Maximizing single-pass conversion does not result in practical readiness for CO₂ reduction electrolyzers

3 Shashwati C. da Cunha¹, Joaquin Resasco¹*

4 1. McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA

5 *Corresponding author: <u>resasco@utexas.edu</u>

6

7 Abstract

8	Although single-pass conversion is a metric that suggests a lower need to separate products in

9 many chemical processes, low-temperature carbon dioxide electrolyzers that maximize single-

- 10 pass conversion suffer from low product concentration. Maximizing product concentration is
- 11 therefore a more meaningful target for CO₂ electrolyzers than maximizing single-pass

12 conversion.

13 To integrate electrochemical CO_2 reduction into the chemicals industry at scale, the outlet 14 streams from CO₂R electrolyzers must be product rich. Single-pass conversion is becoming increasingly common as a performance benchmark for CO₂R electrolyzers because it indicates 15 16 concentrated products and reduced separation energy for many catalytic processes. However, our 17 analysis shows that CO_2R reactor configurations that maximize single-pass conversion currently 18 suffer from low product concentration in the outlet stream. This is because they restrict CO_2 flow 19 or operate in acidic cathode environments, which promote considerable hydrogen evolution as a 20 side reaction. For any gas products besides syngas, high single-pass conversion does not signify 21 that separation energy losses have been eliminated, or that product streams are suitable 22 feedstocks for downstream processes. We therefore recommend that researchers targeting CO_2R 23 scaleup report product concentrations rather than relying on single-pass conversion as an 24 indicator of overall performance. Maximizing product concentration is a more meaningful target 25 than maximizing single-pass conversion.

26

27 CO₂R electrolyzers produce impure streams that require gas separations

Electrochemical carbon dioxide reduction (CO₂R) has the potential to be a low-carbon pathway for producing chemical feedstocks and fuels from renewable electricity, water, and CO₂.^{1,2} State-of-the-art CO₂R electrolyzers have limited reactant utilization because of the incomplete reaction of CO₂, as well as CO₂ crossover due to carbonate acid-base equilibrium. Selectivity is also limited by competition from water reduction via the hydrogen evolution reaction (HER), in which CO₂ is uninvolved. Gas separations and recycle streams are needed to recover and convert unreacted CO₂, and to purify products.

35	Typical CO ₂ R electrolyzers produce two gas-phase outlet streams, one each at the cathode
36	and anode, which can both contain residual CO ₂ (Figure 1A). The cathode gas contains gas-
37	phase CO ₂ R products, unreacted CO ₂ , and hydrogen as a byproduct from the HER. CO ₂ R can
38	produce carbon monoxide with 100% molar selectivity, ^{3,4} so a hydrogen-free tail gas can be
39	produced under optimal conditions. For multicarbon products, state-of-the-art electrolyzers have
40	a molar selectivity of 50% to C_{2^+} products, with the co-evolution of 20% H_2 and 30% C_1
41	products at the cathode. ^{5,6} The scope of this discussion is limited to gas-phase separations, which
42	are necessary for the production of CO or ethylene, the dominant C_{2+} product.
43	At the anode, oxygen is produced from water oxidation via the oxygen evolution reaction
44	(OER). The anode outlet also contains CO_2 that crosses over the membrane. ^{7,8} This crossover
45	arises from homogeneous acid-base equilibria – in neutral or alkaline electrolytes, hydroxide
46	generated by the cathodic reaction converts dissolved CO ₂ into carbonate ions. Carbonate anions
47	migrate towards the anode, where they buffer protons generated by OER, regenerating CO ₂ gas.
48	This buffering reaction limits single-pass conversion at most pH.9 In neutral electrolytes,
49	carbonate ion crossover stoichiometrically consumes 0.5 mol CO2/ mol e ⁻ . Carbonate crossover
50	results in an anode tail gas consisting of 67 mol% CO_2 + 33 mol% O_2 . Therefore, both the
51	cathode and anode outlet gases can contain unreacted CO ₂ that must be captured and recycled to
52	the cathode (Figures 1A, B).
52	Providing upresented CO- requires a gas separation that could be a conital, and energy
55	Recycling unreacted CO ₂ requires a gas separation that could be a capital- and energy-
54	intensive process. An electrolyzer with incomplete conversion, imperfect selectivity, and reactant
55	crossover needs at least three pairwise separations: one to separate the target product from

