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ABSTRACT:	Palladium-catalyzed	C–N	bond	forming	reactions	
are	a	key	tool	in	modern	synthetic	organic	chemistry.	Despite	
advances	in	catalyst	design	enabling	the	use	of	a	variety	of	aryl	
(pseudo)halides,	the	necessary	aniline	coupling	partner	is	of-
ten	synthesized	in	a	discrete	reduction	step	from	a	nitroarene.	
An	ideal	synthetic	sequence	would	avoid	the	necessity	of	this	
step	while	maintaining	the	reliable	reactivity	of	palladium	ca-
talysis.	 Herein	 we	 describe	 how	 reducing	 conditions	 enable	
new	chemical	steps	and	reactivity	from	well-studied	palladium	
catalysts,	resulting	in	a	new,	useful	transformation:	the	reduc-
tive	arylation	of	nitroarenes	with	chloroarenes	to	form	diaryla-
mines.	Mechanistic	 experiments	 suggest	 that	under	 reducing	
conditions,	 BrettPhos-palladium	 complexes	 catalyze	 the	 dual	
N-arylation	of	typically	inert	azoarenes—generated	via	the	in	
situ	reduction	of	nitroarenes—via	two	distinct	mechanisms.	In-
itial	N-arylation	proceeds	via	a	novel	association-reductive	pal-
ladation	sequence	followed	by	reductive	elimination	to	yield	an	
intermediate	1,1,2-triarylhydrazine.	Arylation	of	this	interme-
diate	by	the	same	catalyst	via	a	traditional	amine	arylation	se-
quence	forms	a	transient	tetraarylhydrazine,	unlocking	reduc-
tive	N–N	bond	cleavage	to	liberate	the	desired	product.	The	re-
sulting	reaction	allows	for	the	synthesis	of	diarylamines	bear-
ing	a	variety	of	synthetically	valuable	functionalities	and	het-
eroaryl	cores	in	high	yield.	

Introduction 
Palladium-catalyzed	amine	arylation—the	cross-coupling	of	

aryl	 (pseudo)halide	electrophiles	with	amine	nucleophiles	 to	
form	a	new	C–N	bond	(Scheme	1A)—is	one	of	the	most-used	
reactions	in	medicinal	chemistry.1–3 Buoyed	by	the	importance	
of	amines	in	pharmaceuticals,	the	abundance	of	starting	mate-
rials,	and	wide	functional	group	tolerance,	the	success	of	amine	
arylation	has	made	secondary	diarylamines	a	common	feature	
in	medicinal	and	materials	chemistry.4	One	key	advantage	of	
this	chemistry	is	the	ability	to	access	a	wide	suite	of	aryl	elec-
trophiles;	 for	 example,	 advances	 in	 catalyst	 design	 have	 al-
lowed	 for	 the	 use	 of	more	widely	 available	 chloroarenes	 in-
stead	of	aryl	bromides	(Scheme	1B).5–10	While	there	are	many	
commercially	available	primary	anilines,	an	analysis	of	indus-
trial	chemical	reactions	reveals	that	the	synthesis	of	anilines	by	
nitroarene	reduction	is	common.1,2,11	Indeed,	a	recent	study	on	
the	most-used	reactions	in	medicinal	chemistry	found	that	re-
duction	of	a	nitroarene	to	a	primary	aniline	was	the	most-used	
reduction.	An	obvious,	but	under-developed,	alternative	to	this	
synthetic	 sequence	 is	 the	 direct,	 reductive	 arylation	 of	 ni-
troarenes	with	aryl	chlorides	(Scheme	1A).	Despite	its	potential		

Scheme	1.	Synthetic	Approaches	to	Diarylamines.	

