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ABSTRACT

As part of the SAMPL9 community-wide blind host–guest challenge, we implemented an
expanded ensemble workflow to predict absolute binding free energies for 13 small molecules
against pillar[6]arene. Notable features of our protocol include consideration of a variety of
protonation and enantiomeric states for both host and guests, optimization of alchemical
intermediates, and analysis of free energy estimates and their uncertainty using large numbers
of simulation replicates performed using distributed computing. Our predictions of absolute
binding free energies resulted in a mean absolute error of 2.29 kcal mol−1 and an R2 of
0.54. Overall, results show that expanded ensemble calculations using all-atom molecular
dynamics simulations are a valuable and efficient computational tool in predicting absolute
binding free energies.

1 Introduction

The Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) host–guest challenges provides
a unique opportunity to benchmark the accuracy and performance of computational methods for binding
free energy prediction.1–6 Like other blind challenges,7–9 the SAMPL host–guest challenges ensure unbiased
assessment of various methods by curating experimental measurements to be released only after predictions
are made.

1.1 Molecular simulation approaches in previous host–guest challenges

In the most recent SAMPL host–guest challenges, molecular simulation approaches using classical fixed-charge
molecule mechanics (MM) force fields were the most widely used, although polarizable force field models,
MM/PBSA, quantum mechanical (QM), and empirical machine learning approaches have seen increasing use.6
Of the MM-based methods, alchemical free energy calculations10,11 using double-decoupling schemes remain
popular, with a variety of sampling strategies employed, ranging from Hamiltonian replica exchange (HRE),12

non-equilibrium switching,13,14 and expanded ensemble methods.15,16 Other methods have included SILCS,17
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Figure 1: Molecular structures of the pillar[6]arene host (WP6) and guests (G1–G13).

attach-pull-release (APR),18 weighted ensemble approaches,19 umbrella sampling with HRE,20 and Gaussian
accelerated MD (LiGaMD).21

The SAMPL6 host guest challenge focused on three hosts: two octa-acid, and one cucurbit[8]uril. An evalua-
tion of the results,4 and careful comparison of reliability and efficiency of various methods,22 identified several
problems in simulation methodologies that continue to pose a challenge in predicting absolute binding free
energies by molecular simulation, including: sensitivity to simulation parameters and preparation protocols,
proper estimation of prediction uncertainties, and long correlation times that may need to overcome due
the rearrangements of water molecules in the binding cavity. Nevertheless, alchemical methods for absolute
binding free energy calculations were found to give reasonably accurate estimates, with enhanced-sampling
strategies generally leading to increased convergence.

The SAMPL7 host–guest challenge focused on the binding affinity of several small molecules to cucurbituril
derivatives CB[n], CB-Clip and TrimerTrip, as well as octa-acid (OA) and exo-octa-acid.5 The results
showed that polarizable force fields like AMOEBA23 can outperform non-polarizable force fields in these
systems. SAMPL8 examined the host cucurbit[8]uril with guests that can be categorized as “drugs of abuse”:
methamphetamine, fentanyl, morphine, hydromorphone, ketamine, phencyclidine, and cocaine.24 SAMPL8
also examined tetramethyl octa-acid (TEMOA) and tetraethyl octa-acid as host molecules.25

The latest challenge, SAMPL9, is focused on a water-soluble pillar[n]arene host called WP6 and 13 guest
molecules (Figure 1). Because WP6 is highly carboxylated and expected to be anionic in solution of neutral
pH, and most of the guests are highly cationic salts, a careful treatment of electrostatics needs to be considered
for accurate prediction of binding affinity. WP6 has many applications: it can be used as a chiral switch or for
chiral sensing due to its planar chirality.? When WP6 is combined with an organic pyridinium salt guest, a
change in pH can induce organization into nanotubes and vesicles.26

1.2 A test of expanded ensemble methods for absolute binding free energy

Here, we use the SAMPL9 challenge to test an expanded ensemble (EE) approach for calculating absolute
binding free energies. In the EE approach, double-decoupling alchemical free energy calculations are
performed in which non-bonded interactions with the guest are turned off, in both host-bound and host-
unbound states. Each of these calculations is performed by defining a series of N alchemical intermediates,
parameterized by a coupling parameter λ = 0 → 1, and performing Markov chain Monte Carlo (MCMC) to
propose moves from one intermediate thermodynamic ensemble parameterized by λk to another parameterized
by λl . The Wang-Landau flat-histogram method27 is used to adaptively learn a (reduced) bias potential − f̃ (λ )
such that all intermediates are uniformly sampled. If a converged estimate of f̃ can be achieved, then f̃ (λ ) is
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equivalent to f (λ ), the (reduced) free energy versus λ , and the (reduced) free energy of the transformation
can be estimated as ∆ f̃ = f̃N − f̃1.15