- 56 byproducts, and two to recycle CO_2 from the cathode and anode outlets (Figure 1C). Separation
- 57 units are typically modeled as pressure-swing adsorption using electrical utilities,¹⁰ but cryogenic

distillation or amine scrubbing could be preferable depending on process scale and available
utilities.¹¹ If extensive downstream separations are required to purify products and recycle CO₂,
the overall energy efficiency of CO₂R has been argued to suffer unacceptably.⁸ To account for
separation demands, studies on CO₂R electrolyzers increasingly report single-pass conversion:

$$62 \qquad \qquad SPC = \frac{CO_2 \text{ moles converted to products}}{CO_2 \text{ moles fed to reactor}}$$

In other catalytic processes, high SPC generally suggests improved reactant utilization and hence
lower energy to recycle the unreacted feed. Also, downstream applications, like ethylene
polymerization, typically require high-purity feedstocks. Since high SPC implies that the

66 products are not diluted in leftover reactant, it is associated with marketable product streams.

Figure 1. Typical CO₂R electrolyzer outlet gases. (A, B) Molar flow rates in a single pass of CO₂R to
CO for example scenarios with (A) high FE_{CO2R} with realistic parameters and (B) high single-pass
conversion with optimistic parameters. The total current is the same in both cases. Despite optimistically
high single-pass conversion in (B), CO concentration in the cathode outlet is decreased. (C) Sample gas
separation scheme required for a CO₂R electrolyzer. (D) Energy required per mole of product for reaction
(modeled as overpotential) vs separation (modeled as thermodynamics) show that the high-SPC scenario
wastes reactor energy on hydrogen evolution. Process parameters correspond to (A) and (B).

High single-pass conversion does not eliminate cathode gas separations

Molar stream composition is a critical consideration for downstream applications. For
instance, thermal reactors are sensitive to reactant partial pressures, so CO₂R products must often
be concentrated for downstream processing. To assess the relationship between SPC and reactor
outlet composition, we analyzed data from literature reports targeting state-of-the-art CO₂R
electrolyzer performance (for details, see SI).

82 As shown in Figure 2A, we find that experimental conditions that maximize single-pass 83 conversion do not correspond to concentrated product streams suitable for further reaction. To 84 maximize SPC, studies are often conducted at low inlet CO₂ flow rates (Figure 2B). Under these 85 conditions, the partial pressure of CO_2 drops steeply across the reactor as it is consumed by reaction, resulting in a loss in CO₂R selectivity in favor of HER.^{12–14} In some cases, SPC has also 86 been increased using an acidic electrolyte or reverse-biased bipolar membrane to eliminate 87 88 carbonate formation and crossover. Unfortunately, the high availability of protons in such 89 configurations steers selectivity towards HER over CO_2R , which is not captured in SPC since CO₂ plays no direct role in the HER reaction. This tradeoff between FE_{CO2R} and SPC has been 90 demonstrated for various electrolyzers previously,^{15–17} and is reflected across the dataset we 91 92 analyzed (Figure 2C). Hence strategies to reduce the need to recycle CO₂ still require separations 93 to remove H_2 and concentrate the product for downstream processes. Additionally, electrolyzer 94 energy is wasted on making H_2 in these scenarios. A comparison of the energy required for reaction and separation (Figure 1D) and a recent in-depth analysis¹⁸ suggest that reactor energy 95 96 requirements significantly exceed the energetic costs of separations. Hence the energy demand 97 for CO₂R is dramatically increased at high SPC/ low FE_{CO2R} conditions, even if gas separations

98	are reduced (Figure 1D). Therefore, high SPC neither eliminates the need for cathode gas
99	separations, nor indicates that products are formed at an improved energy efficiency.

