations of the protocol, namely the use of a diversity filter and 
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inception, were able to improve performance metrics. Rediscovery obtained when using those 

options is shown in Table S6. Compared with the result of RL, we could not find any beneficial 

effect of a DF and inception when evaluating rediscovery. The aSNN results across model 

options in the middle stage are shown in Figure S2 and those for late stage are shown in Figure 

S3. We also could not find any effect of DF and inception which contribute to an increase in 

the similarity of generated compounds to high or ultra-high activity compounds when 

evaluating aSNN. However, especially for DF, this option surely contributed to avoidance of 

mode collapse when evaluating uniqueness and novelty (Table S4 and S5)58. So, the effect of 

DF should be thought as fitting for purpose, such as scaffold hopping. Regarding inception, it 

has also shown before that it could contribute to the lead optimization process26; however, in 

the current study also no beneficial effect could be observed. 

 

Predictive Cluster Analysis 

According to the investigation we performed so far, the generated compounds for the public 

dataset had better rediscovery ratio and aSNN than the in-house dataset (Figure 6, Figure 7, 

Figure 8). Firstly, we investigated the real activity of each compound, and concluded that the 

public dataset which was transformed on a pseudo-time axis has an explicit relationship 

between activity and pseudo time; however, for the in-house dataset this relationship was much 

less profound (Figure 5). In order to investigate this difference from the viewpoint of each 

compound’s topology and predictivity for late-stage active compounds, we further analysed the 

public and in-house dataset by counting the compound’s number in each region α, β, and γ after 

clustering by k-means. This analysis was meant to show whether each project had predictive 

or unpredictive clusters for the generative model. Specifically, if the number of compounds 
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coming from α is not zero (i.e., active early stage compounds are contained in a given cluster) 

and the number of compounds from γ (i.e., late-stage active compounds) is higher than the 

number of compounds from β (i.e. late-stage inactive compounds), this is a ‘predictive’ cluster 

for the generative model, in the sense that the chemical space of the late-stage, desirable 

compounds is present in the early stage for the generative model (and vice versa for 

‘unpredictive’ clusters). Table 1 shows the results of this analysis. It can be seen that for the 

public projects, most projects had more predictive clusters than unpredictive (the numbers of 

clusters which predictive/unpredictive in DRD2 was 7/1, for GSK this was: 4/4, for CDK2 4/3, 

for EGFR 5/4, and for ADRB2 5/5). On the other hand, in in-house projects, all of the models 

had more unpredictive clusters than predictive (the numbers of cluster predictive/unpredictive 

in project A was 0/6, in project B 1/5, in project C 1/6, in project D 0/5, in project E 0 /7, and 

in project F 1/3; Table 1). Based on this result, we conclude that the difference of rediscovery 

ratio and aSNN between the public and in-house projects might be based on whether projects 

have predictive clusters (and to which extent this is the case), or not. In this sense, we can 

formulate as a success criterion to utilize generative models in the drug discovery process is 

that we require seeds of promising compounds in the training dataset. Active learning might be 

a stepwise approach here. It should also be mentioned that the evaluation performed here is 

based on known actives only – hence, we were not able to evaluate the quality of potential 

‘false positive’ compounds.  
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Table 1 Clustering of real compounds (public and in-house dataset) by k-means (k=10) and classification into α, β, and γ.  

If the number of α is not zero and that of γ is more than that of β, this seemed to be predictive for the generative model (light grey column). On the 

other hand, if the number of α is not zero and that of γ is less than that of β, this seemed to be unpredictive (dark grey column). 

Public DRD2   GSK3   CDK2   EGFR   ADRB2         

Cluster ID α β Γ   α β γ   α β γ   α β γ   α β γ         

1 57 0 0   1 11 35   0 10 11   5 50 75   13 4 28         

2 160 123 127   24 47 48   1 38 21   44 7 1   7 188 13         

3 131 35 155   5 80 35   7 1 1   6 58 76   99 266 33         

4 150 53 238   0 72 0   64 167 27   63 56 460   15 7 143         

5 60 11 132   24 538 226   21 27 75   72 35 5   45 154 10         

6 170 60 139   7 47 71   85 203 144   5 77 211   8 9 0         

7 387 200 298   0 100 133   6 16 30   37 83 60   1 7 43         

8 123 145 272   70 605 219   7 12 47   262 470 174   19 54 30         

9 4 8 68   18 9 19   30 63 140   27 171 319   22 15 170         

10 82 90 16   2 23 5   1 0 0   31 0 0   43 14 120         

  Predictive: 7 clusters   Predictive: 4 clusters   Predictive: 4 clusters   Predictive: 5 clusters   Predictive: 5 clusters         

