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Abstract

Deductive solution strategies are required in prediction scenarios that are under deter-

mined, when contradictory information is available, or more generally wherever one-to-many

non-functional mappings occur. In contrast, most contemporary machine learning (ML) in

the chemical sciences is inductive learning from example, with a fixed set of features. Chem-

ical workflows are replete with situations requiring deduction, including many aspects of lab

automation and spectral interpretation. Here, a general strategy is described for designing

and training machine learning models capable of deduction that consists of combining indi-

vidual inductive models into a larger deductive network. The training and testing of these

models is demonstrated on the task of deducing reaction products from a mixture of spectral

sources. The resulting models are capable of distinguishing between intended and unintended

reaction outcomes and identifying starting material based on a mixture of spectral sources.

The models are also capable of performing well on tasks that they were not directly trained on,

like predicting minor products from named organic chemistry reactions, identifying reagents

and isomers as plausible impurities, and handling missing or conflicting information. A new
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dataset of 1,124,043 simulated spectra that were generated to train these models is also dis-

tributed with this work. These findings demonstrate that deductive bottlenecks for chemical

problems are not fundamentally insuperable for ML models.

Product identification is a central task in every reaction development workflow.1–5 There is no1

standardized solution to this problem, with practices ranging from separation and crystallization2

for unequivocal identification, to using a mixture of analytical information sources (e.g., mass spec-3

trometry (MS), nuclear magnetic resonance (NMR), infrared spectroscopy (IR), etc.) and general4

reactivity knowledge to distinguish between plausible products. The lack of standardization reflects5

that product identification is typically underdetermined by simple knowledge of the reactants and6

conditions. For example, a new reaction may yield a complex product mixture that requires several7

iterations of characterization and interpretation to fully identify, and even putatively established8

reactions can yield unexpected products if a hot-plate fails or a starting material has an impurity.9

Underdetermination also occurs because most analytical characterizations only provide partial or10

indirect structural information, and a particular analytical method may yield decisive information11

for identifying one product but not another.6–9 For these reasons, the state-of-the-art for general12

product identification remains manual expert interpretation of multiple information sources.13

Product identification is a member of a larger group of deduction problems that are common14

in the chemical sciences (Fig. 1A). In deductive scenarios, external information is used to restrict15

the potential solution space when making a prediction. Deduction is required for underdetermined16

problems or when there is a mixture of competing information sources. In contrast, most ma-17

chine learning (ML) in chemistry is inductive, learning from example, with a fixed set of input18

features.10–13 In the case of product identification, deduction takes the form of using established19

reactivity relationships to narrow the solution space to a small number of potential products that20

can then be inductively distinguished using one or more analytical spectra. More generally, deduc-21

tion is needed whenever a non-functional one-to-many relationship exists between input features22
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and prediction targets. In the context of ML, this distinction is critical, because regardless of their23

complexity, neural networks are incapable of circumventing the information limitations posed by24

non-functional mappings.25

Figure 1: Overview of deductive architecture and bottleneck for product identification. (A) Illus-
tration of the general non-functional one-to-many relationship between reactant information and
some potential species that can be found as intended and unintended products. (B) Deductive
super-network consisting of a reactant to product (RtP) transformer and one or more spectrum
to structure (StS) transformers combined by a terminal linear layer. The model predicts product
SMILES in probabilistic token-by-token fashion. (C) Top-1 accuracy of StS models in predicting
structures from the testing set with an increasing number of heavy atoms. The dotted lines indi-
cate the overall top-1 accuracy of each model on the whole testing set.

The motivation for the current study was to develop a ML-framework capable of emulating26

expert deduction to perform product identification based on a flexible mixture of spectral input27

sources. We hypothesized that deduction would be an emergent property of a super-network28

composed of individual task-specific inductive neural networks and a decision-making layer for29
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weighing task-specific evidence (Fig. 1B). This idea was directly motivated by the manual analog30

of interpreting individual spectra to obtain derived information (e.g., identifying the presence of31

certain functional groups from IR or a probable chemical formula from MS) then forming structural32

hypotheses from comparisons of this derived information.33

Here, we experimented with combining up to four task-specific transformers for ingesting re-34

actant/reagent information and IR, H-NMR, and electron-ionization (EI) MS spectra, respec-35

tively. The overall architecture takes reactant/reagent simplified molecular-input line-entry sys-36

tem (SMILES) strings and one or more analytical spectra as inputs and probabilistically decodes37

the product SMILES as an output in recursive token-by-token fashion.14 Each task-specific trans-38

former provides a probabilistic prediction of the next token in the product that informs a final39

