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3

Designing polymer membranes with high gas permeability and selectivity remains a grand4

challenge for energy, the environment, and economic sustainability. Increasing both the selec-5

tivity and permeability is a difficult multi-task constrained design problem for polymer mem-6

branes due to the trade-off between these two properties. The complexity of chemical com-7

position and morphology of polymers makes this problem especially hard to attack with trial-8

and-error or intuition-based strategies. In this work, we instead present a machine learning9

(ML)-driven genetic algorithm to tackle the design problem of polymer membranes for CO210

separation from N2 and O2. Using literature data of permeability for three gases, CO2, N2, and11

O2, we constructed multiple ML models using different fingerprinting featurization schemes to12

predict all three gas permeabilities as well as the CO2/N2 and CO2/O2 selectivity values. Then,13

we employed a genetic algorithm to design new polymers and evaluated their performance with14

respect to the Robeson upper bounds using our machine learning models. We were able to iden-15

tify new polymer membranes that are promising for both CO2/N2 and CO2/O2 separations. The16
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top discovered polymers are predicted to have high glass transition temperatures, Tg. Similarly,17

the pyridine functionality was found in ≈ 20% of the predicted polymers. Both of these facts18

are well in line with currently accepted experimental wisdom for CO2 based separations. The19

framework developed here can be used to design polymers for any application involving con-20

strained optimization. Finally, we outlined the strengths and limitations of this approach, as well21

as the imminent challenges and opportunities with using machine learning guided data-driven22

inverse design of polymers.23

Introduction24

The increased concentration of CO2 in the atmosphere is the single most important anthro-25

pogenic cause of global warming. Decreasing the release of CO2 into the atmosphere requires26

efficient CO2 capture and separation technologies. Decades of research have been devoted to27

improving existing gas separation technologies, but there is still an imminent need to find new28

methodologies given the current course of climate change (1). Traditional unit operations have29

the ability to isolate high-purity products, but they have a high carbon footprint due to the high30

energy requirements. Membrane-based technologies are an attractive alternative because they31

provide savings in capital and energy-related operating costs, and offer advantages related to the32

ease of operation and compact environmental footprint (2–4). Polymer membranes have been33

successfully investigated for H2 recovery, N2 generation, but there is still a significant opportu-34

nity to improve polymer membrane technology for CO2 separations. Although hundreds of new35

materials are synthesized each year, most of the commercial membranes used today are from36

the 1990s, and they rely on a dozen or so common polymer structures. This is largely because37

the two properties that are important for a membrane material – high flux (permeability) and38

high gas purity (selectivity) – are inversely correlated. This inverse relationship between gas se-39

lectivity and permeability was first examined by Robeson in 1991 (5) and revisited in 2008 for40
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pure homopolymer membranes (6) and is famously known as the Robeson Upper Bound. Since41

then, there have been considerable efforts in designing polymers that are above the empirically42

determined upper bound for a given application (7–9).43

Designing polymers with targeted structural and functional properties is challenging due44

to the practically infinite polymer chemistry design space. Trial-and-error or intuition-based45

strategies are not efficient, and they are likely to miss optimal solutions due to the complex-46

ity of chemical composition and morphology of polymers. Furthermore, these strategies with47

traditional experimental and computational routes are time and resource consuming. Machine48

Learning (ML) models trained on polymer data sets can mitigate this problem, as it is possi-49

ble to predict a new material’s properties instantaneously by interpolating within an existing50

dataset (10). There have been a number of studies in the recent literature that leveraged ML51

to predict the properties of polymers. For example, Alves et al. developed models to discover52

polymeric micelle formulations for poorly soluble drugs using micellar solubilization data (11).53

Tao et al. used ML models to predict the glass transition temperature of a polymer based on54

its structural formulation (12). Later, these authors also did a benchmarking study to compare55

the predictive power of numerous ML models and showed the importance of structure and fea-56

ture representations (13). Xu et al. used ML models to study swelling of polymer membranes57

in different solvents with chemically informed molecular representations and descriptors (14).58