  Unpredictive: 1 cluster   Unpredictive: 4 clusters   Unpredictive: 3 clusters   Unpredictive: 4 clusters   Unpredictive: 5 clusters         

                                                

In-house A   B   C   D   E   F 

Cluster ID α β γ   α β γ   α β γ   α β γ   α β γ   α β γ 

1 0 0 0   11 386 145   97 101 24   1 475 147   8 6 2   0 125 32 

2 25 41 7   57 37 7   0 59 36   25 266 33   0 43 38   26 0 1 

3 53 11 0   0 94 115   21 154 42   0 256 123   2 67 14   10 16 1 

4 0 59 102   0 23 195   0 214 21   0 337 69   4 85 3   0 5 30 

5 5 155 34   0 108 163   7 114 102   11 160 17   28 17 0   0 90 8 

6 41 129 94   112 0 2   22 28 0   0 433 568   40 97 8   2 16 5 

7 12 10 5   60 16 0   0 107 0   0 418 241   0 133 137   0 0 0 

8 0 57 9   46 37 7   1 20 82   64 63 26   28 255 78   14 97 11 

9 0 0 0   0 65 227   10 324 21   0 284 230   53 9 1   0 35 67 

10 16 96 4   3 11 0   12 85 0   1 165 32   0 66 9   0 62 51 

  Predictive: 0 cluster   Predictive: 1 cluster   Predictive: 1 cluster   Predictive: 0 clusters   Predictive: 0 cluster   Predictive: 1 cluster 

  Unpredictive: 6 clusters   Unpredictive: 5 clusters   Unpredictive: 6 clusters   Unpredictive: 5 clusters   Unpredictive: 7 clusters   Unpredictive: 3 clusters 
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Case study of generated compounds’ structure (DRD2) 

In order to understand the chemistry of generated compounds better, we next examined it by 

visual inspections via clustering, using DRD2 ligands as an example. Representatives (most 

common structures (MCS) and highest scored structures (HSS)) from k-means clustering are 

depicted in Figure 9. Compared to known ligands (Figure 9A), there were some compounds 

that may require more careful consideration with regards to ‘drug like’ properties or synthetic 

ease. Regarding molecules from the pre-trained prior model (Figure 9B) there were, (1) two 

small, fragment-like molecules present in the set (MCS b-3, MCS b-9), (2) many oxygen atoms 

present (MCS b-7, HSS b-3), (3) connections like hydrazine (MCS b-2 and b-8), and cycle to 

cycle connection by one attachment point like tetrahydropyran to pyrrolidine (HSS b-8). 

Regarding the generated compounds by RL (Figure 9C) there were, (1) a few with long flexible 

chains (MCS c-1, MCS c-3), (2) sulfinyl groups present that are more commonly seen in 

antibiotics (HSS c-2, HSS c-4); however, there were no functional groups or idiosyncratic 

topologies without precedent in ChEMBL (i.e., the training data set). Therefore, the process of 

fine-tuning and RL using real chemical datasets had a beneficial effect on the generation of 

practical chemical structures.  
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Figure 9 Example of DRD2 for the comparison of real (A) and generated compounds (B: 

from pre-trained prior model, C: from RL model) by visual inspection.  

The number after CS is the number of compounds included in the same cluster. 
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Figure 9 Example of DRD2 for the comparison of real (A) and generated compounds (B: 

from pre-trained prior model, C: from RL model) by visual inspection. (Continued)  
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Conclusion 

In this research we asked the question “Can a generative model trained on early-stage project 

compounds generate middle/late-stage compounds de novo?” To this end, we used 

experimental data from five public and six in-house project datasets to model the elapsed time 

of a synthetic expansion following hit identification using REINVENT as a widely adopted 

RNN-based generative model. For the public dataset, data was mapped on a pseudo-time axis 

to reflect project progress. As a result, we found that rediscovery was much greater for public 

projects than that for in-house projects. The aSNN between early- and middle/late-stage 

compounds in public projects was higher between active compounds than inactive compounds; 

however, for in-house projects the converse was true. We next analyzed whether project 

compounds presented in predictive clusters, and we found compounds from in-house dataset 

did have fewer predictive clusters than public dataset. This criterion we found most predictive 

of the success of generative models (as measured here); while the performance of bioactivity 

models was not found to be predictive for this measure. Considering the difference in result 

between public and in-house dataset, objectively evaluating de novo compound design is hence, 

based on the current study, difficult or even impossible retrospectively, with large variation 

between projects. At the same time, we have shown that the generative model recovers very 

few middle/late-stage compounds from real-world drug discovery projects, highlighting the 

fundamental difference between human and automated design, as well as the difference 

between single-objective and multi-parameter optimization, with the latter being the norm in 

real-world drug discovery projects. 