100 Neither SPC nor Faradaic efficiency (FE) directly reflect outlet composition, as indicated 101 by the lack of a clear trend in Figures 2A and 2D. While SPC fails to account for HER, FE and 102 partial current density do not reflect molar flow rates. For C₂₊ products, this problem is 103 especially acute since multiple electron pairs are transferred for CO₂R, compared to a single pair 104 to make H₂. For example, a 90% FE to CO with 10% to H₂ at 100% SPC translates to a stream 105 composition of 90 mol% CO + 10 mol% H₂. In contrast, 90% FE to ethylene with 10% to H₂ 106 results in 60 mol% ethylene + 40 mol% H₂ because of the 12 e⁻ transferred to produce ethylene. 107 Even though high FE does not perfectly scale to high molar flows, Figure 2D shows that 108 the most concentrated cathode product is obtained at high FE_{CO2R}, which is extremely 109 challenging at low flow rates that give high SPC. At high current densities and CO₂R FEs, high 110 crossover and selective reaction manifest in very concentrated cathode products. On the other 111 extreme, crossover can be minimized to produce $100\% O_2$ at the anode. However, crossover can 112 be minimized across a range of SPC (Figure 2E), so high SPC is not a necessary condition for 113 low crossover. If minimizing HER is important for CO_2R scaleup, then SPC to CO_2R products is 114 a misleading metric that does not truly reflect that a reactor design is suitable for scaleup.

117 Figure 2. Correlations between single-pass conversion and CO₂R performance in literature.

118 (A) High single-pass conversion does not result in highly concentrated products that are suitable for 119 downstream applications. (B) High SPC is achieved at low feed flow rates, at which hydrogen evolution 120 is the dominant reaction. (C) Faradaic effiency to CO₂ reduction trades off with single-pass conversion 121 across various reaction conditions. (D) Concentrated cathode streams are produced by maximizing 122 Faradaic efficiency, which is extremely challenging at high single-pass conversions. (E) Anode gas 123 separations can be minimized across a range of SPC. 124 Red circles correspond to the single-pass conversion reported, and blue diamonds correspond to the 125 highest FE_{CO2R} reported; hollow symbols correspond to ethylene production and filled symbols represent CO generation.^{3,9,12–14,16,19–40} 126

CO₂R electrolyzers targeting scaleup should report outlet compositions

128 To pursue industrial relevance, we recommend a careful selection of metrics and 129 operating conditions for measuring and reporting the performance of electrolyzers that aim for 130 selective CO₂R. Our analysis shows that SPC does not accurately reflect downstream 131 compositions at the cathode. A realistic representation of separation demand can be provided by 132 mole fractions and outlet flow rates. The concentration of products in the cathode and anode 133 streams indicates the readiness of electrolyzers for downstream applications, informing 134 separation energy and process feasibility. Therefore, we recommend that researchers report 135 cathode and anode product stream compositions. We also suggest researchers characterize the 136 composition of the anode gas, as has been recommended by Seger and coworkers.^{41,42} The 137 combination of complete anode and cathode gas quantification allows the carbon mass balance to 138 be used as an additional experimental validation step. The carbon balance is especially important 139 in alkaline electrolytes that absorb CO_2 , where anode gas quantification can be nuanced. Many 140 reports in alkaline conditions report a higher conversion than is physically reasonable. This may 141 be due to the analyte not being purged of CO₂, thus excluding carbonate formation from the 142 carbon balance.

We recommend that researchers supply CO_2 flow rates that correspond to at least the amount of CO_2 consumed stoichiometrically by CO_2R at the applied current. Many reports feed a lower CO_2 molar flow than the chronopotentiometry current. This artificially inflates SPC at the cost of selectivity, since the CO_2R partial current density is severely reactant limited and HER must compensate for the remaining current. The complete reaction of 1 sccm of CO_2 accounts for 148 143 mA of current through a 2-e⁻ pathway making C_1 products, or 430 mA of current through a 12-e⁻ C_2 pathway. Therefore, on a 5 cm² cathode where 1 sccm CO_2 is fed, it is impossible to

produce more than 29 mA/cm² of C₁ products, even in the absence of crossover. In a neutral electrolyte where carbonate is the dominant charge carrier, CO₂R current is further constrained by the crossover of 0.5 mol CO₂/ mol e⁻. Under these conditions, the partial current density to 12e⁻ C₂₊ products from 1 sccm CO₂ on a 5 cm² electrode is at most 22 mA/cm². Most MEA experiments are operated at >50 mA/cm², so low CO₂ flow rates guarantee high HER. To operate at a current density of 100 mA/cm² of CO₂R to CO on a 5 cm² electrode in neutral conditions, at least 7 sccm of CO₂ must be fed to the reactor.