synthetic	utility,	this	proposed	reaction	faces	numerous	chal-
lenges,	such	as	managing	a	net	six-electron	reduction	of	the	ni-
tro	group,	resolving	the	disparate	reactivity	of	the	relatively	in-
ert	chloroarene,	and	the	high	electrophilicity	of	the	many	pos-
sible	nitrogen	intermediates.	
Strategies	 for	 the	 reductive	 arylation	 of	 nitroarenes	 have	

thus	far	relied	on	the	in-situ	conversion	of	the	nitroarene	to	a	
transient,	electrophilic	nitrosoarene,	which	 is	 trapped	with	a	
nucleophilic	 carbon	source	 (Ar-[M])	or	aryl	 radical.12	 In	gen-
eral,	 the	 propensity	 of	 nitrosoarenes	 to	 undergo	 deleterious	
over-reduction	and	dimerization	necessitates	the	use	of	more	
reactive	nucleophilic	carbon	sources	such	as	aryl	Grignard	rea-
gents.13–17	Despite	recent	advances	enabling	the	use	of	less		
reactive	arylboronic	acids,18–25	arylboronic	acids	are	less	avail-
able	than	chloroarenes	(~180×	fewer	commercially	available,		
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Scheme	2.	Strategies	for	Nitroarene	Arylation.	

 
Scheme	1B),5	adding	synthetic	complexity.	Engagement	of	aryl	
chlorides	would	be	simplest	via	oxidative	addition	to	low-va-
lent	palladium	or	nickel	catalysts,	but	the	resulting	arylpalla-
dium	and	arylnickel	intermediates	are	not	known	to	form	new	
C–N	bonds	with	nitroarenes.		
Recent	work	by	Xue	and	coworkers	has	described	the	aryla-

tion	 of	 nitroarenes	with	 bromoarenes	 via	 the	 photo-assisted	
generation	 of	 aryl	 radicals	 (Scheme	2A).26	While	 an	 advance	
over	the	use	of	pre-formed	aryl	nucleophiles,	the	aryl	radical	
intermediates	 limit	 compatibility	with	heterocycles	and	even	
more	 powerful	 reductants	 would	 be	 needed	 to	 extend	 this	
strategy	to	chloroarenes.27–33	Harvey	and	Hu	have	reported	on	
the	reductive	acylation	of	nitroarenes.34,35	Unlike	the	known	ar-
ylation	reactions,	this	reaction	proceeds	via	activation	of	an	in-
termediate	azoarene	to	form	a	reactive	mixed	nickel/zinc-im-
ido	complex.	While	the	reactivity	of	these	imido	intermediates	
has	been	limited	to	acylation	reactions,	the	intermediacy	of	an	
azoarene	 intermediate	 offers	 advantages	 over	 nitrosoarenes	
(vide	 infra).	 In	contrast	 to	nickel,	palladium-catalyzed	reduc-
tive	arylation	or	acylation	of	nitroarenes	is	unknown.	Instead,	
palladium-catalyzed	cross-couplings	of	nitroarenes	feature	C–
NO2	oxidative	addition	(Scheme	2B).36–40	
Herein	we	demonstrate	how	 the	 same	palladium	catalysts	

that	favor	C–NO2	oxidative	addition	and	promote	C–N	bond	for-
mation	with	amines39,40	reveal	new	reactivity	when	subjected	
to	reducing	conditions:	catalyzing	the	N-arylation	of	azoarenes	
via	an	association-reductive	palladation	sequence.	The	N-func-
tionalization	of	azoarenes	using	arylpalladium(II)		

Table	1.	Standard	Conditions	and	Effects	of	Select	Devi-
ations.	

 
entry	 deviation	 3a	(%)b	

1	 None	 92	
2	 XPhos	instead	of	BrettPhos	 86	
3	 rac-BINAP	instead	of	BrettPhos	 1	
4	 No	HFIP	 0	
5	 TFE	instead	of	HFIP	 9	
6	 2-Butanol	instead	of	HFIP	 29	
7	 PdCl2	instead	of	Pd(OAc)2	 81	
8	 Pd2(dba)3	instead	of	Pd(OAc)2	 87c	

9	 Zn	instead	of	Mn	 89	
10	 Benchtop	setup	with	no	exclusion	of	

air	or	water	(capped)	
90d	

aReactions	were	assembled	 in	a	nitrogen	 filled	glovebox	at	 a	
0.25	mmol	scale	in	0.5	mL	of	DMF.	bYields	were	determined	by	
SFC-MS	analysis.	c2.5	mol%	Pd2(dba)3	used	instead	of	5	mol%	
Pd(OAc)2.	dReaction	set	up	at	0.5	mmol	scale	in	1	mL	of	DMF.	