 

  

https://doi.org/10.26434/chemrxiv-2023-lbvgn ORCID: https://orcid.org/0000-0003-2748-9742 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-lbvgn
https://orcid.org/0000-0003-2748-9742
https://creativecommons.org/licenses/by/4.0/


 

41 

 

AUTHOR INFORMATION 

Corresponding Authors 

*Andreas Bender - Centre for Molecular Informatics, Department of Chemistry, University 

of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. E-mail: ab454@cam.ac.uk 

*Koichi Handa - Toxicology & DMPK Research Department, Teijin Institute for Bio-medical 

Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan. E-

mail: ko.handa@teijin.co.jp 

 

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given 

approval to the final version of the manuscript. 

 

Funding Sources 

The authors declare no conflicts of interest associated with this manuscript. 

 

Data and Software Availability 

The data that support the findings of this study are available on request from the 

corresponding author. All software used in this study was freely available. 

 

https://doi.org/10.26434/chemrxiv-2023-lbvgn ORCID: https://orcid.org/0000-0003-2748-9742 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-lbvgn
https://orcid.org/0000-0003-2748-9742
https://creativecommons.org/licenses/by/4.0/


 

42 

 

ACKNOWLEDGMENT 

The authors thank Hongbin Yang, Benoit Baillif at the university of Cambridge for help with 

the advice of research structure at some points, and Yohei Matsueda in TEIJIN Pharma Ltd. 

for help with the understanding of datasets. 

 

ABBREVIATIONS 

average of single nearest neighbour, aSNN; natural language process, NLP; multiple 

parameters optimization, MPO; recurrent neural network, RNNs; fully connected neural 

network, FCNNs; convolutional neural network,CNNs; variational auto encoder, VAE; 

Generative Adversarial Networks,GAN; long-short time memory,LSTM; Dopamine Receptor 

D2, DRD2; Glycogen synthase kinase 3, GSK3; Cyclin-dependent kinase 2, CDK2; 

Epidermal Growth Factor Receptor, EGFR; Anrenergic receptor beta2, 2616 active 

compounds, ADRB2; reinforcement learning, RL; random forest, RF; diversity filter, DF; 

 

 

  

https://doi.org/10.26434/chemrxiv-2023-lbvgn ORCID: https://orcid.org/0000-0003-2748-9742 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-lbvgn
https://orcid.org/0000-0003-2748-9742
https://creativecommons.org/licenses/by/4.0/


 

43 

 

References 

 

1 Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-

Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-

Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous Representation of 

Molecules. ACS Cent. Sci. 2018, 4 (2), 268–276. https://doi.org/10.1021/acscentsci.7b00572. 

2 Thomas, M.; Boardman, A.; Garcia-Ortegon, M.; Yang, H.; de Graaf, C.; Bender, A. 

Applications of Artificial Intelligence in Drug Design: Opportunities and Challenges. 

Methods Mol. Biol. 2022, 2390, 1–59. https://doi.org/10.1007/978-1-0716-1787-8_1. 

3 Scannell, J. W.; Bosley, J. When Quality Beats Quantity: Decision Theory, Drug 

Discovery, and the Reproducibility Crisis. PLoS One 2016, 11 (2), e0147215. 

https://doi.org/10.1371/journal.pone.0147215. 

4 Plowright, A. T.; Johnstone, C.; Kihlberg, J.; Pettersson, J.; Robb, G.; Thompson, R. A. 

Hypothesis Driven Drug Design: Improving Quality and Effectiveness of the Design-Make-

Test-Analyse Cycle. Drug Discov. Today 2012, 17 (1–2), 56–62. 

https://doi.org/10.1016/j.drudis.2011.09.012. 