157 From a scaleup perspective, the optimal flowrate depends on complex tradeoffs, 158 including between electrolyzer energy and separator capital cost, or selectivity versus crossover.¹⁸ CO₂R has been shown to be severely limited by CO₂ availability in a variety of 159 160 system configurations^{3,14,43}. Continuum modeling of current electrolyzer designs suggests that 161 concentration gradients on the cathode surface effectively make it impossible to co-optimize conversion and selectivity at low flow rates.⁴³ In contrast, large CO₂ feeds steer selectivity 162 163 towards CO₂R but increase separation and compression energies by diluting products and requiring recycle streams. Several reports^{13,14,16} show a parabolic trend in product concentration 164 165 vs feed flow rate. Further techno-economic analysis is needed to determine whether the process 166 energy and cost are optimal at the peak of this parabola.

Lastly, to clarify reports of high SPC, we recommend reporting FE and SPC at the same
conditions, rather than the best-case scenarios for each. It has been repeatedly shown that
selectivity and SPC trade off in current MEA designs.^{17,28} A single star plot should not include
the best performance of an electrolyzer under multiple operating conditions. Given the carbonate
equilibrium, we also note that conversions should always be reported as CO₂ in CO₂R products/
CO₂ fed, and never CO₂ consumed/ CO₂ fed.

173 Conclusions

174 By analyzing stream compositions for state-of-the art CO₂R electrolyzers, we show that 175 single-pass conversion alone does not capture the extent of downstream gas separations required. 176 Although electrolyzers with high SPC do not dilute products in unreacted CO₂, they still produce 177 mixed cathode product streams. In current electrolyzer designs, this tradeoff arises from physical 178 limitations. Low CO₂ feed flow rates and proton-rich environments maximize SPC but increase 179 the side reaction of hydrogen evolution. We recommend that researchers prioritize and report 180 outlet gas compositions, since maximizing product yield and mole fraction in the cathode outlet 181 is more practically important than maximizing single-pass conversion. While reactor designs that 182 decouple the tradeoff between selectivity and SPC could be pursued, electrolyzer energy 183 dominates separation for both low and high SPC operation, so this is not the most pressing 184 challenge facing CO₂R scaleup. Thermocatalytic processes and solid oxide electrolytic cells 185 often operate at low SPC with separation and recycle schemes, optimizing systems for the 186 reaction rather than separation. CO_2R electrolyzers can similarly benefit from prioritizing other 187 goals, including high product yields and cell voltages, over increased single-pass conversion.

189	Acknowledgements
190	J. Resasco gratefully acknowledges support from the Welch Foundation under Grant No. F-
191	2076. The authors thank Christopher Hahn, Thomas Moore, Justin Bui, and Alex King for useful
192	discussions.
193	
194	Data availability
195	The data included in this study are available from the corresponding author upon reasonable
196	request.
197	
198	Author contributions
199	S.C.D. analyzed experimental data and wrote the article. J.R. guided the work. All authors
200	contributed to the discussion, review, and editing of the manuscript.
201	
202	Competing interests
203	There are no competing interests to declare.

204 **References**

- 205 1. Resasco, J. & Bell, A. T. Electrocatalytic CO₂ Reduction to Fuels: Progress and
- 206 Opportunities. *Trends Chem.* **2**, 825–836 (2020).
- 207 2. Nitopi, S. *et al.* Progress and Perspectives of Electrochemical CO₂ Reduction on Copper in
- 208 Aqueous Electrolyte. *Chem. Rev.* **119**, 7610–7672 (2019).
- 3. Bhargava, S. S. *et al.* System Design Rules for Intensifying the Electrochemical Reduction
 of CO₂ to CO on Ag Nanoparticles. *ChemElectroChem* 7, 2001–2011 (2020).
- 211 4. Bondue, C. J., Graf, M., Goyal, A. & Koper, M. T. M. Suppression of Hydrogen Evolution
- in Acidic Electrolytes by Electrochemical CO 2 Reduction. J. Am. Chem. Soc. 143, 279–285
 (2021).
- 5. García de Arquer, F. P. *et al.* CO₂ electrolysis to multicarbon products at activities greater
 than 1 A cm2. *Science* 367, 661–666 (2020).
- 216 6. Dinh, C.-T. *et al.* CO₂ electroreduction to ethylene via hydroxide-mediated copper catalysis
 217 at an abrupt interface. *Science* (2018) doi:10.1126/science.aas9100.
- 218 7. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis
 219 depends on solving one basic problem. *Nat. Commun.* 11, 5231 (2020).
- 8. Ozden, A. *et al.* Carbon-efficient carbon dioxide electrolysers. *Nat. Sustain.* 5, 563–573
 (2022).
- 9. Ma, M. *et al.* Insights into the carbon balance for CO₂ electroreduction on Cu using gas
- diffusion electrode reactor designs. *Energy Environ. Sci.* **13**, 977–985 (2020).
- 224 10. Jouny, M., Luc, W. & Jiao, F. General Techno-Economic Analysis of CO₂ Electrolysis
- 225 Systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