A distinct advantage EE approaches have over alternative methods is the ability to sample all alchemical inter-
mediates in a single simulation. This makes EE approaches ideal for large-scale virtual screening on distributed
computing platforms such as Folding@home,28 where simulation instances are necessarily asynchronous and
only loosely uncoupled to other instances. Indeed, EE was recently deployed on Folding@home29 to screen
potential inhibitors of the SARS-CoV-2 main protease as part of the COVID Moonshot initiative.30

Expanded ensemble (EE) methods have been used previously in SAMPL challenges, mostly through the
capabilities coded into GROMACS by the Shirts group.31 Debuting EE in the SAMPL4 challenge, Monroe et
al. found that despite problems in force field parameterization for host–guest interactions, GROMACS/EE
was able to produce well-converged free energy estimates.16 While GROMACS/EE methods were not entered
in the SAMPL6 blind challenge, the Shirts group tested the reliability and efficiency of GROMACS/EE on
SAMPL6 targets against comparable methods and found favorable accuracy and convergence.22

Despite the promise of EE approaches, they remain relatively underutilized, arguably due to a few technical
complications that have impeded their wider adoption. One problem is that EE methods are sensitive to the
initial choice of the λk; poor choices of alchemical intermediates lead to poor MCMC acceptance probabilities,
and extremely long convergence times. To ameliorate this problem, we have developed a simple scheme to
optimize the schedule of λk values, by equally spacing ensembles in thermodynamic length,32,33 similar to the
“thermodynamic trailblazing” method of Rizzi et al.34 (unpublished).

Another issue with EE is uncertainty due to the run-to-run variation of the predictions.22 This is a feature of
any stochastic sampling algorithm, but exacerbated in EE by the saturation of the error that is known to occur
with Wang-Landau flat-histogram sampling.35 Because the histogram increment scales as a power law (∼ α−t

where t is the simulation time and α is some positive constant), the free energy estimate will converge to a
fixed value, but this value may still contain error. This problem can be alleviated by scaling the histogram
increment as ∼ t−1,36 but this method is not yet implemented in GROMACS, nor has its performance and
efficiency been thoroughly characterized for alchemical free energy calculations. In the meantime, we have
dealt with this issue by performing many parallel replicates of a given alchemical transformation using
distributed computing, and compute estimates as averages of individual trials, as further described below.
Using this improved strategy, Zhang et al. recently showed that EE methods can predict relative binding
free energies of Tyk2 inhibitors to within a mean unsigned error (MUE) of 0.75 ± 0.12 kcal mol−1.37 The
current SAMPL9 host–guest challenge represents the first time these improved protocols have been tested for
predicting absolute binding free energies.

2 Methods

Absolute binding free energies for host–guest interactions were calculated using a double-decoupling method
in which the alchemical free energies of decoupling the guest in the presence and absence of the host were
computed using expanded-ensemble molecular simulations performed on the Folding@home distributed
computing platform.28,29 A three-part workflow was implemented to (1) prepare systems, (2) perform
expanded ensemble simulations on Folding@home and Temple University high-performance computing (HPC)
clusters, and (3) analyze the results.

2.1 System preparation

2.1.1 Microstate enumeration

To estimate the ionization state of the WP6 host at pH 7.4, we considered the fluorescence emission spectra
vs. pH published in Yu et al.26 A titration curve fit to this data suggests a pKa of 6.997 and a Hill coefficient of
3.519, for a model where approximately 4 protons cooperatively dissociate upon varying the pH from 2 to 11.
Based on this result, and the absence of other information, we assumed that the most populated microstate of
WP6 at pH 7.4 has a -12 net charge, and that titration to lower pH cooperatively adds 4 protons to form a -8
net charge state. Therefore, we considered three different protonation states of the WP6 host: -12, -10, -8
net charge, each with equal numbers of deprotonated groups above and below the pillarene ring, as the host
microstates likely contributing most in the binding reaction.
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Reference ionization states for each guest molecule were determined by OpenEye’s Quacpac module,38 which
selected the most energetically favorable ionization state at pH 7.4. While the reference state is likely to have
the greatest population, we additionally considered a larger ensemble of enumerated microstates that may be
populated near pH 7.4. This resulted in between 1 and 4 microstates per guest molecule. We also considered
each enantiomer of chiral guest molecules as separate microstates.