Wang et al. used ML models to screen polymers for pervaporation separation (15) and devel-59

oped a data-driven approach to predict the fractional free volume of polymers (16). There are60

also excellent review articles published in the last couple of years that summarize the recent61

developments in ML studies of polymer properties (17–26).62

The success of applying ML models to design new polymer membranes for gas separation63

has been comparatively lacking, largely owing to limitations in data availability. Barnett et64

al. used experimental gas permeability data to develop a ML model to predict gas separation65
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in polymer membranes (27). They have successfully identified several polymers for improved66

CO2/CH4 separation and synthesized two of them to experimentally validate the ML predic-67

tions. Yuan et al. used ML algorithms to predict the missing values for the permeability of68

different gases in the online Polymer Gas Separation Membrane Database of the Membrane69

Society of Australasia (28). Yang et al. used the same data set and leveraged ML models to pre-70

dict gas permeability based on the polymer chemistry (29). However, a ML model that predicts71

polymer properties by itself does not lead to the discovery of new polymer membranes with op-72

timal properties. In principle, one can propose many candidate polymers, possibly at random,73

and use ML to predict their performance. This is obviously not an efficient strategy. A ML74

“forward model” needs to be coupled with an inverse design/generative algorithm to efficiently75

explore the polymer material space. Genetic algorithms (GA) are an example of a data-driven76

inverse design method, which can be effectively coupled with an ML model. Srinivasan et al.77

used GA to design single-stranded DNA grafted colloids (30). These authors were able to re-78

produce the experimentally validated phase diagram and additionally identify the formation of79

four previously unobserved crystal structures. Kim et al. demonstrated one of the first data-80

driven inverse design methods of new polymers having high band gap and high glass transition81

temperature that is relevant for high-temperature and high-energy density dielectrics (31). They82

successfully identified new polymer structures with the desired properties.83

In this work, we follow a similar procedure to Kim et al. to design new polymer membranes84

with the desired selectivity and permeability for CO2 separation from N2 and O2. First, we start85

by assembling a library of gas permeabilities corresponding to the experimental studies of var-86

ious polymers. Next, we train multiple ML models based on various fingerprints to determine87

which ML model performs the best in predicting gas permeability. Then, we use our ML mod-88

els to drive a GA for 100 generations and create more than 16000 new polymer structures. We89

also use different fitness functions to design the best possible polymers given our initial data set.90

4

https://doi.org/10.26434/chemrxiv-2023-5h4s7 ORCID: https://orcid.org/0000-0002-2071-9675 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5h4s7
https://orcid.org/0000-0002-2071-9675
https://creativecommons.org/licenses/by/4.0/


Application of this combined ML-GA framework results in the discovery of more than 20 new91

polymers that are above both the CO2/N2 and CO2/O2 Robeson upper bounds, many of which92

contain aromatic functional groups along with oxygen- and nitrogen- motifs, aligning with ex-93

perimental observations that show imines and polyethers as promising polymer membranes for94

CO2 separation (32–36).95

Results96

We compiled a literature database of permeability for three gases – CO2, N2, and O2 – in a97

variety of polymers at a temperature range of 300–330 K. The number of data points for each gas98

is different due to the availability of data in the literature, so we only considered polymers that99

have permeability measurements for all three gasses. This resulted in 780 different polymers100

in our library, which represent a sizable portion of the polymers that are typically included in101

the most up-to-date Robeson plots. The selectivity versus permeability data for CO2/N2 and102

CO2/O2 are shown in Figure 1. We see that there are only three polymers that are above the103

CO2/N2 Robeson upper bound (37, 38). These polymers have a benzene ring and ether oxygen104

functional groups in common, which are known to be favorable for CO2 separation. There are105

more than ten polymers that are above the CO2/O2 upper bound as shown in Figure 1b. The list106

of all polymers in our library and permeability measurements are provided in the SI.107