5 Danziger, D. J.; Dean, P. M. Automated Site-Directed Drug Design: A General Algorithm 

for Knowledge Acquisition about Hydrogen-Bonding Regions at Protein Surfaces. Proc. R. 

Soc. London. Ser. B, Biol. Sci. 1989, 236 (1283), 101–113. 

https://doi.org/10.1098/rspb.1989.0015. 

6 Douguet, D.; Thoreau, E.; Grassy, G. A Genetic Algorithm for the Automated Generation 

of Small Organic Molecules: Drug Design Using an Evolutionary Algorithm. J. Comput. 

Aided. Mol. Des. 2000, 14 (5), 449–466. https://doi.org/10.1023/a:1008108423895. 

7 Schneider, G.; Lee, M. L.; Stahl, M.; Schneider, P. De Novo Design of Molecular 

Architectures by Evolutionary Assembly of Drug-Derived Building Blocks. J. Comput. 

Aided. Mol. Des. 2000, 14 (5), 487–494. https://doi.org/10.1023/a:1008184403558. 

8 Pandey, M.; Fernandez, M.; Gentile, F.; Isayev, O.; Tropsha, A.; Stern, A. C.; Cherkasov, 

A. The Transformational Role of GPU Computing and Deep Learning in Drug Discovery. 

Nat. Mach. Intell. 2022, 4 (3), 211–221. https://doi.org/10.1038/s42256-022-00463-x. 

9 Gawehn, E.; Hiss, J. A.; Brown, J. B.; Schneider, G. Advancing Drug Discovery via 

GPU-Based Deep Learning. Expert Opin. Drug Discov. 2018, 13 (7), 579–582. 

https://doi.org/10.1080/17460441.2018.1465407. 

10 Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; 

Madabhushi, A.; Shah, P.; Spitzer, M.; Zhao, S. Applications of Machine Learning in Drug 

Discovery and Development. Nat. Rev. Drug Discov. 2019, 18 (6), 463–477. 

https://doi.org/10.1038/s41573-019-0024-5. 

11 Vogt, M. Exploring Chemical Space — Generative Models and Their Evaluation. Artif. 

Intell. Life Sci. 2023, 3, 100064. https://doi.org/10.1016/j.ailsci.2023.100064. 

 

https://doi.org/10.26434/chemrxiv-2023-lbvgn ORCID: https://orcid.org/0000-0003-2748-9742 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-lbvgn
https://orcid.org/0000-0003-2748-9742
https://creativecommons.org/licenses/by/4.0/


 

44 

 

 

12 Polykovskiy, D.; Zhebrak, A.; Sanchez-Lengeling, B.; Golovanov, S.; Tatanov, O.; 

Belyaev, S.; Kurbanov, R.; Artamonov, A.; Aladinskiy, V.; Veselov, M.; Kadurin, A.; 

Johansson, S.; Chen, H.; Nikolenko, S.; Aspuru-Guzik, A.; Zhavoronkov, A. Molecular Sets 

(MOSES): A Benchmarking Platform for Molecular Generation Models. Front. Pharmacol. 

2020, 11, 565644. https://doi.org/10.3389/fphar.2020.565644. 

13 Preuer, K.; Renz, P.; Unterthiner, T.; Hochreiter, S.; Klambauer, G. Fréchet ChemNet 

Distance: A Metric for Generative Models for Molecules in Drug Discovery. J. Chem. Inf. 

Model. 2018, 58 (9), 1736–1741. https://doi.org/10.1021/acs.jcim.8b00234. 

14 Bender, A.; Schneider, N.; Segler, M.; Patrick Walters, W.; Engkvist, O.; Rodrigues, T. 

Evaluation Guidelines for Machine Learning Tools in the Chemical Sciences. Nat. Rev. 

Chem. 2022, 6 (6), 428–442. https://doi.org/10.1038/s41570-022-00391-9. 

15 https://cache-challenge.org/ (access date: December 2nd, 2022) 

16 Brown, N.; Fiscato, M.; Segler, M. H. S.; Vaucher, A. C. GuacaMol: Benchmarking 

Models for de Novo Molecular Design. J. Chem. Inf. Model. 2019, 59 (3), 1096–1108. 

https://doi.org/10.1021/acs.jcim.8b00839. 

17 Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A. P.; Chambers, J.; Mendez, D.; Mutowo, 

P.; Atkinson, F.; Bellis, L. J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; 

Magariños, M. P.; Overington, J. P.; Papadatos, G.; Smit, I.; Leach, A. R. The ChEMBL 

Database in 2017. Nucleic Acids Res. 2017, 45 (D1), D945–D954. 

https://doi.org/10.1093/nar/gkw1074. 