intermediates	is	notable	because	the	N=N	bond	of	azoarenes	is	
generally	considered	inert	towards	arylpalladium(II)	interme-
diates;41	even	functioning	as	a	useful	directing	group	for	C–H	
bond	 activation.42–50	 Our	 studies	 show	 that	 C–N	 bond	 for-
mation	 occurs	 via	 reductive	 dimerization	 of	 nitroarenes	 to	
azoarenes,	 followed	by	diarylation	to	 form	a	tetra-arylhydra-
zine,	and	reductive	cleavage	of	the	hydrazine	to	form	two	mol-
ecules	 of	 product.	 This	 dimerization-functionalization-cleav-
age	 strategy	 avoids	 over-reduction	 that	 can	 plague	 nitro-
soarenes,	and	changes	the	way	that	we	view	reactions	of	palla-
dium(II)	complexes	with	azo	compounds.	

Results and Discussion	
We	began	by	examining	the	reductive	arylation	of	nitroben-

zene	(1)	with	4-chlorobenzotrifluoride	(2)	(Table	1).	Prelimi-
nary	studies	quickly	established	two	key	variables	in	the	reac-
tion:	the	identity	of	the	ligand	and	the	presence	of	an	appropri-
ate	proton	source.	We	 found	that	BrettPhos,	 the	same	 ligand	
known	for	promoting	C–NO2	oxidative	addition	in	denitrative	
cross-couplings,	was	optimal.	While	other	monodentate,	dial-
kylbiarylphosphines	such	as	XPhos	also	provided	the	desired	
product	in	good	yield,	common	bidentate	phosphines,	such	as	
rac-BINAP	 did	 not.	 Serendipitously,	 we	 found	 that	 alcohols	
modulate	the	extent	of	arylation,	promoting	conversion	of	in-
termediates	to	the	desired	product	and	preventing	overaryla-
tion	of	the	desired	diarylamine.	Tuning	the	pKa	of	the	alcohol	is	
critical,	as	less	acidic	additives	such	as	2,2,2-trifluoroethanol
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Scheme	3.	Key	Aspects	of	the	Proposed	Mechanism	of	the	Palladium-Catalyzed	Reductive	Arylation	of	Nitroarenes.	

 
(TFE)	provided	 the	under-arylated	1,1,2-triarylhydrazine	 (4)	
as	the	major	arylated	product.	As	will	be	discussed	in	more	de-
tail	below,	the	alcohol	facilitates	two	proton	transfers:	mediat-
ing	the	arylation	of	4	via	association-deprotonation	as	the	con-
jugate	base	and	providing	the	desired	product	from	the	diaryla-
mide	(7),	thereby	preventing	overarylation	to	triarylamine.	Be-
sides	 these	 two	variables,	we	 found	 that	many	other	compo-
nents	of	the	reaction	conditions	were	flexible.	A	variety	of	pal-
ladium(II)	and	palladium(0)	precatalysts	provided	similar	re-
sults,	although	Pd(OAc)2	was	chosen	due	to	its	high	solubility.	
Manganese	powder	was	optimal,	however	zinc	flake	gave	sim-
ilar	yields,	despite	it	being	a	weaker	reducing	agent.	The	reac-
tions	were	generally	run	under	air-free	conditions	using	dry,	
degassed	solvents,	but	similar	yields	were	obtained	using	wet	
DMF,	under	an	air	headspace	when	set	up	on	the	benchtop.	
Given	the	impact	of	mechanistic	understanding	on	reaction	

design,	the	importance	of	palladium	catalysis,	and	the	unique	
N-arylation	 observed	 in	 these	 conditions,	 we	 undertook	 a	
mechanistic	investigation.	We	sought	to:	identify	the	catalytic	
species	responsible	for	nitroarene	reduction;	confirm	the	iden-
tity	of	the	active	nitrogenous	coupling	partner;	determine	the	
mechanism	by	which	N-arylation	occurs;	and	establish	the	role	
of	the	alcohol	 in	controlling	the	extent	of	arylation.	Based	on	
observations	in	catalytic	reactions	and	specific	mechanistic	ex-
periments	described	below,	we	propose	the	mechanism	seen	in	
Scheme	3.		
Initial	 reduction	 of	 nitrobenzene	 occurs	 via	 a	 MnCl2-cata-