The first step in applying ML models to evaluate physical properties is choosing an appro-108

priate mathematical form to be used as input. This is commonly known as featurization (or109

fingerprinting in the chemo-informatics literature) and it is of critical importance to the quality110

and interpretability of the ML models. We start with generating the simplified molecular-input111

line-entry system (SMILES) (39, 40) representations of our polymers based on their repeating112

units. We cap the two ends of the monomer structure with hydrogen atoms to create a consistent113

data set. Based on our SMILES strings, we use two common fingerprints in the literature, the114
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Figure 1: Robeson plot of selectivity versus permeability for (a) CO2/N2 and (b) CO2/O2 sep-
arations. The 2008 Robeson upper bounds (6) are shown as dashed black lines. Color code
represents the different classes of polymers. Each data points represent a single polymer.

Extended Connectivity Fingerprint with bond diameter four Angstroms (ECFP4) (41, 42) and115

the Molecular ACCess System (MACCS) (43, 44) fingerprint. MACCS is a common substruc-116

ture keys-based fingerprint consisting of a binary vector of 166 bits depending on the presence117

of certain substructures or features from a given list of structural keys (45). ECFP4 is an ex-118

ample of a topological fingerprint that is based on analyzing all the fragments of the molecule119

by looking at the environment of each atom up to a set radius, and then hashing every one of120

these environments to create the fingerprint. One needs to be careful when using hashed finger-121

prints because a bit cannot be traced back to a given feature, and this may result in a given bit122

corresponding to more than one different feature, which is called “bit collision” (46). We use123

ECFP4, based on the Morgan algorithm (47), which is a 2048 bit fingerprint as implemented in124

RDKit. Figure 2 shows the comparison for predicting CO2 permeability with the random forest125

regression model using both fingerprints. We fit and plot the logarithmic permeability values to126

better visualize the data set. Both fingerprints result in R2 value of 0.982 for the training set.127

However, R2 for the test set is considerably higher when we use ECFP4 as shown in Figure 2.128

We also compare the root mean square error (RMSE) of the fits for both fingerprints. The test129
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set RMSE with ECFP4 fingerprint is 0.131, and the test set RMSE with MACCS fingerprint is130

0.161. Thus, we use ECFP4 to train and test our ML models for the rest of this paper.131

Figure 2: Comparison of CO2 permeability model predictions using (a) ECFP and (b) MACCS
fingerprints with random forest regression algorithm.

We start with randomly splitting our data set into one of two categories for each gas; one132

is used for training the ML model, while the other is initially withheld during training. The133

training data sets were 80% of our total database for each gas, which represents more than 600134

polymers for each gas. We then apply the trained model to the remaining 20% of the polymers135

(test set) and use these data as verification of the model’s accuracy. Then, we employ various136

ML models on the training sets including support vector regression (SVR), k-nearest neighbors137

(KNN), decision tree, and random forest regression. Next, we compare the predictive power of138

these popular ML regression models on CO2 permeability values.139

First we study SVR, which has the ability to consider non-linearity in the permeability140

data (48). SVR results in R2 value of 0.84 and 0.203 RMSE on the test set. KNN regression,141

which predicts the target value by local interpolation of the targets associated with the nearest142

neighbors in the training set, results in R2 value of 0.822 and 0.242 RMSE on the test set. Then,143

we employed a decision tree regression model, which uses a tree structure and inference layer to144
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achieve the final decision of the modeling results (18). Decision tree regression performs better145

than both the SVR and KNN regression with R2 value of 0.881 and 0.148 RMSE on the test set.146