linear deduction layer (see Methods). This architecture provides two sources of deductive coupling40

between the transformers. The first is the straightforward probability reweighting that happens41

in the final linear deduction layer, which provides the opportunity for one or more of the trans-42

formers to form a consensus over the other transformer(s). The second is through the recursive43

token-by-token decoding by which the product prediction is made. Because the partially decoded44

product string is used as an input to each transformer during inference, it is possible for control45

to shift between transformers for different portions of the decoding (e.g., one may dominate the46

scaffold, while another dominates predictions of certain functional groups). In this way, the trans-47

formers can dynamically provide deductive constraints on each other during different portions of48

the decoding.49

The deduction models were trained and tested on 299,658 reactions taken from the Lowe patent50

dataset after filtering (see Methods).15,16 Artificial EI-MS, H-NMR, and IR spectra were generated51

for all products, reactants, and reagents due to the unavailability of suitable training data for this52

task. To turn this into a deductive product identification task, the dataset was augmented with53

null reactions that corresponded to obtaining starting material from the reaction instead of the54
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expected product. The final dataset consisted of 299,658 real reactions and 146,672 null reactions,55

that were split using a 80:10:10 training, validation, testing split while ensuring that there were56

no prediction targets shared between the splits. All accuracies are reported for the testing set.57

Prediction baselines for this task were set by training analogous transformer models on the58

reactant-to-product (RtP) and spectrum-to-structure (StS) prediction tasks (Fig. 1C). The RtP59

model exhibits an obvious deductive bottleneck in this task, since a given reactant can map to60

either the expected product or starting material(s). The RtP model was trained only to predict61

the expected products, because attempts to train with null reactions in the training data led to62

confusion due to the one-to-many relationship between inputs and targets. The RtP model’s top-163

accuracy of ∼ 55% reflects a combined top-1 accuracy of ∼ 0.6% on null reactions and ∼ 84.5% on64

real reactions in the testing set. The latter result is comparable to the state-of-the-art RtP mod-65

els.17,18 Several StS models were trained with different combinations of spectral transformers (IR,66

IR+NMR, and IR+NMR+MS models in Fig. 1B). The StS models exhibit lower overall perfor-67

mance than the RtP model, with a top-1 accuracy of ∼ 35% for the best model (IR+NMR+MS).68

The accuracies monotonically increase with the number of spectral sources used in the prediction69

and monotonically decrease with the molecular size of the prediction target. Although the de-70

ductive bottleneck is less obvious, it is qualitatively expected that spectral uniqueness decreases71

with molecular size (e.g., the structural isomers of large molecules often cannot be distinguished72

by these spectra). These accuracies favorably compare with recently published StS models that73

also exhibit relatively low performance for large molecules.7,19,20 Notably, groups have reported74

StS accuracies that significantly improve when the molecular formula is supplied to the model75

in addition to the spectra.20 Although it has not been identified as such, this is an elementary76

deductive constraint.77

To test the hypothesis that combining a RtP transformer with one or more StS transformers78

circumvents the deductive bottleneck in the product identification task, the top-1 and top-5 testing79
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Figure 2: Overview of deductive performance in product identification tasks. (A) Comparison
of several reactant+spectrum deductive models with RtP and StS models. The RtP+StS result
corresponds to the accuracy obtained by combining the correct predictions from both models. (B)
The fraction of products for which each transformer provides decisive input on at least one token.
Multiple transformers can provide decisive contributions to a given product and a consensus results
in no transformer being decisive, so the sum does not equal unity. (C) The reduction in top-n
accuracy on the testing set upon zeroing out the input to the indicated transformer. (D) Com-
parison of a R+IR+NMR+MS model trained with missing spectra (blue) with the corresponding
fixed input models (green). The cases on the right correspond to the performance with random
dropping of one spectral input and supplying a contradictory spectrum (i.e., of starting material
or a real product) to one of the spectral transformers. The red bars correspond to the fraction of
cases where the contradictory species corresponding to the supplied spectrum was predicted in the
top-n structures. (E) Three illustrative comparisons of the inferences of different models. (F) The
convergence of the accuracy with respect to the number of training data on each of the deduction
models.
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accuracies of the deduction models were compared with the RtP and StS results (Fig. 2A). All80

the deduction models (even those with fewer spectral inputs) outperform the RtP and StS models81

by ∼ 20%, showing a qualitative difference between the inductive and deductive architectures. To82

clearly illustrate the non-linear impact of combining general reaction knowledge and the spectral83

information within a single model, we also calculated the top-1 accuracy of a hypothetical RtP+StS84

model that combines the correct predictions of the two separate models (line in Fig. 2A). Despite85

this generous accuracy calculation, the best deduction model still outperforms the RtP+StS model86

by 29%, illustrating the non-additive coupling between the reactant and spectral transformers.87