2.1.2 Simulation preparation

System preparation was performed semi-automatically using a series of in-house Python scripts. Force field
parameters for nearly all hosts and guests used OpenFF-2.0.0.39,40 The only exception to this was for the
guest G4. This molecule contained a silane group for which OpenFF parameters were unavailable. We instead
used GAFF-2.1141 for G4. Partial charges for all molecules were assigned using AM1-BCC.42

Initial poses for receptor-ligand systems were prepared by docking guests to the host via OpenEye’s OEDock-
ing43 module using the FRED score function44 and saving the minimum-energy structure. Systems were
solvated with TIP3P water and neutralizing counterions at 137 mM NaCl. Ligand-only simulations used a
3.5 nm cubic box, while receptor-ligand simulations used a 4.5 nm cubic box. Ligand-only simulations were
minimized and equilibrated at 298.15 K using GPU-accelerated OpenMM version 7.5.0.45 Receptor-ligand
were minimized and equilibrated at 298.15 K in GROMACS version 2020.331 using position restraints with a
force constant of 800 kJ mol−1 nm−2 to all heavy atoms of the host, and all atoms of the guest. Equilibration
was performed in the isobaric-isothermal ensemble.

2.2 Expanded Ensemble simulation

Absolute binding free energies computed using expanded-ensemble (EE) methods have been used previously
in SAMPL challenges,16,22 and our methods closely follow these efforts, with some innovations inspired by
recent work.37

The free energy ∆GL of decoupling the guest from solvent in a ligand-only (L) simulation was calculated
using 101 alchemical intermediates in which Coulomb interactions are turned off, and then van der Waals
(vdW) interactions. The free energy ∆GRL of decoupling the guest from a receptor-ligand (RL) simulation
was calculated using 101 alchemical intermediates in which a restraint potential is turned on, then Coulomb
interactions are turned off, and then vdW interactions. The restraint potential was a harmonic distance
restraint between the center of mass of the six benzene rings of the WP6 host (6 rings × 6 carbons = 36
atoms), and all non-hydrogen guest atoms, with a force constant of 800 kJ mol−1 nm−2, and an equilibrium
distance of 0 nm. The absolute free energy of binding ∆G is estimated as

∆G = ∆Grest +∆GL −∆GRL, (1)

where ∆Grest is the free energy cost of restraining the guest from standard volume to a restricted volume,
determined by the force constant 800 kJ mol−1 nm−2, which we compute to be ∆G1 = +6.42 RT . The −∆GRL
term includes the free energy of removing this restraint.

Optimization of alchemical intermediates In order to avoid sampling bottlenecks in the EE algorithm
that would impede the efficient exploration of all alchemical intermediates, we implemented a custom
optimization algorithm called pylambdaopt (Zhang et al., in preparation) that uses a steepest-descent
algorithm to minimize the variance in the distributions P(∆ukl), where ∆ukl is the change in (reduced) energy
in going from thermodynamic ensemble k to a neighboring ensemble l. This has the effect of maximizing the
EE transition probabilities.

Simulations of each guest-only (L) and host-guest (RL) system (using the -12 charge state of the host) were
run for 24 hours in order to sample ∆ukl distributions over the course of an EE simulation, using an initial guess
for the schedule of λ -values that control the alchemical transformation. From this information, optimized
λ -values were obtained and used for production-run EE simulations on the Folding@home distributed
computing platform.28,29

For each set of host–guest microstate pairs, fifty parallel production-run EE simulations were performed in
GROMACS 2020.3. Simulations used a timestep of 2 fs, 0.9 nm cutoffs for long-range electrostatics, LINCS
constraints on H-bonds,46 with frames saved every 50 ps. The Wang-Landau method and Metropolized-Gibbs
move set was used for EE simulations. The initial Wang-Landau (WL) bias increment was set to 10 kBT , and
was scaled by a factor of 0.8 every time the histogram of sampled intermediates was sufficiently flat.
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Table 1: Absolute binding free energy predictions and uncertainties for our three submissions.
Group Exp Exp std Voelz rnkd Voelz rnkd std Voelz RL8 Voelz RL8 std Voelz all Voelz all std
WP6-G1 -6.44 0.01 -1.32 0.43 -2.00 0.53 -1.63 0.53
WP6-G2 -10.44 0.05 -13.76 0.15 -15.40 0.21 -13.74 0.21
WP6-G3 -7.92 0.02 -8.76 0.16 -9.08 0.16 -8.75 0.16
WP6-G4 -6.41 0.01 -10.87 1.11 -11.14 0.26 -10.78 1.10
WP6-G5 -5.39 0.02 -4.10 0.26 -6.27 0.30 -4.00 0.32
WP6-G6 -7.98 0.04 -8.81 0.66 -8.59 0.65 -9.20 0.61
WP6-G7 -6.98 0.02 -9.39 0.29 -9.24 0.22 -9.38 0.33
WP6-G8 -5.96 0.01 -2.85 0.60 -2.85 0.60 -2.25 0.63
WP6-G9 -6.24 0.05 -9.13 0.34 -8.91 0.23 -9.14 0.36
WP6-G10 -9.82 0.03 -9.96 0.24 -11.19 0.21 -9.88 0.29
WP6-G11 -6.17 0.01 -8.32 0.22 -8.08 0.13 -8.32 0.27
WP6-G12 -10.87 0.02 -13.90 0.21 -15.16 0.28 -13.91 0.22
WP6-G13 -8.47 0.04 -8.68 0.18 -10.11 0.14 -8.68 0.18

RL8 submission uses our RL12 prediction for G8 due to the issue mentioned in the methods section.