Finally, to make a more accurate prediction, we used a random forest regression model, which147

is an ensemble learning method for regression that combines predictions from multiple decision148

tree models. As expected, random forest predictions are better than all the other algorithms that149

we have tried with R2 value of 0.941 and 0.135 RMSE on the test set. Figure 3 summarizes the150

different ML regression models that we have tried. We note that Yang et al. compared random151

forest regression models with deep neural networks (DNN) and showed DNN model performs152

better than the random forest regression model (29). However, DNNs typically require much153

more data than what is available for this study.154

To determine where on the Robeson plot a polymer is located, we need to be able to predict155

the CO2/N2 and CO2/O2 selectivity as well as the CO2 permeability. The ideal selectivity αi/j156

for the gas pair is the ratio of the permeabilities Pi and Pj. Thus, we need ML models to predict157

N2 and O2 permeability as well. Because the random forest regression model is the best per-158

forming model for the CO2 permeability, we have continued using random forest regression for159

the N2 and O2 permeability. Figure 4 shows model predictions for the N2 and O2 permeability.160

For both gases we can predict the gas permeability with R2 values higher than 0.9. The RMSE161

for N2 and O2 are 0.171 and 0.147, respectively. This demonstrates that we can predict all162

three gas permeabilities accurately with the random forest regression model. Now that we have163

established an accurate ML model to predict a polymer membrane’s performance with respect164

to the Robeson upper bounds, we start designing new polymers with a GA and evaluate their165

performance on the fly with these ML models.166

The first step of the GA is to construct the ”gene pool” that will be used to create the initial167

parent polymers. We used the “Breaking of Retrosynthetically Interesting Chemical Substruc-168

tures” (BRICS) algorithm as implemented in the RDKit Python package to get the chemical169
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Figure 3: Comparison of CO2 permeability model predictions using (a) SVR, (b) KNN re-
gression, (c) Decision tree regression, and (d) Random forest regression models with ECFP
fingerprints.

building blocks, or fragments, from our polymer library (49). A total of 79 unique fragments170

were extracted from 780 reference polymers. Figure 5 shows six functional groups that appear171

most frequently in our library. To initiate the GA process, 100 parent polymers consisting of 4172

building blocks in their monomer unit were created in the first generation. The fragments were173

chosen randomly from our gene pool of the 79 chemical fragments. Then, 15 families with the174

smallest Tanimoto similarity score (50), with 3 parents in each family, were chosen to perform175

crossover and mutation operations to alter their sequence of chemical building blocks, resulting176

in 12 offspring polymers in each family. During crossover, two parents generate an offspring177

by combining one random segment from a parent with another random segment from the other178
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Figure 4: (a) N2 and (b) O2 permeability random forest regression model predictions with ECFP
fingerprints.

parent. The segmentation point of a parent polymer was chosen according to a Gaussian dis-179

tribution with a mean at the center of the sequence and standard deviation of 0.3 blocks. We180

also applied mutation operations on 60% of the genes to increase the chemical diversity, where181

we randomly selected the building block in the sequence and replaced it with a new building182

block randomly chosen from the list of the 79 blocks. In each GA iteration, the top perform-183

ing offspring polymers with the highest fitness evaluation were retained as parents to create the184

next generation offspring polymers. We also assigned 10% migration rate between different185

families, whereby the highest-scoring polymers that were not selected as a parent migrated to186

a different family. An essential component in this evolutionary process is the polymer property187

estimation, which traditionally has been evaluated by experiments that are very time-consuming188

and expensive; here, we use our ML models for on-the-fly polymer property estimation.189

We ran the GA for 100 generations and generated more than 16000 new polymer structures190

as shown in Figure 6. All the new polymers generated with the GA are reported in the SI,191

where we highlight the top performing 100 polymers. We optimized multiple parameters in192

the GA framework to guide the evolutionary process towards the targeted design area. First,193

10

https://doi.org/10.26434/chemrxiv-2023-5h4s7 ORCID: https://orcid.org/0000-0002-2071-9675 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5h4s7
https://orcid.org/0000-0002-2071-9675
https://creativecommons.org/licenses/by/4.0/


Figure 5: The six most chemical functional groups that appear in our library of experimental
polymers using the BRICS algorithm. ”A” represents the binding sites.