18 Thomas, M.; O’Boyle, N. M.; Bender, A.; De Graaf, C. Re-Evaluating Sample Efficiency 

in de Novo Molecule Generation. 2022. https://doi.org/https://arxiv.org/abs/2212.01385. 

19 Sheridan, R. P. Time-Split Cross-Validation as a Method for Estimating the Goodness of 

Prospective Prediction. J. Chem. Inf. Model. 2013, 53 (4), 783–790. 

https://doi.org/10.1021/ci400084k. 

20 Bender, A.; Cortes-Ciriano, I. Artificial Intelligence in Drug Discovery: What Is 

Realistic, What Are Illusions? Part 2: A Discussion of Chemical and Biological Data. Drug 

Discov. Today 2021, 26 (4), 1040–1052. https://doi.org/10.1016/j.drudis.2020.11.037. 

21 Beckers, M.; Fechner, N.; Stiefl, N. 25 Years of Small-Molecule Optimization at 

Novartis: A Retrospective Analysis of Chemical Series Evolution. J. Chem. Inf. Model. 2022. 

https://doi.org/10.1021/acs.jcim.2c00785. 

22 Ståhl, N.; Falkman, G.; Karlsson, A.; Mathiason, G.; Boström, J. Deep Reinforcement 

Learning for Multiparameter Optimization in de Novo Drug Design. J. Chem. Inf. Model. 

2019, 59 (7), 3166–3176. https://doi.org/10.1021/acs.jcim.9b00325. 

23 He, J.; You, H.; Sandström, E.; Nittinger, E.; Bjerrum, E. J.; Tyrchan, C.; Czechtizky, W.; 

Engkvist, O. Molecular Optimization by Capturing Chemist’s Intuition Using Deep Neural 

Networks. J. Cheminform. 2021, 13 (1), 26. https://doi.org/10.1186/s13321-021-00497-0. 

 

https://doi.org/10.26434/chemrxiv-2023-lbvgn ORCID: https://orcid.org/0000-0003-2748-9742 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-lbvgn
https://orcid.org/0000-0003-2748-9742
https://creativecommons.org/licenses/by/4.0/


 

45 

 

 

24 Delaney, J. Modelling Iterative Compound Optimisation Using a Self-Avoiding Walk. 

Drug Discov. Today 2009, 14 (3–4), 198–207. https://doi.org/10.1016/j.drudis.2008.10.007. 

25 Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular De-Novo Design 

through Deep Reinforcement Learning. J. Cheminform. 2017, 9 (1), 48. 

https://doi.org/10.1186/s13321-017-0235-x. 

26 Blaschke, T.; Arús-Pous, J.; Chen, H.; Margreitter, C.; Tyrchan, C.; Engkvist, O.; 

Papadopoulos, K.; Patronov, A. REINVENT 2.0: An AI Tool for De Novo Drug Design. J. 

Chem. Inf. Model. 2020, 60 (12), 5918–5922. https://doi.org/10.1021/acs.jcim.0c00915. 

27 Popova, M.; Isayev, O.; Tropsha, A. Deep Reinforcement Learning for de Novo Drug 

Design. Sci. Adv. 2018, 4 (7), eaap7885. https://doi.org/10.1126/sciadv.aap7885. 

28 Sewak, M.; Sahay, S. K.; Rathore, H. An Overview of Deep Learning Architecture of 

Deep Neural Networks and Autoencoders. J. Comput. Theor. Nanosci. 2020, 17 (1), 182–188. 

https://doi.org/10.1166/jctn.2020.8648. 

29 Bouwmans, T.; Javed, S.; Sultana, M.; Jung, S. K. Deep Neural Network Concepts for 

Background Subtraction:A Systematic Review and Comparative Evaluation. Neural Netw. 

2019, 117, 8–66. https://doi.org/10.1016/j.neunet.2019.04.024. 

30 Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. Molecular Graph 

Convolutions: Moving beyond Fingerprints. J. Comput. Aided. Mol. Des. 2016, 30 (8), 595–

608. https://doi.org/10.1007/s10822-016-9938-8. 

31 De Cao, N.; Kipf, T. MolGAN: An Implicit Generative Model for Small Molecular 

Graphs. 2018. 

32 Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9 (8), 

1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. 