2.3 Analysis of free energies and uncertainties

The convergence of the EE predictions was monitored by the progressive decrease of the Wang-Landau (WL)
increment. We considered the EE simulations to be sufficiently converged if the WL increment went below
0.01 and 0.02 for the L and RL simulations, respectively. Free energies were computed as the average of all
free energy estimates reported after the convergence threshold was reached, across all converged trajectories.
In the case that less than five trajectories reached convergence according to our criteria, the five (or more)
trajectories with the smallest WL increments were used to compute the average free energy.

Uncertainties in our computed binding free energies ∆G (in units of RT ) come from the standard deviations
from the sample mean of computed ∆GL and ∆GRL values across multiple parallel simulations.

2.3.1 Binding free energy predictions consider the full set of host and guest microstates.

Our final ranked predictions of the absolute binding free energy ∆G for each host–guest interaction (in units
RT ) are computed as

∆G =− ln
∑i∈bound e−∆Gi

∑i∈unbound e−∆Gi
, (2)

where each ∆Gi are either host-bound or host-unbound guest microstate free energies. Free energy differences
relating bound and unbound microstates are provided by the double decoupling EE free energy simulations.
Free energy differences relating protonation states of the WP6 host were given by our model of cooperative
titration of 4 protons at pH 6.997. At pH 7.4, this model rewards the removal of two protons by -1.856 RT .
Free energy differences between the protonation microstates of the guests are provided by microstate pKa
estimates obtained using the luoszgroup pKa predictor from Qi Yang et al.47

Model uncertainties σmodel were calculated as

σmodel =
(
σ

2
∆G +σ

2
sys

)1/2
(3)

where σsys = 0.6857 RT is assumed to be independent systematic error arising from the reported 1.7 kJ mol−1

accuracy of OpenFF 2.0.0.39

2.4 Overview of our SAMPL9 submissions

In addition to our ranked SAMPL9 submission (“Voelz rnkd”), we also submitted two unranked SAMPL9
submissions of binding free energies (in units kcal mol−1). One included all samples of the free energy
estimates throughout the simulations, regardless of the WL convergence (“Voelz all”). The other used only
the -8 net charge microstate of the host (“Voelz RL8”). Results for these submissions can be found in Table 1.

One minor complication was that we were unable to fix errors in our G8 simulations with WP6 in charge
states of -8 and -10 before submitted results were due. Therefore, the ∆Gbinding for G8 is simply our ∆Gbinding
prediction for G8 with WP6 in the -12 charge state.

An interactive webpage of all EE simulations (WL increment over time and estimated free energy over
time, for all alchemical transformations) and our computed binding free estimates are available at https:
//vvoelz.github.io/sampl9-voelzlab/. Below we discuss the results for our ranked submission.
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Table 2: SMILES strings for all host (WP6) and guest microstates
Index Guest Microstate Isomeric SMILES

0 G1 1 C1CCCCCC(CCCCC1)N
1 G1 2 C1CCCCCC(CCCCC1)[NH3+]
2 G2 1 C[N+]1(CCC(CC1)C2CC[N+](CC2)(C)C)C
3 G3 1 [NH3+][C@@H]1C[C@H]2CC[C@@H]1C2
4 G3 2 N[C@@H]1C[C@H]2CC[C@@H]1C2
5 G3 3 [NH2]C1CC2CCC1C2
6 G3 4 [NH3+]C1CC2CCC1C2
7 G4 1 C[Si](C)(C)C[NH3+]
8 G4 2 C[Si](C)(C)CN
9 G5 1 CC12CC3(CC(C1)(CC(C2)(C3)[N+](C)(C)C)[N+](C)(C)C)C