The deductive models also show no significant accuracy difference between predicting starting88

material versus expected products. This confirms that the reactant knowledge provided by the89

RtP transformer also assists with identifying starting material when incorporated within the larger90

deductive network.91

The deductive architecture was motivated by the hypothesis that predictive control might92

switch between transformers during the token-by-token product decoding. To directly test this,93

the probability vectors produced by the transformers were individually zeroed out during inference94

to test whether the most probable overall token predicted by the model changed. If such a swap95

occurred for at least one token in a product, then the transformer was considered decisive in that96

decoding (Fig. 2B). The reactant transformer was found to be decisive for at least one token in97

over 95% of products, followed by the IR transformer at ∼ 30%. The lower decisiveness of the98

spectral transformers at least partially reflects their tendency to form a consensus and therefore99

not be individually decisive. For example, the decisiveness of the IR rises in the R+IR model to100

58% and 78% on real and null testing reactions, respectively. Approximately half of the products in101

the testing set had two or more decisive transformers from the R+IR+NMR+MS model involved102

in their decoding (Fig. S3). The mode decoding behavior is to switch between a consensus for the103

majority of the tokens (60-80%) and one or more decisive predictions for a minority of the tokens104
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(20-40%) (Fig. S4). This is strong support for the mechanism of dynamic deductive constraints105

being supplied by the different transformers during the token-by-token inference cycle.106

To investigate the overall importance of the different input sources, the accuracy loss upon107

zeroing out each feature was averaged across the testing data (Fig. 2C). Given the stochastic108

nature of the decoding, a given input can influence a prediction even if it is not decisive for any109

particular token. Conversely, even if a transformer is decisive for a particular token, the flexibility110

of SMILES in decoding the same structure multiple ways means that a correct prediction may still111

be possible absent that transformer. The accuracy contributions roughly mirror the decisiveness112

of each transformer (Fig. 2B). In the case of IR, the influence on accuracy is ∼ 20% larger than113

the decisiveness measure, whereas for R, NMR, and MS it is marginally smaller. We interpret the114

relative contributions of the different spectra to reflect the simulation accuracy rather than the115

intrinsic information content of each spectral source. Nevertheless, there are many cases where116

even EI-MS makes decisive contributions to top predictions.117

Several additional tests were performed to interrogate the ability of the deductive models to118

operate in scenarios of incomplete information and even contradictory information (Fig. 2D). For119

these trials, a version of the R+IR+NMR+MS model was trained from scratch using a ten percent120

random chance of dropping each spectral input based on the hypothesis that this would reduce121

the model reliance on consensus formation (see Methods). First, we tested the performance of122

this model in situations where one or more spectral inputs were unavailable. The performance of123

the model monotonically decreases on the testing set as spectral information is removed, but the124

top-1 and top-5 performance remain comparable to the models with fixed inputs (e.g., comparing125

R+IR+NMR+MS when deprived of IR and NMR data against the R+MS model). The perfor-126

mance remains comparably high in the case where the spectrum being removed is randomized, and127

for which there is no analog among the fixed input models. These trials show that the deductive128

architecture is capable of basing predictions on a flexible number of input sources, analogous to129
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the situation in product identification when spectra arrive asynchronously or may be unavailable130

for a given analyte (e.g., EI-MS may not be available for large molecules).131

The R+IR+NMR+MS model trained with missing spectra was also tested in situations with132

contradictory information by supplying one of the spectral transformers at random with a con-133

tradictory spectrum (either starting material or real product) from the others (Fig. 2D, right).134

The performance in this case is lower than the situation where the model is simply deprived of a135

spectrum; nevertheless, the model shows the capacity to form a consensus that overrules the pre-136

dictions of the misinformed transformer. Remarkably, the model still predicts the contradictory137

species in the top-5 in nearly 40% cases. Although unanticipated, this behavior is more consis-138

tent with the supplied evidence than if the model never predicted the contradictory species. This139

also provides encouraging evidence that this architecture might be extended to predicting product140

mixtures. For example, a binary mixture of species with large differences in ionization efficiency141

or oscillator strengths could present similarly to the contradictory use case.142