- 11. Alerte, T. *et al.* Downstream of the CO₂ Electrolyzer: Assessing the Energy Intensity of
 Product Separation. *ACS Energy Lett.* 6, 4405–4412 (2021).
- 12. Xie, Y. *et al.* High carbon utilization in CO₂ reduction to multi-carbon products in acidic
 media. *Nat. Catal.* 5, 564–570 (2022).
- 230 13. O'Brien, C. P. et al. Single Pass CO₂ Conversion Exceeding 85% in the Electrosynthesis of
- 231 Multicarbon Products via Local CO₂ Regeneration. *ACS Energy Lett.* **6**, 2952–2959 (2021).
- 232 14. Pan, B. et al. Close to 90% Single-Pass Conversion Efficiency for CO₂ Electroreduction in
- an Acid-Fed Membrane Electrode Assembly. *ACS Energy Lett.* 4224–4231 (2022)
- doi:10.1021/acsenergylett.2c02292.
- 235 15. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon
 236 dioxide electrolysis. *Nat. Sustain.* 4, 911–919 (2021).
- 237 16. Jeng, E. & Jiao, F. Investigation of CO₂ single-pass conversion in a flow electrolyzer. *React.*238 *Chem. Eng.* 5, 1768–1775 (2020).
- 17. Hawks, S. A. *et al.* Analyzing Production Rate and Carbon Utilization Trade-offs in CO₂ RR
 Electrolyzers. *ACS Energy Lett.* 7, 2685–2693 (2022).
- 241 18. Moore, T. *et al.* Electrolyzer energy dominates separation costs in state-of-the-art CO₂
- electrolyzers: Implications for single-pass CO₂ utilization. *Joule* **7**, 782–796 (2023).
- 243 19. Edwards, J. P. et al. Efficient electrocatalytic conversion of carbon dioxide in a low-
- resistance pressurized alkaline electrolyzer. *Appl. Energy* **261**, 114305 (2020).
- 245 20. Endrődi, B. et al. Multilayer Electrolyzer Stack Converts Carbon Dioxide to Gas Products at
- High Pressure with High Efficiency. ACS Energy Lett. 4, 1770–1777 (2019).

- 247 21. Endrődi, B. et al. High carbonate ion conductance of a robust PiperION membrane allows
- industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell.
- 249 *Energy Environ. Sci.* **13**, 4098–4105 (2020).
- 250 22. Gu, J. et al. Modulating electric field distribution by alkali cations for CO₂ electroreduction
- 251 in strongly acidic medium. *Nat. Catal.* (2022) doi:10.1038/s41929-022-00761-y.
- 252 23. Larrazábal, G. O. et al. Analysis of Mass Flows and Membrane Cross-over in CO₂ Reduction
- at High Current Densities in an MEA-Type Electrolyzer. *ACS Appl. Mater. Interfaces* **11**,
- **254** 41281–41288 (2019).
- 255 24. Li, H. et al. Tailoring acidic microenvironments for carbon-efficient CO₂ electrolysis over a
- 256 Ni–N–C catalyst in a membrane electrode assembly electrolyzer. *Energy Environ. Sci.*
- 257 10.1039.D2EE03482D (2023) doi:10.1039/D2EE03482D.
- 258 25. Liu, Z. *et al.* Acidic Electrocatalytic CO₂ Reduction Using Space-Confined Nanoreactors.
- 259 ACS Appl. Mater. Interfaces 14, 7900–7908 (2022).
- 260 26. Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO₂ Electrolysis to CO and O₂ at High Selectivity,