10 G6 1 C1CCCC(CCC1)[NH3+]
11 G6 2 C1CCCC(CCC1)N
12 G7 1 C1CCC(CC1)N
13 G7 2 C1CCC(CC1)[NH3+]
14 G8 1 C[N+](C)(CCCS(=O)(=O)[O-])Cc1ccccc1
15 G9 1 [NH3+]C12CC3CC(C1)CC(O)(C3)C2
16 G9 2 [NH2]C12CC3CC(C1)CC(O)(C3)C2
17 G10 1 C[N+](C)(C)Cc1ccc(cc1)C[N+](C)(C)C
18 G11 1 CC(C)(C)C[NH3+]
19 G11 2 CC(C)(C)CN
20 G12 1 C[N+](C)(C)[C@H]1[C@@H]2C[C@@H]3C[C@H]1C[C@H](C2)[C@H]3[N+](C)(C)C
21 G12 2 C[N+](C)(C)[C@H]1[C@H]2C[C@H]3C[C@@H]1C[C@@H](C2)[C@H]3[N+](C)(C)C
22 G13 1 C[n+]1ccc(cc1)c2cc[n+](cc2)C

1 WP6 -8

O=C([O-])COc1cc2c(OCC(=O)[O-])cc1Cc1cc(OCC(=O)O)c(cc1OCC(=O)[O-])Cc1cc...
(OCC(=O)[O-])c(cc1OCC(=O)O)Cc1cc(OCC(=O)[O-])c(cc1OCC(=O)[O-])Cc1cc...

(OCC(=O)[O-])c(cc1OCC(=O)O)Cc1cc(OCC(=O)O)c(cc1OCC(=O)[O-])C2

2 WP6 -10

O=C([O-])COc1cc2c(OCC(=O)[O-])cc1Cc1cc(OCC(=O)[O-])c(cc1OCC(=O)[O-])Cc1cc...
(OCC(=O)[O-])c(cc1OCC(=O)O)Cc1cc(OCC(=O)[O-])c(cc1OCC(=O)[O-])Cc1cc...

(OCC(=O)[O-])c(cc1OCC(=O)[O-])Cc1cc(OCC(=O)[O-])c(cc1OCC(=O)O)C2

3 WP6 -12

O=C([O-])COc1cc2c(OCC(=O)[O-])cc1Cc1cc(OCC(=O)[O-])c(cc1OCC(=O)[O-])Cc1cc...
(OCC(=O)[O-])c(cc1OCC(=O)[O-])Cc1cc(OCC(=O)[O-])c(cc1OCC(=O)[O-])Cc1cc...

(OCC(=O)[O-])c(cc1OCC(=O)[O-])Cc1cc(OCC(=O)[O-])c(cc1OCC(=O)[O-])C2

3 Results and Discussion

3.1 Performance of expanded ensemble approach for absolute binding free energy
prediction

Here, we present absolute binding free energies for each microstate, describe the overall performance statistics
for our submissions, and review some of the interesting cases found during our analysis. Furthermore, we
will discuss a pitfall in our restraint protocol and how corrections were made to counter this mistake.

Absolute binding free energy predictions were calculated for the full set of host and guest microstates (Figure
2), as described in Methods. The various charge states of the host and guest are given in Table 2). For the
majority of guest molecules, binding free energies calculated for simulations of the host in a charge state
of -8 give lower values of ∆Gbinding than hosts in -10 and -12 charge states. Typically, absolute binding free
energies across microstates are dominated by the -8 host state, with the exception of G4. Binding free energy
predictions for G4 across microstates span ∼5 kcal mol−1 and yield relatively large uncertainty (∼ 1 kcal
mol−1). As mentioned in Methods, G4 was parameterized using GAFF-2.11, which may be an influencing
factor.

Overall performance of our ranked submission gave an overall mean absolute error (MAE) of 2.29 kcal mol−1,
root mean squared error (RMSE) of 2.74, and an R2 of 0.54 (Figure 3), which falls just under the median
of all SAMPL9 submissions (Table 3). As we discuss below, our “Voelz all” predictions were able to best
rank the binding free energies, and our “Voelz RL8” predictions had the most correlation with experimental
observations across all SAMPL9 submissions.

3.2 Reliability and convergence of EE predictions

In previous SAMPL host–guest challenges, it was noted that seemingly small differences in free energy
protocols could non-trivially affect predictions.22 One sign that our expanded ensemble protocol is relatively
robust in this aspect is the consistency of predictions across our ranked and unranked submissions (Table 1).
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Figure 2: (a) Predicted free energies of host–guest binding using single microstates i (∆Gbinding = ∆Grest+∆GL,i −∆GRL,i)
between host microstates and guest microstates. Error bars are colored by guest (see panel b) and data markers are
colored by microstate index (see legend). (b) ∆Gbinding in kcal mol−1 for each guest to WP6 (colored by guest) calculated
according to Equation (2)

.