Inspection of some specific testing set examples illustrates the various ways that information is143

being used by the model (Fig. 2E). The first example shows a case where the IR+NMR+MS StS144

model fails for a relatively large product molecule, whereas the R+IR+NMR+MS model correctly145

predicts the product. This improvement reflects the transferable knowledge about organic reactions146

imparted by the reactant transformer. The second example shows a case where the deduction model147

fails to predict a product as top-1, but includes it as a top-5 prediction. This example is typical of148

many of the inaccurate predictions, where the model predicts structural isomers or molecules with149

similar scaffolds that are difficult to distinguish spectrally. ∼ 18% of the R+IR+NMR+MS top-150

1 mispredictions are structural isomers of the target. The third example shows a case where the151

R+IR+NMR model fails to predict a product as top-5 but the R+IR+NMR+MS model predicts it152

as a top choice. This case illustrates the complementary information supplied by the MS, despite153

it exhibiting the lowest overall decisiveness and accuracy contribution among the investigated154

9

https://doi.org/10.26434/chemrxiv-2023-l6lzp ORCID: https://orcid.org/0000-0002-7039-4039 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-l6lzp
https://orcid.org/0000-0002-7039-4039
https://creativecommons.org/licenses/by-nc-nd/4.0/


spectra.155

A major data curation effort was required to train these models; nevertheless the accuracy156

versus training data size curves for the various models make it clear that there is additional scope157

for improvement (Fig. 2F). All of the models show clear evidence of saturation that we attribute158

to two factors. The first is that the performance of the models in identifying real products is159

already approaching the probable irreducible error of the underlying patent-sourced reaction data160

(i.e., many of the expected product labels are likely incorrect and cannot be accurately predicted161

regardless of having more data). The second potential source of saturation is the use of simulated162

spectra for these models. It is possible that real spectra would exhibit more information and163

saturate later.164

Because these models were only trained on predicting starting material and major products,165

it was unclear how their performance would translate to predicting the products of side-reactions166

or other off-target species. We curated two external testing datasets, REAGENT and MULTI167

(see Methods), to test this (Fig. 3). The REAGENT dataset is made of 3262 reactions where168

the prediction target was a reagent rather than the starting material or expected product, as in169

the training data (see Methods). Reagent identification was an untrained task for these models170

and all reagents were unseen as prediction targets during training. The performance trend for171

reagent prediction is similar to the main testing cases, with a monotonic decrease in accuracy172

as spectral sources are removed and a baseline accuracy that is above the best StS model (Fig.173

3A). The accuracy is still reduced overall, as is expected given the difference between the training174

task and this task, but nevertheless the transferability to an unseen task is excellent. The RtP175

model is not compared here because it has ∼ 0% accuracy on this task, which is a reminder of the176

qualitative difference between the deductive and inductive architectures despite the decisiveness177

of the reactant transformer in the deductive architecture.178

The capacity of the models to predict minor products was tested on the MULTI dataset of179
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Figure 3: Performance of the deduction models on external testing sets. (A) Comparison of top-n
performance in identifying reagents that were unseen as prediction targets during training. (B)
Performance of the R+IR+NMR+MS model in predicting major and minor products of unseen
reactions involving 18 reactants. The 15 products for the 7 reactants that are not shown were not
predicted in the top-5 by the model.

18 organic reactants, each with two or more possible products producing a total of 40 distinct180

reactions, curated from published and textbook sources (see Methods).21,22 None of these reactions181

existed in the training data, and predicting side-products (as opposed to starting material) was182

not a task that was directly trained for. The R+IR+NMR+MS model can identify the major and183

minor products in the top-1 for 19/40 of the reactions for 11/18 of the distinct reactants (Fig. 3B).184

For reference, the IR+NMR+MS model, for which this is an on-target task, correctly identifies185

19/30 of the major and minor products after excluding those seen during its training. Several of186

the failure cases are also illuminating. For example, the structural isomers of anisidine are largely187

indistinguishable using the limited analytical sources provided to the model. Nevertheless, the188

transferability to this unseen task suggests that when provided with additional spectral sources189

and task-specific training, this architecture is also capable of side-product identification.190