we ran the GA with an ML model trained with two different fingerprints, ECFP and MACCS194

keys, and found that the fingerprint used in the ML does not influence the top performing poly-195

mers identified from the GA framework. Next, we tried running the GA for an additional 100196

generations to see if running the GA for longer will result in better performing polymers, but197

found that the additional iterations did not result in any improved polymer structures. Finally,198

we tried multiple fitness functions to optimize the evolutionary trajectory. To optimize both199

CO2/N2 and CO2/O2 selectivity as well as CO2 permeability, one needs a fitness function that200

includes all three metrics. However, the functional form of the fitness function is not clear a201

priori. We tried the fitness function log (PCO2) × αCO2/N2 × αCO2/O2 and showed that GAs202

using this fitness function failed to identify new polymer structures that are above both up-203

per bounds. We found that the fitness function based on the actual PCO2 permeability values204 (
PCO2 × αCO2/N2 × αCO2/O2

)
did result in several polymers that are above both the CO2/N2205

and CO2/O2 upper bounds as shown in Figure 6. Because CO2 permeability values are gener-206

ally orders of magnitude larger than the selectivity values, this model favors the polymers that207

have higher permeability, thus biasing the GA towards better performing polymers.208

We used the BRICS algorithm on the GA-generated polymers to understand which chemical209

building blocks are frequently observed in the top performing polymers. The top six frequently210
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Figure 6: Robeson plot of selectivity versus permeability for (a) CO2/N2 and (b) CO2/O2 sepa-
rations. The 2008 Robeson upper bounds are shown as dashed black lines (6). Colors represent
experimental and GA generated polymers. Red color represents polymers generated with the
GA. Each data point represents a single polymer.

observed functional groups with the 100 fittest GA-generated polymers are shown in Figure211

7. We identified a total of 464 chemical fragments within the fittest 100 polymers, and 18%212

of the fragments were pyridine functional groups. More than 70 polymers in the top perform-213

ing GA-generated polymers have the pyridine functional group in their repeating unit. This214

is by far the most frequently observed functional group, which is then followed by benzoxa-215

zole with 3%. We observe benzoxazole functional group in 13 polymers within the 100 fittest216

GA-generated polymers. Similarly, benzene, phosphonamidic acid, naphthalene, and dibro-217

mobenzene functional groups are also observed in the top performing polymers generated with218

the GA. We show six example polymer structures that have high fitness function values in Fig-219

ure 8. We note that these polymers have pyridine, benzoxazole, benzene, and phosphonamidic220

acid functional groups, which we identified as the most abundant functional groups with the221

BRICS algorithm. These polymers also include oxygen-, sulfur-, and nitrogen- containing222

motifs, similar to the three experimental polymers that are above the CO2/N2 upper bound.223

Oxygen- and nitrogen- containing motifs are reminiscent of imines and polyethers, which are224
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known to be high performing polymer membranes. Interestingly, our initial analysis using the225

Polymer Genome software (51–54) suggests that most of the top 100 fittest polymers have high226

glass transition temperature—well above the standard operating conditions (> 400 K). We note227

that the three polymers in the experimental data set that are above the CO2/N2 upper bound also228

have glass transition temperatures around 400 K. We speculate that the superior performance229

of these glassy amorphous polymers for gas separation may be due to their high fractional free230

volume and high number of microvoids (55, 56). It remains an open question whether or not231

these polymers are easily synthesizable and easy to implement as membranes given their com-232

plicated chemistry. Further computational and experimental studies will be required to better233

understand these polymers and their efficacy as membrane materials.234

Figure 7: The six functional groups that appear most in the 100 fittest polymers generated with
the GA using the BRICS algorithm. ”A” represents the binding sites.