Our approach was able to predict the binding affinity for some guests better than others (Table 1 and Figure
3) Our most accurate predictions were made for G10, G13, G6, G3, G5; moderately accurate predictions were
made for G11, G7 and G9, and poor predictions (greater than 3.0 kcal mol−1 error) for G12, G8, G2, G4, and
G1.
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Table 3: Summary of participant performance in free energy predictions over all host–guest systems. Statistics
include the correlation coefficient (R2), mean absolute error (MAE), mean standard error (MSE), root-mean
squared error (RMSE). Ponder and Voelz submissions had the highest R2 values, while the U-Barcelona
submission had the lowest absolute error.

R2 MAE MSE RMSE
group

Voelz rnkd 0.535 2.292 7.527 2.743
Voelz RL8 0.618 2.618 9.049 3.008
Voelz all 0.541 2.338 7.619 2.760
Ponder 0.582 1.930 7.165 2.677
U-Pittburgh 0.396 1.933 6.176 2.485
U-Barcelona 0.141 1.600 4.159 2.039
Procacci-DSSB 0.162 3.752 19.632 4.431
Procacci-VINARDO 0.003 2.007 8.461 2.909

a

b C

Figure 3: (a) Comparisons of predicted (ranked submission) vs. experimental binding free energies for all host–guest
systems. Annotations report the correlation coefficient (R2), mean absolute error (MAE), mean standard error (MSE),
root-mean squared error (RMSE). (b) Comparisons for the “Voelz RL8” submission. (c) Comparisons for the “Voelz all”
submission.

Our predictions varied the most from other groups’ for guests G1 and G13. Our expanded-ensemble approach
was able to make very accurate predictions for G13, where most groups were unable to do so (Figure 4). Traces
of expanded ensemble free energy estimates ∆GL for guest-only decoupling display excellent convergence
(Figure 5). Traces of free energy estimates ∆GRL for host–guest decoupling show more variance across parallel
expanded ensemble simulations, but with a robust sample mean (Figure 6).
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Voelz rnkd
Voelz RL8

Voelz all
Ponder

U-Pittburgh
U-Barcelona

Procacci-DSSB

Procacci-VINARDO

WP6-G1
WP6-G2
WP6-G3
WP6-G4
WP6-G5
WP6-G6
WP6-G7
WP6-G8
WP6-G9

WP6-G10
WP6-G11
WP6-G12
WP6-G13

MAE

5.12 4.44 4.81 0.88 3.76 2.03 1.36 1.27

3.32 4.96 3.30 1.13 2.06 0.95 2.56 3.10

0.84 1.16 0.83 1.79 1.58 0.08 3.08 0.83

4.46 4.73 4.37 1.66 1.94 0.21 1.30

1.29 0.88 1.39 0.34 6.11 0.19 1.81 1.02

0.83 0.61 1.22 2.58 1.82 0.99 3.62 0.08

2.41 2.26 2.40 2.05 0.82 0.66 4.52 0.18

3.11 3.11 3.71 4.76 0.94 3.57 5.64 1.25

2.89 2.67 2.90 2.00 0.04 2.57 5.56 2.26

0.14 1.37 0.06 0.35 0.88 0.65 2.88 2.82

2.15 1.91 2.15 0.60 2.53 0.99 2.13 0.86

3.03 4.29 3.04 0.10 0.93 4.49 5.93 2.54

0.21 1.64 0.21 6.86 1.73 1.70 9.47 8.57

2.29 2.62 2.34 1.93 1.93 1.60 3.75 2.01

Abs. Difference in kcal mol 1

2

4

6

8

Figure 4: Predictions of host–guest binding free energies submitted by all SAMPL9 participants. The color map and
numerical values inside the cells are the absolute difference in predictions against experiment (in kcal mol−1). The last
row is the mean absolute error (MAE) over all host–guest predictions for each group.

a b

1000 200 300
simulation time (ns)

150 250 35050 1000 200 300
simulation time (ns)

150 250 35050

Figure 5: Convergence of expanded ensemble (EE) estimates of guest-only decoupling free energies ∆GL for G13.
Superimposed are (up to) fifty independent trajectories (distinguished by color). (a) The Wang-Landau (WL) increment
vs. simulation time, with a dotted line denoting our 0.02 convergence threshold. (b) EE estimates of ∆GL vs. simulation
time, with a dotted line denoting the final estimate.

Our most inaccurate predictions were made for G1, with more error than all other groups. In our ranked
submission, we incorrectly reported the ∆G of binding for G1 as −0.78± 0.43 kcal mol−1, due to a error
converting from RT to kcal mol−1 (this error was only made for G1). The correct value is -1.32 kcal mol−1,
which we will continue to use in the analysis reported here.