33 Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent 

Neural Networks on Sequence Modeling. 2014, 1–9. 

34 Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.; 

Polosukhin, I. Attention Is All You Need. 2017. 

35 Ertl, P.; Lewis, R.; Martin, E.; Polyakov, V. In Silico Generation of Novel, Drug-like 

Chemical Matter Using the LSTM Neural Network. 2017. 

36 He, J.; Nittinger, E.; Tyrchan, C.; Czechtizky, W.; Patronov, A.; Bjerrum, E. J.; Engkvist, 

O. Transformer-Based Molecular Optimization beyond Matched Molecular Pairs. J. 

Cheminform. 2022, 14 (1), 18. https://doi.org/10.1186/s13321-022-00599-3. 

37 Guo, J.; Janet, J. P.; Bauer, M. R.; Nittinger, E.; Giblin, K. A.; Papadopoulos, K.; 

Voronov, A.; Patronov, A.; Engkvist, O.; Margreitter, C. DockStream: A Docking Wrapper to 

Enhance de Novo Molecular Design. J. Cheminform. 2021, 13 (1), 89. 

https://doi.org/10.1186/s13321-021-00563-7. 

 

https://doi.org/10.26434/chemrxiv-2023-lbvgn ORCID: https://orcid.org/0000-0003-2748-9742 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-lbvgn
https://orcid.org/0000-0003-2748-9742
https://creativecommons.org/licenses/by/4.0/


 

46 

 

 

38 Marques, G.; Leswing, K.; Robertson, T.; Giesen, D.; Halls, M. D.; Goldberg, A.; 

Marshall, K.; Staker, J.; Morisato, T.; Maeshima, H.; Arai, H.; Sasago, M.; Fujii, E.; 

Matsuzawa, N. N. De Novo Design of Molecules with Low Hole Reorganization Energy 

Based on a Quarter-Million Molecule DFT Screen. J. Phys. Chem. A 2021, 125 (33), 7331–

7343. https://doi.org/10.1021/acs.jpca.1c04587. 

39 Thomas, M.; Smith, R. T.; O’Boyle, N. M.; de Graaf, C.; Bender, A. Comparison of 

Structure- and Ligand-Based Scoring Functions for Deep Generative Models: A GPCR Case 

Study. J. Cheminform. 2021, 13 (1), 39. https://doi.org/10.1186/s13321-021-00516-0. 

40 Thomas, M.; O’Boyle, N. M.; Bender, A.; de Graaf, C. Augmented Hill-Climb Increases 

Reinforcement Learning Efficiency for Language-Based de Novo Molecule Generation. J. 

Cheminform. 2022, 14 (1), 68. https://doi.org/10.1186/s13321-022-00646-z. 

41 Blaschke, T.; Bajorath, J. Fine-Tuning of a Generative Neural Network for Designing 

Multi-Target Compounds. J. Comput. Aided. Mol. Des. 2022, 36 (5), 363–371. 

https://doi.org/10.1007/s10822-021-00392-8. 

42 Blaschke, T.; Engkvist, O.; Bajorath, J.; Chen, H. Memory-Assisted Reinforcement 

Learning for Diverse Molecular de Novo Design. J. Cheminform. 2020, 12 (1), 68. 

https://doi.org/10.1186/s13321-020-00473-0. 

43 Yoshimori, A.; Kawasaki, E.; Kanai, C.; Tasaka, T. Strategies for Design of Molecular 

Structures with a Desired Pharmacophore Using Deep Reinforcement Learning. Chem. 

Pharm. Bull. (Tokyo). 2020, 68 (3), 227–233. https://doi.org/10.1248/cpb.c19-00625. 

44 Sun, J.; Jeliazkova, N.; Chupakin, V.; Golib-Dzib, J.-F.; Engkvist, O.; Carlsson, L.; 

Wegner, J.; Ceulemans, H.; Georgiev, I.; Jeliazkov, V.; Kochev, N.; Ashby, T. J.; Chen, H. 

ExCAPE-DB: An Integrated Large Scale Dataset Facilitating Big Data Analysis in 

Chemogenomics. J. Cheminform. 2017, 9, 17. https://doi.org/10.1186/s13321-017-0203-5. 