lyzed,	 reductive	 dimerization	 to	 yield	 azobenzene	 (5).	While	
additional	 reduction	 to	 form	hydrazobenzene	 is	possible,	 ex-
perimental	evidence	suggests	that	this	process	is	off-cycle	and	
slow	in	comparison	to	productive	N-arylation	(Figures	S9	and	
S16).	Catalytic	N-arylation	of	5	begins	with	oxidative	addition	
of	2	to	in	situ	generated	Pd0	(I)	to	form	the	key	oxidative	addi-
tion	 intermediate	 (II).	We	posit	 that	association	of	 the	Lewis	

basic	 nitrogen	 of	 5	 to	 the	 Lewis	 acidic	 PdII	 center	 forms	
[(BrettPhos)Pd(Ar1)Cl(Ar2N=NAr2)].51	 This	 association	 then	
enables	 reduction	 of	 the	N=N	 bond	 of	5	 to	 form	 a	 transient	
mixed	 palladium(II)/manganese	 hydrazide	 which	 is	 proto-
nated	by	HFIP	to	form	palladium(II)	aryl	hydrazide	(III)	and	an	
alkoxide	base.	This	manganese	dependent,	reductive	pallada-
tion	could	be	imagined	as	analogous	to	reported	reductions	of	
bound	 ligands,	 such	 as	 dinitrogen.52	 Reductive	 elimination	
forms	the	C–N	bond	of	Ar1(Ar2)N–NH(Ar2)	(4).	
The	second	arylation	of	4	occurs	via	an	amine-arylation	se-

quence	 involving	 oxidative	 addition	 of	 2	 to	 I,	 association-
deprotonation	of	4	 to	II,	and	C–N	reductive	elimination	from	
intermediate	IV	to	yield	a	transient	1,1,2,2-tetraarylhydrazine	
(6).	The	weak	N–N	bond	of	6	 then	undergoes	 rapid	homoly-
sis,53,54	followed	by	reductive	capture	by	Mn,	yielding	manga-
nese	 bisdiarylamide	 (7).	 Final	 protonation	 furnishes	 the	 de-
sired	product	 (3a)	and	prevents	 deleterious	 transmetalation	
onto	II,	stopping	over-arylation	to	form	Ar2N(Ar1)2	(over-ary-
lation	not	depicted	in	Scheme	3).	
We	began	our	mechanistic	investigation	by	determining	the	

conditions	necessary	for	the	reduction	of	nitrobenzene.	In	con-
trast	to	other	reductive	functionalizations	of	nitroarenes	that	
employ	manganese	as	the	terminal	reductant,34,35,55–59	our	con-
ditions	did	not	require	the	addition	of	a	stoichiometric,	oxoph-
ilic	Lewis	acid.	We	considered	whether	Pd(0),	Pd(II),	or	resid-
ual	Mn	salts	catalyzed	the	Mn	powder	reduction	step	(Table	2).	
Neither	inclusion	of	the	optimal	Pd(OAc)2/BrettPhos	precata-
lyst	 pair	 (not	 pictured),	 nor	 palladium(0)	 precursor	
(cod)Pd(CH2TMS)2,	enabled	reduction	of	nitrobenzene.	While	
the	addition	of	catalytic	amounts	of	oxidative	addition	Pd(II)	
complex	 II	 did	 allow	 for	 reduction	 of	 nitrobenzene,	 the	 ob-
served	induction	period	led	us	to	conclude	that	catalyst	modi-
fication	is	necessary	and	II	is	not	directly	responsible	for	catal-
ysis.	Indeed,	addition	of	catalytic	MnCl2—the	byproduct	of		
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Table	2.	Reduction	of	Nitrobenzene	 is	Catalyzed	by	 in	
situ-generated	MnCl2	

 
catalyst	 Conversion		at	

15	min	(%)b	
Conversion	at	90	
min	(%)b	(9:5:8)	