G4 was our next-most inaccurate prediction. One source of error might be inaccurate force field parameters
for the trimethylsilyl group (we were forced to parameterize this molecule using GAFF due to the absence of
silane parameters in OpenFF). Another source of error for G4 may arise from poor sampling. We inspected
the simulation trajectories for this guest and found slow binding events of sodium cations to the WP6 binding
pocket while nonbonded interactions for guest were decoupled, which hindered re-coupling of the guest
due to steric clashes with ions inside the host. Because of the long timescale needed for coupling and
decoupling, cycling between the two endpoints impeded, ultimately hindering convergence and causing
additional variance in the predicted free energies.

While binding free energies for G6 were accurately predicted, the convergence behavior of the expanded
ensemble method for this guest highlights the importance of adequate conformational sampling. Inspection
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a b

1000 200 300 400 500
simulation time (ns)

1000 200 300 400 500
simulation time (ns)

Figure 6: Convergence of expanded ensemble (EE) estimates of host–guest decoupling free energies ∆GRL for G13.
Superimposed are (up to) fifty independent trajectories (distinguished by color). (a) The Wang-Landau (WL) increment
vs. simulation time, with a dotted line denoting our 0.02 convergence threshold. (b) EE estimates of ∆GRL vs. simulation
time, with a dotted line denoting the final estimate.

of simulated trajectories reveals slow transitions between two metastable states for G6, corresponding to boat
and chair conformations. The timescale of these transitions are slow enough that the expanded ensemble
approach exhibits hysteresis as it tries to learn the free energy profile for one conformation, then the other.
Traces of ∆G over the course of the expanded ensemble trajectory show large variability (± 10 RT), giving
rise to a large uncertainty in ∆G. This behavior can be seen most clearly in the ligand-only (L) trajectories
(Figure 7) but can also be seen in the receptor-ligand (RL) trajectories (Figure 8). This finding presents a
strong argument for the use of multiple independent trajectories in estimate binding free energies, since the
average between these states over all trajectories allows us to predict the converged free energy very early
into sampling.

a b

1000 200 300
simulation time (ns)

150 25050 1000 200 300
simulation time (ns)

150 25050

Figure 7: Convergence of expanded ensemble (EE) estimates of guest-only decoupling free energies ∆GL for G6.
Superimposed are (up to) fifty independent trajectories (distinguished by color). (a) The Wang-Landau (WL) increment
vs. simulation time, with a dotted line denoting our 0.02 convergence threshold. (b) EE estimates of ∆GL vs. simulation
time, with a dotted line denoting the final estimate.

3.3 Correcting for the free energy bias of restrained ligands

In preparing this manuscript, we realized there was an error in the way harmonic restraints were implemented
during the expanded ensemble simulations. Our computed value of ∆GRL was supposed to include the free
energy of adding a harmonic restraint, but the simulations were performed with the restraint always on. This
means that our submitted estimates contain a systematic positive bias, as they do not include the favorable
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a b

1000 200 300
simulation time (ns)
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Figure 8: Convergence of expanded ensemble (EE) estimates of host–guest decoupling free energies ∆GRL for G6.
Superimposed are (up to) fifty independent trajectories (distinguished by color). (a) The Wang-Landau (WL) increment
vs. simulation time, with a dotted line denoting our 0.02 convergence threshold. (b) EE estimates of ∆GRL vs. simulation
time, with a dotted line denoting the final estimate.

reward of turning off the restraint from −∆GRL. This reward should be small for well-chosen restraint
potentials, but large in situations where the restraint doesn’t match the equilibrium pose(s) of the guest.

To correct for this bias, we performed two additional simulations for each ligand in which we altered the
restraint potential to 400 kJ mol−1 nm−2, and then 0 kJ mol−1 nm−2. These, combined with our original
simulations with 800 kJ mol−1 nm−2 restraints, allowed us to use the Multi-state Bennett Acceptance Ratio
(MBAR)48 to estimate the (negative) free energy reward of removing the restraint. The corrected ∆G values
(Figure 9) show a shift in our estimates towards higher binding affinities that are relatively minor (between
-0.45 and -1.80 RT , i.e. between -0.26 and -1.1 kcal mol−1), with two exceptions: G1 and G5.

Figure 9: Estimated correction terms to our submitted free energy predictions for each guest, to correctly account for
restraint biases.

G1 and G5 show restraint bias corrections of 3.76 and 6.86 kcal mol−1 respectively. In analyzing the updated
free energy prediction of G1, we observe that our predicted free energy estimate is improved considerably,
resulting in an absolute error of only 1.36 RT , or 0.8 kcal mol−1. In contrast, the large restraint bias correction
for G5 increases the absolute error in our predicted binding free energy from 0.76 to 3.3 kcal mol−1. Further
analysis of the trajectory data for G5 reveals a bimodal distribution of displacements of the guest from the
host center-of-mass, and time courses showing slow transitions between guest poses near the top and bottom
rims of the host (Figure 11). This suggests that the harmonic potential used, which restrains the guest at the
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center the host, is a poor choice for this guest. Sampling issues thus may be a reason for the large prediction
error for this guest.