The deductive super-networks studied here were designed to weight evidence from inductive191

sub-models responsible for digesting individual information sources. This concept was loosely192

inspired by human deduction, whereby training occurs on specific inductive tasks (e.g., certain193
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types of math, physics, or organic synthesis problems) that are consulted to construct and weight194

hypotheses and reject solutions in practical scenarios. This idea is also consistent with deductive195

behavior being an emergent capability of sufficiently expansive inductive subsystems or training196

datasets. For example, large language models show emergent deductive behavior as evidenced by197

their ability to respond to non sequiturs, questions that assume certain knowledge, and questions198

with false premises that contradict established knowledge.23 Similarly, the surprising versatility199

of language models in generative chemical applications and general chemical problem solving has200

been documented by several groups.17,24,25 The initial version of this architecture demonstrated201

surprising transferability to off-target tasks and in prediction scenarios with partial and even con-202

tradictory information. Additional variations on this architecture for product prediction and other203

deductive problems are immediately possible. Among the most obvious that were left unexplored204

are finding the optimal manner of combining the inductive sub-models (e.g., more sophisticated205

couplings beyond the linear reweighting used here) and training the super-network (e.g., training206

on multiple tasks or contrasting examples).207

There are many opportunities for further improving these models and for applications beyond208

product identification. For example, the current work has not addressed the problem of product209

identification when the spectra contain product mixtures. Knowledge about the number of species210

is a powerful deductive constraint that was provided here implicitly through the training data211

curation; however, this too could be treated as a learnable deduction using an additional classifier212

or spectral segmentation model to deconvolute spectra for the spectral transformers. This is beyond213

the current scope, other than to acknowledge the opportunity. Deductive architectures should find214

application more generally in any prediction scenario where a non-functional one-to-many mapping215

occurs. These include predictions of materials aging, predictive maintenance, reaction planning,216

and inverse materials design, among others where missing variables, stochastic factors, or extra217

degrees of freedom make the prediction problem underdetermined. Such scenarios require deductive218
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reasoning, for which the state-of-the-art is often manual expert analysis of disparate information219

sources. Deductive ML models of the kind demonstrated here should find use in a multitude of220

similar applications.221
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Methods231

Dataset Curation232

Dataset Summary233

The final product identification dataset curated here consists of 446,330 samples, split between234

299,658 samples corresponding to real product prediction and 146,672 samples corresponding to235

starting material prediction. Each sample in the dataset is composed of the reactant and reagent236

SMILES, the simulated EI-MS, IR, and 1H-NMR of the prediction target as available features,237
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and the product SMILES as the prediction target. Two versions of the dataset were used, one238

with reagents distinguished from other reactants using a special token, “>”, and one without. A239

80:10:10 training:validation:testing split was used for all model development. The curation details240

of this dataset and the data splits are summarized in the remaining sections.241

Dataset Curation242

The USPTO reaction dataset originally curated by Derek Lowe then filtered and split by Jin et al243

served as the starting point for data curation.15,16 This dataset provided reactant:product pairs in244

the form of SMILES strings that needed to be augmented with spectral data (i.e., EI-MS, IR, and245

H-NMR) for each species for use in the product identification learning task. Filtering the reactions246

for compatibility with the spectral generation workflow (described next) resulted in 299,658 distinct247

reactions involving 374,681 distinct molecules (counting distinct reactants, reagents, and products).248

Simulated Spectra249

Spectra were simulated for all 374,681 distinct molecules in the dataset, because open-source250

spectral databases are insufficiently large and have limited overlap with the Lowe species to be251

useful for training a practical product identification model. IR spectra with 4 cm−1 resolution from252

400-4000 cm−1 were generated from the SMILES string of each molecule using the message-passing253

neural network model published by McGill et al.26 EI-MS spectra with 1 m/z resolution from 1-254

999 m/z were generated using bidirectional neural network model (NEIMS) and rapid approximate255

subset-based spectra prediction (rassp) model published by Wei et al and Zhu et al respectively.27,28256

In general, the rassp spectra are more accurate but have size limitations, so NEIMS spectra were257

used as substitutions wherever rassp spectra were unavailable (about half of the spectra). 1H-258

NMR spectra with 0.0121 ppm resolution from -2ppm - 10ppm were generated using Mestrenova259

v14.3.0.29 Spectral generation for both EI-MS and 1H-NMR required optimized geometries of each260
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species that were generated using Auto3D.30 Reactions from the Jin et al USPTO dataset involving261

species with more than 30 heavy atoms or elements besides H, B, C, Si, N, P, O, S, Se, F, Cl, Br,262

and I were discarded to conform to the current constraints of Auto3D.16 These exclusions resulted263

in the final set of 299,658 reactions with real products as prediction targets.264

Null Reactions265

To test the model’s deductive capability, a set of “null reactions” was generated that share the same266

reactants and reagents as real reactions but with products and input spectra corresponding to one of267

the reactants. Predicting the product of such reactions corresponds to identifying starting material268

as an unintended product using the information provided by the spectra. The introduction of null269

reactions also creates an underdetermined scenario for a RtP model, since a given reactant can yield270

multiple potential products. Null reactions were generated for each of the 299,658 real reactions.271