Discussion235

We constructed an ML-driven GA to tackle the inverse design problem of polymer membranes236

for CO2 separation. We showed that the hashed-based ECFP4 yields lower predictive errors on237

the test sets than the substructure keys-based fingerprints. We presented different regression-238

based ML models, where random forest regression models resulted in the lowest RMSE and239

highest R2 values for both the test and the training set. Although random forest regression240
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Figure 8: Example of polymer repeating units generated with the GA. ”A” represents the bind-
ing sites.

models can successfully predict both the gas permeability and the selectivity, we used mod-241

els trained on the gas permeability, since these models have better predictive power than the242

models trained on the selectivity. After obtaining the ML models to predict the performance243

of any polymer membrane candidate, we implemented a data-driven inverse design algorithm244

to efficiently explore the polymer material space. In theory, one can use any inverse design245

algorithm for such a problem, but we have implemented a GA since it has been successfully246

used for other polymer applications. We created the gene pool using the BRICS algorithm on247

the experimental data and obtained 79 unique genes to initiate the GA process with 100 parent248

polymers that have 4 genes in their monomer unit. Fitness function is a key driving parameter249

in the GA, and as such, we used PCO2 × αCO2/N2 × αCO2/O2 to determine the fitness of the250

polymers. We performed crossover and mutation functions for 100 generations to create more251

than 16000 polymers during the GA process. Among these 16000 polymers, we were able to252

identify more than 20 new polymers that are above both CO2/N2 and CO2/O2 upper bounds.253

While validation of the new polymer structures identified in this work requires future molecular254

dynamics simulations and experimental measurements, this work helps identify the strengths255
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and the weaknesses of combining ML models and GAs as discussed below.256

Three key points emerged from our analysis on comparing popular fingerprints. First,257

hashed-based fingerprints result in lower predictive errors on the test sets than the substruc-258

ture keys-based fingerprints. However, hashed-based fingerprints have one main disadvantage259

compared to the substructure keys-based fingerprints, which is not having a one-to-one corre-260

spondence between the fingerprint vector and the chemical structure. This is not the case with261

the substructure keys-based fingerprints, where each bit corresponds to a predetermined sub-262

structure. This disadvantage does not affect our framework since we do not go back-and-forth263

between the fingerprint and the chemical structure, and only use the fingerprinting when evalu-264

ating the fitness function in the GA framework. Not performing crossover and mutation func-265

tions on the fingerprints makes it possible to overcome this main disadvantage associated with266

hashed-based fingerprints. Next, we note that the top performing polymer candidates identified267

within this framework does not depend on which fingerprint is used in the GA. The relative268

strength of the polymers with each other are similar with the two different fingerprints. The269

main difference with using different fingerprints is the absolute value of the fitness function,270

since the ML models trained on the substructure keys-based fingerprints tend to underestimate271

the gas permeability. Finally, using the proper descriptor for a given application is still an open272

question in the polymer informatics field, but we have shown that most often it does not affect273

the final result. However, we emphasize that more sophisticated descriptors, like physical de-274

scriptor vectors that include bulk properties of the polymer membranes, may make a difference275

in the top performing polymers identified from the GA (57). For example, we believe the glass276

transition temperature is a key property for polymer membranes, and including this informa-277

tion in the fingerprint can lead to better performing polymer membranes within our framework.278

The main bottleneck in switching from popular fingerprints to physical descriptors is gathering279

consistent measurement data from hundreds of different experimental papers. The only way to280
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overcome this bottleneck is to create our own data sets using computational simulations so that281

we can consistently calculate the physical properties of interest for each polymer.282