Stability and Efficiency Using Sustainion Membranes. J. Electrochem. Soc. 165, J3371-

262 J3377 (2018).

- 263 27. Mardle, P., Cassegrain, S., Habibzadeh, F., Shi, Z. & Holdcroft, S. Carbonate Ion Crossover
- 264 in Zero-Gap, KOH Anolyte CO₂ Electrolysis. J. Phys. Chem. C **125**, 25446–25454 (2021).
- 265 28. Subramanian, S., Middelkoop, J. & Burdyny, T. Spatial reactant distribution in CO₂
- electrolysis: balancing CO₂ utilization and faradaic efficiency. *Sustain. Energy Fuels* 5,
- **267** 6040–6048 (2021).

- 268 29. Verma, S. *et al.* Insights into the Low Overpotential Electroreduction of CO₂ to CO on a
 269 Supported Gold Catalyst in an Alkaline Flow Electrolyzer. *ACS Energy Lett.* 3, 193–198
 270 (2018).
- 271 30. Wheeler, D. G. *et al.* Quantification of water transport in a CO₂ electrolyzer. *Energy*
- 272 *Environ. Sci.* **13**, 5126–5134 (2020).
- 31. Yang, K. *et al.* Cation-Driven Increases of CO₂ Utilization in a Bipolar Membrane Electrode
 Assembly for CO₂ Electrolysis. *ACS Energy Lett.* 6, 4291–4298 (2021).
- 275 32. Gabardo, C. M. et al. Continuous Carbon Dioxide Electroreduction to Concentrated Multi-
- carbon Products Using a Membrane Electrode Assembly. *Joule* **3**, 2777–2791 (2019).
- 33. Huang, J. E. *et al.* CO₂ electrolysis to multicarbon products in strong acid. *Science* 372, 1074–1078 (2021).
- 279 34. Khan, M. A. et al. Zero-crossover electrochemical CO₂ reduction to ethylene with co-

production of valuable chemicals. *Chem Catal.* **2**, 2077–2095 (2022).

- 281 35. Ozden, A. et al. Energy- and carbon-efficient CO₂/CO electrolysis to multicarbon products
- via asymmetric ion migration–adsorption. *Nat. Energy* (2023) doi:10.1038/s41560-022-
- **283** 01188-2.
- 36. Xie, K. *et al.* Bipolar membrane electrolyzers enable high single-pass CO₂ electroreduction
 to multicarbon products. *Nat. Commun.* 13, 3609 (2022).
- 37. Xu, Y. *et al.* A microchanneled solid electrolyte for carbon-efficient CO₂ electrolysis. *Joule*6, 1333–1343 (2022).
- 288 38. Zhao, X. et al. Highly Efficient Electrochemical CO 2 Reduction on a Precise Homonuclear
- 289 Diatomic Fe–Fe Catalyst. *ACS Catal*. 11412–11420 (2022) doi:10.1021/acscatal.2c03149.

- 290 39. Ma, M., Kim, S., Chorkendorff, I. & Seger, B. Role of ion-selective membranes in the
- 291 carbon balance for CO ₂ electroreduction *via* gas diffusion electrode reactor designs. *Chem.*
- 292 *Sci.* **11**, 8854–8861 (2020).
- 293 40. Corral, D. et al. Advanced manufacturing for electrosynthesis of fuels and chemicals from
- 294 CO₂. Energy Environ. Sci. **14**, 3064–3074 (2021).
- 41. Seger, B., Robert, M. & Jiao, F. Best practices for electrochemical reduction of carbon
 dioxide. *Nat. Sustain.* (2023) doi:10.1038/s41893-022-01034-z.
- 42. Larrazábal, G. O., Ma, M. & Seger, B. A Comprehensive Approach to Investigate CO₂
- 298 Reduction Electrocatalysts at High Current Densities. Acc. Mater. Res. 2, 220–229 (2021).
- 43. Kas, R. et al. Along the Channel Gradients Impact on the Spatioactivity of Gas Diffusion
- 300 Electrodes at High Conversions during CO₂ Electroreduction. *ACS Sustain. Chem. Eng.* **9**,
- 301 1286–1296 (2021).