All possible null reactions were generated for reactions with multiple reactants. Null reactions272

were discarded if their prediction target matched a product of a real reaction in the dataset. This273

was done to avoid accidental information leakage between null reactions and real reactions and274

also because it yielded a useful 2:1 data balance between real and null reactions without further275

filtering. A total of 146,672 null reactions satisfied this criteria, resulting in a combined dataset of276

446,330 reactions (i.e., 146,672 null and 299,658 real) for the product identification task.277

Dataset Splitting278

An 80:10:10 training:validation:testing split was used for model development. The splitting was279

performed so that all reactions that shared a prediction target were partitioned to the same split.280

This was done to ensure that the testing and validation sets correspond to unseen prediction targets.281

For example, if ibuprofen was a product of five different real reactions and two null reactions in the282

dataset, then all seven would be partitioned to the same split (at random) since they all share the283
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same prediction target (i.e., ibuprofen). This avoids information exchange between tasks, where284

the model would potentially see the same prediction spectra during training and testing. The total285

number of real and null reactions, together with their training-validation-test split is summarized286

in Table1.287

Table 1: Dataset Split Used for Deduction Model Training

Training set Validation set Test set
Real reactions 249766 24969 24923
Null reactions 108212 11000 13349

External Testing Datasets288

Two additional datasets, MULTI and REAGENT, were curated to test the performance of the289

deduction models when predicting reactions with side products and identifying reagents as potential290

products, respectively. The MULTI dataset consists of a set of organic reactions with known side-291

products curated from Grossman’s textbook and the dataset compiled by Hartenfeller et al.21,22292

These reactions were combined to produce a total 18 reactants involved in reactions yielding 40293

distinct products. The REAGENT dataset was curated by identifying all unique reagent species294

from the main dataset and excluding any that overlapped with targets in the training set or that295

were incompatible with the spectral generation workflow. This resulted in 2707 distinct reagents.296

Up to three reactions, if available, from the main dataset involving each reagent was selected at297

random and the prediction target and input spectra were swapped for the reagent to yield a total298

3262 reactions. This dataset tests whether the models are able to identify reagents as a potential299

product. The spectra of all species in the MULTI and REAGENT datasets were simulated using300

the same protocol as the main training dataset.301
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Neural Network Architecture302

Architecture Summary303

All product identification models used an architecture composed of a reaction transformer, one or304

more spectral transformers, and a single linear deduction layer. The transformers were adapted305

from those now typical of neural machine translation (NMT) tasks,31 using hyperparameter tun-306

ing based on the validation set accuracy. Both reactant and spectral data were pre-processed307

beforehand and then fed into the attention score calculation module of each transformer through308

the trainable embedding network. Inference was performed by these models in recursive token-309

by-token fashion until encountering an end token. An illustration of the R+IR+NMR+MS model310

architecture is shown in Figure S1. The largest model trained here, R+IR+NMR+MS, has ∼ 30M311

weights.312

Input Embedding313

The raw reactant input data were represented as SMILES strings, because this is currently the314

most reliable representation in reaction prediction tasks.32 The SMILES strings were tokenized315

using a standard SMILES vocabulary of 284 possible tokens in addition to a special > symbol316

used (when present) to separate the reactants and reagents (e.g., solvents or catalysts), a padding317

token, and special start and end tokens (only present in the decoded product strings). Reactant318

inputs were converted to fixed 276-length (dseq) input vectors using padding tokens before being319

passed to a linear token embedding layer that converted each token to a 256-length vector (demb).320

The dimensions of the reactant input after embedding were [276,256] (i.e., dseq by demb). The batch321

dimension is omitted for clarity from all reported sizes.322

The raw simulated 1H-NMR, EI-MS, and IR spectra were represented as intensity versus ppm,323

m/z, and cm−1 vectors, respectively. To prepare the 1H-NMR and EI-MS spectra for embedding,324

17

https://doi.org/10.26434/chemrxiv-2023-l6lzp ORCID: https://orcid.org/0000-0002-7039-4039 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-l6lzp
https://orcid.org/0000-0002-7039-4039
https://creativecommons.org/licenses/by-nc-nd/4.0/


the intensity values were normalized to a range between 0 and 1, binned by percentile (lower325

range exclusive, upper range inclusive), then tokenized based on the 100 possible percentile ranges326

and a special bin for zero (i.e., the percentiles served as a vocabulary for tokenization). The327

embedding of the IR spectra was identical except that intensities less than 1% were zeroed out to328

eliminate potential background noise, resulting in 100 total possible tokens rather than 101 (i.e.,329

the zero token for IR includes the first bin in the 1H-NMR and EI-MS cases, so there is one less330

token). The preprocessed input vectors for the IR, 1H-NMR, and EI-MS spectra were of length331