(cod)Pd(CH2TMS)2	
and	BrettPhos	

0	 5c	

(BrettPhos)Pd(Ar)Cl	
(II)	

<1	 100	(4.7:1.2:1)	

MnCl2	 18	 72	(8.0:1.5:1)	
aReactions	were	assembled	in	a	nitrogen	filled	glovebox.	0.75	
mmol	1,	3.3	mol%	catalyst,	5.33	equiv	Mn,	1	ml	DMF,	100	°C,	90	
m.	bConcentration	was	determined	by	SFC-MS.	cNo	Reduction	
products	were	observed.		

reductive	decomposition	of	 II	by	Mn—unlocked	reduction	of	
nitrobenzene.60	Based	on	these	results,	we	concluded	that	the	
coupling	reaction	is	autocatalytic,	with	initial,	slow	decomposi-
tion	of	small	amounts	of	II	turning	on	the	productive	pathway,	
which	in	turn	produces	more	MnCl2	(Figure	S1).	
Over	the	course	of	catalytic	reactions	and	discrete	reduction	

studies,	we	observed	two	probable	nitrogenous	coupling	part-
ners:	azobenzene	(5)	and	aniline	(8).	While	both	coupling	part-
ners	are	rapidly	arylated	under	reaction	conditions	at	similar	
rates	(Scheme	4),	under	these	reducing	conditions	azoxyben-
zene	(9)	and	azobenzene	(5)	form	at	higher	concentration	than	
aniline	(Table	2	and	Figure	S9).	Indeed,	the	reductive	dimeriza-
tion	of	nitrobenzene	to	form	azobenzene	is	well	known.56,61,62	
These	observations,	combined	with	the	high	rate	of	N-arylation	
of	azobenzene	(Scheme	4b,	Figure	S13),	and	differences	in	re-
action	outcomes	between	electron-poor	anilines	and	electron-
poor	nitroarenes	(Figure	S12)	led	us	to	conclude	that	while	re-
ductive	amine	arylation	can	occur	under	these	conditions,	it	is	
a	beneficial,	convergent	side	reaction	and	that	double	N-aryla-
tion	of	azobenzene	is	the	major	pathway.	
The	N=N	bond	of	azoarenes	is	typically	inert	to	palladium	ca-

talysis,	even	serving	as	a	directing	group	for	C–H	functionaliza-
tion.42–46	While	limited	examples	of	palladium(0)-mediated	re-
ductive	 functionalization	 of	 azo	 compounds	 have	 been	 re-
ported;63,64	catalytic,	N-arylation	from	palladium	oxidative	ad-
dition	complexes	is	unknown.	As	such,	we	sought	to	determine	
the	elementary	step	by	which	arylation	occurs,	with	the	aim	to	
better	 understand	 this	 coupling	 and	 expand	 the	 catalytic	
schema	used	to	design	new	reactions.	We	envisioned	3	possible	
mechanisms	by	which	palladation	of	azobenzene	might	occur:	
direct	migratory	 insertion	 of	 the	 Pd–C	 bond	 across	 the	N=N	
bond	 (Scheme	 5ii);	 reduction	 of	 II	 to	 form	 a	 reactive	 palla-
dium(I)	 intermediate	 that	 can	 capture	 azobenzene	 (Scheme	
5iii);	 and	association-reduction	of	 azobenzene	 in	 a	 reductive	
transmetalation	process	(Scheme	5i).	
	

Scheme	4.	Evaluation	of	Possible	Coupling	Partners.	

  

aReactions	were	assembled	 in	a	nitrogen	 filled	glovebox	at	 a	
0.50	mmol	scale	in	1.0	mL	of	DMF.	bYields	were	determined	by	
19F	NMR.	 cYields	were	determined	by	 SFC-MS	 analysis.	 d0.75	
mmol	of	aniline.	e0.375	mmol	of	azobenzene.	