45 Sayers, E. W.; Beck, J.; Bolton, E. E.; Bourexis, D.; Brister, J. R.; Canese, K.; Comeau, 

D. C.; Funk, K.; Kim, S.; Klimke, W.; Marchler-Bauer, A.; Landrum, M.; Lathrop, S.; Lu, Z.; 

Madden, T. L.; O’Leary, N.; Phan, L.; Rangwala, S. H.; Schneider, V. A.; Skripchenko, Y.; 

Wang, J.; Ye, J.; Trawick, B. W.; Pruitt, K. D.; Sherry, S. T. Database Resources of the 

National Center for Biotechnology Information. Nucleic Acids Res. 2021, 49 (D1), D10–D17. 

https://doi.org/10.1093/nar/gkaa892. 

46 Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program 

For Chemistry Aware Data Visualization And Analysis. J. Chem. Inf. Model. 2015, 55 (2), 

460–473. https://doi.org/10.1021/ci500588j. 

47 Ertl, P.; Patiny, L.; Sander, T.; Rufener, C.; Zasso, M. Wikipedia Chemical Structure 

Explorer: Substructure and Similarity Searching of Molecules from Wikipedia. J. 

Cheminform. 2015, 7, 10. https://doi.org/10.1186/s13321-015-0061-y. 

48 RD-kit: https://www.rdkit.org/docs/index.html# (access date: June 5th, 2023) 

 

https://doi.org/10.26434/chemrxiv-2023-lbvgn ORCID: https://orcid.org/0000-0003-2748-9742 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-lbvgn
https://orcid.org/0000-0003-2748-9742
https://creativecommons.org/licenses/by/4.0/


 

47 

 

 

49 Sousa, T.; Correia, J.; Pereira, V.; Rocha, M. Generative Deep Learning for Targeted 

Compound Design. J. Chem. Inf. Model. 2021, 61 (11), 5343–5361. 

https://doi.org/10.1021/acs.jcim.0c01496. 

50 Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50 

(5), 742–754. https://doi.org/10.1021/ci100050t. 

51 Breiman, L. Random Forests. Mach. Learn. 2001, 45 (2), 5–32. 

https://doi.org/https://doi.org/10.1023/A:1010933404324. 

52 Du, Y.; Fu, T.; Sun, J.; Liu, S. MolGenSurvey: A Systematic Survey in Machine Learning 

Models for Molecule Design. 2022. 

53 Bjerrum, E. J.; Margreitter, C.; Blaschke, T.; de Castro, R. L.-R. Faster and More Diverse 

de Novo Molecular Optimization with Double-Loop Reinforcement Learning Using 

Augmented SMILES. 2022. 

54 Segler, M. H. S.; Kogej, T.; Tyrchan, C.; Waller, M. P. Generating Focused Molecule 

Libraries for Drug Discovery with Recurrent Neural Networks. ACS Cent. Sci. 2018, 4 (1), 

120–131. https://doi.org/10.1021/acscentsci.7b00512. 

55 Atance, S. R.; Diez, J. V.; Engkvist, O.; Olsson, S.; Mercado, R. De Novo Drug Design 

Using Reinforcement Learning with Graph-Based Deep Generative Models. J. Chem. Inf. 

Model. 2022, 62 (20), 4863–4872. https://doi.org/10.1021/acs.jcim.2c00838. 

56 Jasial, S.; Hu, Y.; Vogt, M.; Bajorath, J. Activity-Relevant Similarity Values for 

Fingerprints and Implications for Similarity Searching. F1000Research 2016, 5. 

https://doi.org/10.12688/f1000research.8357.2. 

57 Hert, J.; Willett, P.; Wilton, D. J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. 

Comparison of Topological Descriptors for Similarity-Based Virtual Screening Using 

Multiple Bioactive Reference Structures. Org. Biomol. Chem. 2004, 2 (22), 3256–3266. 

https://doi.org/10.1039/B409865J. 

58 Putin, E.; Asadulaev, A.; Ivanenkov, Y.; Aladinskiy, V.; Sanchez-Lengeling, B.; Aspuru-

Guzik, A.; Zhavoronkov, A. Reinforced Adversarial Neural Computer for de Novo Molecular 

Design. J. Chem. Inf. Model. 2018, 58 (6), 1194–1204. 

https://doi.org/10.1021/acs.jcim.7b00690. 

https://doi.org/10.26434/chemrxiv-2023-lbvgn ORCID: https://orcid.org/0000-0003-2748-9742 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-lbvgn
https://orcid.org/0000-0003-2748-9742
https://creativecommons.org/licenses/by/4.0/