900 (representing 400-4000 cm−1 with a 4 cm−1 resolution), 993 (representing -2ppm - 10ppm with332

∼ 0.0121 ppm resolution), and 999 (representing 1-999 m/z with 1 m/z resolution). The input333

vectors were then embedded using a linear layer (specific to each transformer but with demb = 256334

in all cases) in the same manner as the reactants, resulting in embedded inputs of size [900,256],335

[993,256], and [999,256] for the the IR, 1H-NMR, and EI-MS transformers, respectively.336

To retain the spatial information of the inputs for use by the models (i.e., token position for337

the reactants and peak location for the spectra), standard trigonometric positional embedding (P)338

was added to the token-based embeddings according to339

P(k, 2i) = sin( k
n2i/d )

P(k, 2i + 1) = cos( k
n2i/d )

(1)

where k is the position of the input token, i is the position in the embedding dimension, d is the340

hidden dimension (demb), and n is a convenient constant for determining the relative frequency341

shift between the sequentially sampled periodic functions (taken to be 104, here).342

Attention Cells343

Each transformer is composed of a task-specific encoder and decoder that use two to four attention344

cells. Each encoder attention cell consists of a sequence of layer norm, multi-head self-attention345
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layer, residual connection, layer norm, feed-forward layer, and residual connection (Fig. S2). The346

layer norm is performed before other attention and feed-forward operations with an ϵ value of 10−6.347

Eight attention heads were used, using linear projections of the input embedding dimension to form348

key and query vectors of length 256 (dk = dq = 256) and value vectors of length dv = demb/8 = 32,349

and the dot-product attention mechanism calculated according to350

Score(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

where Q, K, and V are matrices containing the queries, keys, and values for each embedded token351

(for the first cell, afterwards the derived feature of the previous cell) in the sequence with sizes352

of [dseq,dk], [dseq,dk], and [dseq,dv], respectively, and
√
dk is a normalization factor. The outputs353

of each head are catenated along the value dimension to recover a matrix of the same size as the354

input to the attention layer. The catenated output from the multi-head attention layer is added355

to the input of the attention cell via a residual connection, then passed to a second layer norm356

and fed to a feed-forward block that consists of a linear layer to project the demb-dimension into357

a 2048-length vector, followed by a ReLU activation layer, and a second linear layer to project358

the hidden dimension from 2048 back to demb. Two drop-out layers with drop-out rate of 0.1 were359

applied after each linear transformation during training. Finally, the input to the attention cell is360

mixed with the output via another residual connection.361

The decoder attention cells used in these models are identical to the encoder attention cells,362

with the exceptions that the target SMILES embedding is used as an input to the first cell,363

the multi-head self-attention layer uses masking to restrict non-zero attention calculations to later364

tokens, and a multi-head cross-attention layer is inserted after the masked multi-head self-attention365

layer (Fig. S2). The embedding layer used for the predicted product SMILES is shared across366

transformers and determined by training. The self-attention masking is identical to that used by367
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Vaswani et al.31 The multi-head cross-attention layer is identical to the unmasked multi-head self-368

attention layer in the encoder attention cells, except that the key and value inputs are obtained as369

linear projections of the embedding dimension of the encoder output and the queries are obtained370

as linear projections of the embedding dimension of the output of the masked self-attention layer.371

Layer norms are used before each attention layer and residual connections are used after each372

attention layer (the same as for the encoder, there is just an extra one of each); all other details373

(sizes, sequence, number of heads, the final feed-forward layer, etc.) are identical to the encoder374

attention cells.375

Transformers376

All models were constructed from one or more transformers, with each consisting of an encoder,377

decoder, and terminal linear softmax classifier to predict the next token in the sequence. The378

encoder and decoder of each transformer were composed of a series of the attention cells described379

in the previous section. In the case of the reactant transformer, four attention cells were used in380

the encoder and decoder; whereas, for all spectral transformers only two attention cells were used381

in the encoder and decoder. A minimal loss in validation accuracy was observed upon reducing382

the number of attention cells in the spectral transformers and this expedited model training. More383

transformers might be useful when training on different data sources or other spectral inputs.384