To	establish	a	baseline	for	reactivity,	we	reacted	II	with	ex-
cess	azobenzene	5	(Scheme	6A).	In	the	absence	of	a	reductant,	
no	N-arylated	products	were	observed	(Figure	S14),	indicating	
that	direct	migratory	 insertion	 (Scheme	5,	pathway	 ii)	 is	not	
probable.	Only	addition	of	manganese	enabled	arylation,	as	3a	
and	4	were	observed	in	reactions	containing	stoichiometric	or	
excess	reductant.	These	results	suggest	that	either	reduction	of	
II,	azobenzene	(5),	or	their	association	complex	is	necessary	for	
arylation	to	occur.	
We	utilized	cyclic	voltammetry	to	distinguish	between	path-

ways	involving	the	reduction	of	II	and	azobenzene	5.	While	re-
ductive	decomposition	of	II	does	occur	under	reducing	condi-
tions	 (Scheme	 4A),	 CV	 confirmed	 that	 irreversible	 reduction	
only	 occurs	 at	 very	 reducing	 potentials	 (-2.23	 V	 vs.	 Fc/Fc+).	
Contrastingly,	 direct,	 reversable,	 single-electron	 reduction	 of	
azobenzene	is	thermodynamically	plausible	under	the	reaction	
conditions	(-1.80	V	vs.	Fc/Fc+).	These	data	indicate	that	either	
direct	reduction	of	azobenzene	occurs	–	 the	resulting	radical	
anion	then	exchanging	for	the	chloride	ligand	on	II	–	or	that	as-
sociation	of	azobenzene	to	the	Lewis	acidic	II	enables	reduc-
tion.	We	predict	that	association-reduction	is	the	dominant		
Scheme	5.	Possible	N-Arylation	Pathways	to	Form	Tri-
arylhydrazine	 (4)	 from	 Azoarene	 and	 Arylpalla-
dium(II).	
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Scheme	6.	Additional	Mechanistic	Studies	Support	Dou-
ble	N-Arylationof	Azobenzene.	

 
aReactions	were	assembled	in	a	nitrogen-filled	glovebox.	Yields	
were	 determined	 by	 SFC-MS	 analysis.	 b5	 mol%	 Pd(OAc)2,	 5	
mol%	BrettPhos,	1.75	equiv	HFIP,	8	equiv	Mn,	1	ml	DMF,	100	
°C,	16	h.	

pathway,	as	substituting	manganese	for	the	much	less	reducing	
zinc	leads	to	little	change	in	yield	(89%	vs	92%)	and	hydrazo-
benzene—the	 product	 of	 direct	 reduction	 of	 azobenzene—is	
not	arylated	under	the	optimized	conditions	(Figure	S17).	
The	intermediacy	of	4	was	confirmed	by	replacing	nitroben-

zene	with	4	in	the	optimized	reaction	conditions	(Scheme	6B).	
Arylation	yielded	diarylamine	3a	in	excess	of	the	consumption	
of	4	(0.075	mmol	of	4	consumed,	0.1	mmol	of	3a	produced).	
While	consumption	of	4	was	low,	this	result	also	confirms	that	
direct	 reductive	 cleavage	 of	 the	 N–N	 bond	 of	4	 (yielding	 an	
equivalent	of	3a	and	aniline	8)	is	not	operable.	We	hypothesize	
that	 the	 low	conversion	was	due	 to	 the	presence	of	an	extra	
equivalent	of	protons	compared	to	nitroarene	or	azoarene	ary-
lation	reactions.	This	results	in	inefficient	association-deproto-
nation	of	4	and	eventual	reductive	catalyst	degradation.		
Finally,	we	sought	to	rationalize	the	role	of	the	alcohol	in	de-

termining	selectivity.	As	seen	in	Table	1,	the	exclusion	of	a	pro-
ton	source	from	reactions	completely	stops	the	formation	of	3a.	
However,	its	exclusion	neither	prevents	reduction	of	nitroben-
zene	nor	 arylation	of	 the	 resulting	 azoarene,	 as	4	 is	 still	 ob-
served.	We	propose	 that	balancing	 the	 acidity	 and	 the	 steric	
profile	of	the	alcohol	is	necessary	to	manage	the	protonation	of	
intermediates	and	the	binding	of	the	alkoxide	to	II.	Formation	
of	palladium(II)	alkoxide	complexes	 is	a	known	 intermediate	
or	off-cycle	pathway	in	amine	arylation	reactions.65–67	Indeed,	
we	found	that	II	is	more	stable	under	reducing	conditions	in	the	
presence	of	an	alcohol	(Figure	S11).	Employing	the	less	acidic	
and	sterically	demanding	trifluoroethanol	 in	place	of	HFIP	 in	
arylations	of	nitrobenzene	yielded	4	as	the	major	product.	We	
hypothesized	 that	 inefficient	 arylation	 of	 4	 is	 caused	 by	