We have demonstrated that a random forest regression model performs best when predicting283

the gas permeability and selectivity of polymer membranes. Because there is a significant dif-284

ference in the R2 values and the RMSEs, we use random forest regression models in the entire285

framework. However, random forest algorithms, like essentially all data-driven methods, are286

intrinsically interpolative (10). They are only suited to optimize properties within the bounds287

of the data the model was trained on. Models can still generalize, and interpolate “between288

molecules” in some abstract design space (58), but they will not make accurate predictions289

outside of this space. Thus, the performance of the new polymer structures identified in this290

framework depends on the initial data set and the range of selectivity and permeability values291

covered. One way to address this challenge is by using computer simulations combined with292

e.g. an active learning loop to curate a polymer library will enable us to expand the number of293

data points included in the ML framework. It is important to note that regardless of the data-294

driven approach, ML models will always have a strong dependency on the initial data that they295

are trained on. The only way to surpass this main limitation is to move towards active learn-296

ing algorithms where we give the algorithm the ability to “learn” and draw inferences from its297

experience to accelerate the evolutionary process (59, 60). New molecules generated as part of298

the GA procedure could be screened by an uncertainty-quantifying algorithm, and when confi-299

dence is low, new simulations can be run to acquire new ground truth data, which can then be300

used to retrain the model. This is only possible if we use computer simulations (or a very high-301

throughput, autonomous experiment) to curate the data since we will need to make on-the-fly302

property estimations with an active learning framework.303

Finally, we identify two significant points for coupling GAs with ML models to design new304

polymer membranes. First, and most importantly, the fitness function drives the evolutionary305
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process of the GA. It is therefore of utmost importance to select the correct fitness function306

to direct the GA towards the targeted design area. It is customary to train ML models on the307

logarithmic permeability values since it narrows the range of the data, hence resulting in more308

accurate models. Thus we tried the fitness function log (PCO2)× αCO2/N2 × αCO2/O2 , aiming to309

maximize both the gas permeability and selectivity throughout the evolutionary process. How-310

ever, this fitness function was not able to push the GA towards the targeted design area. Even311

though ML models trained on logarithmic permeability have slightly higher predictive power,312

the small numerical value of the logarithmic permeability diminishes the importance of the per-313

meability contribution to the fitness function. On the other hand, with a fitness function that314

includes the absolute value of the permeability
(
PCO2 × αCO2/N2 × αCO2/O2

)
, we were able to315

push the evolutionary process toward the targeted design area and identified more than 20 new316

polymers that are above both CO2/N2 and CO2/O2 upper bounds. We attribute the superior per-317

formance of this fitness function to the fact that the absolute value of the permeability is usually318

two orders of magnitude higher than selectivity values. This analysis also shows improving319

the selectivity with the GA is much harder than the permeability since the fitness function be-320

comes insensitive to the selectivity values when we include the gas permeability. In the future321

this can be avoided by normalizing the parameters where the normalization would negate this322

effect. Next we emphasize that, our GA was able to converge within 100 generations, since323

running the algorithm for an additional 100 generations did not result in any superior polymer324

membranes. With 100 generations and 4 initial building blocks in the first generation, a total325

of 17571 new unique polymer structures were created. With 79 unique genes, the number of326

sequences that can be generated by the GA is at least 794 (since longer sequences are gener-327

ated throughout the evolutionary process). This suggests that the GA converges very fast, only328

exploring less than 1% of the possible polymer material space. We decided to use 4 genes329

with the initial generation because we have a relatively small gene pool. Using more building330
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blocks with the initial generation could have created more complicated structures throughout331

the evolutionary process. This can be further explored when we have a larger gene pool.332

Our approach demonstrates successful implementation of an ML-driven GA to design poly-333

mer membranes for CO2 separation, but more importantly, this framework can be used to design334

polymer structure for any application (e.g. ion separation membranes and polymer electrolytes335

for batteries), where there is a constrained optimization problem. The main limitation of the336

current framework arises from its dependence on the initial experimental data. Curating the337

data with computer simulations is a possible way to overcome this limitation. With better con-338

trol over the initial data set we will be in a position to explore more sophisticated descriptors339

and switch to an active learning framework where we make on-the-fly property estimations.340

Computational ML-driven inverse design of polymer membranes is a promising platform that341

can be further tailored to consider functions that incorporate the sustainability and synthetic vi-342

ability of the polymers, in addition to gas selectivity and permeability, which are not yet widely343

considered in computational studies.344
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