The RtP model consists of a single reactant transformer; the various StS models consist of one or385

more spectral transformers and no reactant transformer; and the various deduction models consist386

of a reactant transformer and one or more spectral transformers. For each case, the [dseq,demb]387

output of each transformer is linearly projected along the embedding-dimension to a 288-length388

vector (i.e., the number of SMILES plus special tokens) with a softmax to predict the probability389

of the next token.390
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Deductive Layer391

The models that combine more than one transformer (i.e., the various StS and R+spectra models)392

are linked together by a single linear layer that projects the 288*N token-probabilities outputted393

by the N individual transformers to predict the next token. Specifically, the outputs of the trans-394

formers are catenated to a 288*N-length vector that is linearly projected to a 288-length vector395

with a softmax to predict the probability of the next token. Because the weights of this linear pro-396

jection layer are static after training and independent of the input, this layer represents a simple397

weighting of the evidence from the different transformers that potentially also accounts for any398

average linear correlations in the token-predictions observed during training.399

The linear linkage of the transformers provides two mechanisms by which the task-specific400

transformers can act as deductive constraints on each other. The first is through the formation of401

a consensus prediction of the next token. This simple mechanism allows the more confident trans-402

formers to potentially overrule one or more less confident transformers in predicting a particular403

token. The second is through the recursive token-by-token manner in which the product predic-404

tion is made. At each step of this process, the prediction string, updated with the token from the405

last inference, is passed to all transformers to make their individual next-token predictions. This406

creates a mechanism by which the transformers can perform inference on prediction strings that407

they never would have encountered via a greedy decoding. For example, a particular transformer408

may be overruled by the others for several tokens, such that it is now performing inference on a409

partially decoded product scaffold that it would not have predicted on its own. In such a case, the410

other transformers have acted as a deductive constraint on the transformer.411

Other deductive connections are likely useful but have not been significantly explored due to412

the immediate success of the current architecture for these prediction tasks. The only alternative413

that was significantly tested was an architecture that terminated in an additive layer rather than414
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a linear projection, which resulted in a marginal reduction in validation set accuracy.415

Training416

All models were trained using the Adam optimizer and a batch size of 20. The learning rate, η,417

was linearly increased each update step followed by an exponential decay according to418

η =
1√
demb

∗ min(
1√
s
,

s

s
3/2
warm

) (3)

where, s, is the step, swarm is the number of steps within the warmup phase, and demb is the419

embedding dimension length. swarm was set to 37500 steps, roughly 4% of the overall training420

steps, which is consistent with Vaswani et al.31 No label smoothing was used during training.421

Early stopping was applied to terminate training if the validation loss did not decrease in the422

consecutive 30 epochs.423

One R+IR+NMR+MS model was trained with random dropping of the spectral sources for424

use in Figure 2D of the main text. All other results are for models trained without dropping. For425

the model trained with dropping, a 10% probability of dropping was separately applied to each426

input spectrum during training (i.e., on average 1/1000 training samples had no input spectra).427

Inference428

During the inference cycle, all models’ top-k outputs are determined by a beam search with beam429

size set to five. The beam search algorithm is consistent with the previous implementation pub-430

lished by Schwaller et al.17 The inference cycle is initiated by feeding the target input with a431

dummy string only containing the start token “<”. This replaces the target product’s SMILES432

that is used in the training cycle. The model then selects the five most probable tokens decoded433

from the start string to form five new beams. At each decoding step, each of the beams produces434
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another five candidate strings, and the five candidates with the highest overall probability are se-435

lected from the pool of 25 strings, which are then assigned to the new beams for the next decoding436

step. The decoding of each beam terminates if the end token “$” is predicted as the top-1 or the437

string length reaches the upper limit of 67.438

Transformer Decisiveness and Input Accuracy Reduction439

The decisiveness measure was implemented by zeroing out the final probability prediction of each440

transformer before it was passed to the linear deduction layer. If this caused a change in the top-1441

predicted token compared with the unmodified inference, then the transformer was classified as442

being decisive for that token. According to this definition, one or more transformers can be decisive443

for a token, and also no transformer can be decisive if a sufficiently strong consensus exists. If a444

transformer was decisive for at least one token in a given product decoding, then it was classified445

as being decisive for that product.446

The overall accuracy reduction is an alternative measure of input importance that simply447

reports the reduction in overall top-n accuracy when each of the input sources are individually448

zeroed out. This was implemented by supplying a single padding token to the reactant transformer,449

and three zero intensity tokens as inputs to the spectral transformers, respectively. The overall450

accuracy reduction is not necessarily equivalent to the decisiveness of each transformer, because of451

the flexibility of the SMILES language, which allows the same molecule to be decoded in multiple452

ways, and the important role of consensus formation in the decoding.453
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