exchange	of	2,2,2-trifluoroethoxide	for	chloride	on	II,	yielding	
an	unreactive,	stable,	palladium(II)	alkoxide	that	prevents	as-
sociation	of	4.	Deprotonation	of	associated	4	is	most	likely	not	
a	limiting	factor,	as	2,2,2-trifluoroethoxide	is	more	basic	than	
1,1,1,3,3,3-hexafluoroisopropoxide.	Indeed,	utilizing	2-butanol	
as	the	proton	source	in	place	of	TFE	yields	increased	conver-
sion	of	4	into	3a.	These	results	indicate	that	balancing	the	as-
sociation	of	the	alkoxide	to	II—via	the	use	of	an	electron-poor,	
secondary	alcohol—enables	arylation	of	4,	provides	protons	to	
quench	the	reactivity	of	the	final	product,	while	also	stabilizing	
II	under	reducing	conditions.	
Having	 an	 effective	 understanding	 of	 the	 mechanism	 by	

which	the	reaction	proceeds,	we	proceeded	to	investigate	the	
scope	accessible	using	these	initial	conditions	(Scheme	7,	next	
page).	Arylation	of	nitroarenes	bearing	synthetically	valuable	
electron-donating	groups	such	as	a	methyl	ether	 (3b),	meth-
ylenedioxy	(3c),	or	an	unprotected	secondary	amine	(3d)	all	
proceeded	in	high	yield.	In	contrast	to	photochemical	alterna-
tives	to	this	method,26	easily	oxidized	tertiary	alkylamines	(3e)	
were	also	well-tolerated.	Nitroarenes	bearing	a	silyl	protected	
aliphatic	 alcohol	 (3f)	 or	 substitution	 in	 the	 2-position	 (3g)	
were	also	arylated	effectively.	Additionally,	the	optimized	con-
ditions	enabled	the	arylation	of	a	variety	of	nitroheteroarenes,	
which	are	not	tolerated	in	photochemical	methods	due	to	the	
reactivity	of	aryl	radicals.26,28,68–70	We	found	that	common	het-
erocycles	such	as	protected	and	unprotected	indoles	(3h,	3i),	
pyridine	(3j),	and	protected	pyrazole	(3k)	were	all	tolerated.	
We	found	that	the	introduction	of	an	electron-withdrawing	

ethyl	ester	(3l)	significantly	decreased	the	yield	of	the	desired	
diarylamine.	 As	 the	major	 byproduct	was	 the	 corresponding	
primary	aniline,	we	hypothesize	that	direct	reduction	of	an	in-
termediate	electron-poor	nitrosoarene	may	occur	 faster	than	
reductive	dimerization.	Despite	this	limitation,	the	diarylamine	
derived	 from	 arylation	 of	 electron-poor	 chemotherapeutic	
flutamide	(3m)	was	isolated	in	15%	yield.	Again,	the	primary	
aniline	derived	 from	flutamide	was	 isolated	as	 the	major	by-
product.	These	results	suggest	that	modification	of	the	reaction	
conditions	 to	 avoid	 over-reduction	 or	 engage	 the	 aniline	 di-
rectly	in	amine-arylation	may	be	successful	in	overcoming	this	
limitation.	
A	variety	of	electron-poor	chloroarenes	were	effectively	en-