Figure 10: Transitions between a number of host-bound states are shown for G5. (a) A trace of the z-axis displacement
of the guest center-of-mass (COM) with respect to the host COM shows free energy minima at both +/- edges of the host,
in addition to those near the center of mass. (b,c, and d) depict Conformations representative of binding for G5 are shown
for poses near the (b) top, (c) middle, and (d) bottom of the host.

Overall, when our predictions of host–guest binding free energies are updated with the restraint bias
corrections, agreement with experiment worsens by all metrics (R2 coefficient, RMSE and MAE, Figure 11).
The uncorrected predictions tend to underestimate ∆G (i.e. predict tighter binding), and the correction
exacerbates this trend.

In SAMPL6, which also featured highly carboxylated hosts—octa-acid (OA) and tetramethyl octa-acid
(TEMOA)—participants using GAFF/AM1-BCC with TIP3P consistently underestimated ∆G (i.e. predicted
tighter binding),4 similar to our results. These results point to the general need for better treatment of
electrostatics. In this particular, perhaps consideration of other host protonation states (-9, -7, -6, etc.) may
have resulted in improved predictions. Despite having least amount of net charge, host protonation states of
-8 tended to predict the greatest decoupling free energies, suggesting subtle preferences of guests for ionic
host sidechains and their arrangements with counterions may be important.

Figure 11: Changes to our submitted predicted before (red) and after (green) corrections are applied to correctly account
for restraint biases. Left: “Voelz RL_8” submissions vs. experiment. Right: “Voelz ranked” submissions vs. experiment.

3.4 Comparison of rank ordering with other challenge participants

Virtual screening in drug discovery often relies on the ability of computational models to correctly rank
order predicted binding affinities of ligands. To evaluate the extent to which submitted predictions correctly
ranked the binding affinity of guests G1 through G13 compared to experiment, we used the Spearman rank
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Table 4: Spearman rank correlation coefficients of SAMPL9 host–guest participant rankings.

Group rs p-value
Voelz rnkd 0.385 0.094
Voelz RL8 -0.335 0.869
Voelz all 0.451 0.059
Ponder 0.418 0.076
U-Pittburgh -0.176 0.717
U-Barcelona 0.236 0.212
Procacci-DSSB 0.247 0.202
Procacci-VINARDO -0.407 0.915

correlation coefficient,49

rs = 1− 6∑
n
i=1 d2

i
n(n2 −1)

, (4)

where di are differences in (integer) ranks for each guest, and n = 13 is the number of ranked items (Figure 12
and Table 4). According to this metric, our “Voelz all” submissions give the most correctly ranked predictions
compared to experiment, with an rs value of 0.45. To gauge the statistical significance of this result, we
computed one-sided p-values by using 100,000 random rank perturbations to non-parametrically construct
the null distribution of rs. With a p-value of 0.059, the “Voelz all” ranking is not quite significant enough to
reject the null hypothesis that the measured value of rs is due to random chance.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
rs, the Spearman rank correlation coefficient

0.00

0.25

0.50
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1.00
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Voelz rnkd
Voelz RL8
Voelz all
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Procacci-DSSB
Procacci-VINARDO

Figure 12: Spearman rank correlation coefficients rs for participants in the SAMPL9 host–guest challenge, in comparison
with the null distribution P(rs) constructed from the nonparametric sampling of randomly permuted ranks.

4 Conclusion

From the results of our participation in the SAMPL9 host–guest challenge, we conclude that expanded
ensemble (EE) simulations are up to the task of accurately and efficiently predicting absolute binding free
energies, achieving a mean absolute error of 2.29 kcal mol−1 for 13 small molecules against pillar[6]arene. Our
improved EE protocol includes pre-optimization of the schedule of alchemical intermediates, and collecting
statistical distributions of predicted free energies from parallel distributed computing. We expect further
sampling improvements may still be possible, through more judicious choices of harmonic bias, and better
anticipation of configurational transitions that occur on timescales similar to EE convergence times. Better
treatment of electrostatics for acidic hosts, and general force field improvements also bode well for future
implementations of EE methods for absolute binding free energy estimation.

Code, Data, and Submissions

SAMPL9 host–guest challenge instructions, experimental data, submissions and analysis are available at
https://github.com/samplchallenges/SAMPL9. An interactive web-page containing of all the raw data
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for computed binding free estimates as well as additional figures for all three submissions is available at
https://vvoelz.github.io/sampl9-voelzlab/. All of the code involving microstate enumeration, system
preparation, optimization of alchemical intermediates, and analysis can be found in our GitHub repository:
https://github.com/vvoelz/sampl9-voelzlab.
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