gaged	using	the	optimized	conditions.	We	successfully	coupled	
chloroarenes	bearing	carboxylic	acid	derivatives	including	ni-
triles	(3n,	3t),	a	methyl	ester	(3o),	and	a	primary	amide	(3p).	
The	reaction	was	amenable	to	increased	scale	and	a	benchtop	
setup	while	maintaining	good	yield	(3n	was	synthesized	at	2.0	
mmol	scale	on	the	benchtop	using	standard	air-free	technique).	
Other	oxidized	functionalities	that	could	be	reduced	were	well	
tolerated,	such	as	an	acetophenone	(3q),	an	unprotected	ben-
zaldehyde	(3r),	and	a	sulfone	(3s).	Further,	activation	of	ortho-
subsituted	chloroarenes	yielded	secondary	diarylamines	with	
either	an	electron-withdrawing	nitrile	(3t)	or	electron-donat-
ing	methyl	(3u)	group	in	the	two-position.	
We	 found	 that	 two	modifications	were	necessary	 to	 effec-

tively	 couple	 electron-rich	 chloroarenes:	 increasing	 the	 cata-
lyst	loading	from	5	to	10	mol%	and	replacing	HFIP	with	the	less	
acidic	TFE.	These	conditions	enabled	the	coupling	of	chloroa-
renes	 bearing	 electron-donating	 methyl	 and	 trifluoromethyl	
ethers	(3v,	3w),	as	well	as	simple	alkyl	substituents	(3u,	3x).	
We	hypothesize	that	these	two	changes	overcome	sluggish	ar-
ylation	 of	 the	 1,1,2-triarylhydrazine	 intermediate	 afforded	
from	 the	 initial	N-arylation	of	 the	azoarene	and	 stabilize	 the	
critical	 oxidative	 addition	 intermediate	 (II).	 The	 decreased	
Lewis	acidity	of	arylpalladium	complexes	bearing	electron-rich	
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Scheme	7.	Substrate	Scope	for	the	Palladium-Catalyzed	Reductive	Arylation	of	Nitroarenes	with	Aryl	Chlorides.	

 
Reactions	were	conducted	at	0.5	mmol	scale	in	DMF	(1	mL).	Isolated	yields	after	purification	are	shown.		aReaction	conducted	at	

2.0	mmol	scale.	bReaction	set	up	on	the	benchtop	using	standard	air-free	technique.	c10	mol%	each	of	Pd(OAc)2	and	BrettPhos.	cTFE	
instead	of	HFIP.	

aryl	substituents	most	likely	makes	association	and	deprotona-
tion	of	the	hydrazine	intermediate	significantly	less	favorable.	
Utilizing	TFE	can	have	two	beneficial	effects.	First,	the	more	as-
sociating	 2,2,2-trifluoroethoxide	 anion	 may	 extend	 catalyst	
lifetime,	 forming	a	 reservoir	of	 stable	palladium(II)	alkoxide.	
Second,	the	more	basic	alkoxide	may	enable	deprotonation	of	
the	hydrazine	intermediate.	
These	modified	conditions	also	allowed	for	the	coupling	of	

an	electron-rich	3-chloropyridine,	yielding	diheteroarylamine	
(3y).	The	increased	catalyst	loading	is	also	beneficial	when	cou-
pling	other	heteroaryl	chlorides,	regardless	of	the	electron	den-
sity	 in	 the	ring	(3z).	Together,	 these	results	demonstrate	 the	
synthetic	utility,	functional	group	tolerance,	and	electronic	and	
steric	limitations	of	this	method.	

Conclusions 

In	conclusion,	we	developed	the	first	method	for	the	reduc-
tive	 arylation	of	nitroarenes	with	 chloroarenes.	This	method	
relies	on	a	new	dimerization-arylation-fragmentation	mecha-
nism	that	avoids	deleterious	overreduction	of	reduced	nitrog-
enous	intermediates.	N-arylation	of	the	typically	inert	azoarene	
intermediate	is	unlocked	by	the	reducing	conditions.	Diaryla-
tion	of	the	N=N	bond	of	the	azoarene	activates	it	towards	re-
ductive	 cleavage.	 The	 resulting	 reaction	 tolerates	 a	 range	 of	
synthetically	relevant	functionalities,	steric	crowding,	and	het-
erocyclic	cores.	We	expect	that	the	mechanistic	results	in	this	
study	will	provide	a	basis	 for	rapid	development	of	 this	new	
approach	to	diarylamines.	
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