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Abstract

X-ray Computed Tomography (CT) is a non-invasive, non-destructive approach to

imaging materials, material systems and engineered components in two- and three-

dimensions. Acquisition of 3D images requires the collection of hundreds or thou-

sands of through-thickness X-ray radiographic images from different angles. Such 3D

data acquisition strategies commonly involve sub-optimal temporal sampling for in situ

and operando studies (4D imaging). Herein, we introduce a sparse-imaging approach,

Tomo-NeRF, which is capable of reconstructing high-fidelity 3D images from <10 two-

dimensional radiographic images. Experimental 2D and 3D X-ray images were used

to test the reconstruction capability in two-view, four-view, and six-view scenarios.

Tomo-NeRF is capable of reconstructing 3D images with a structural similarity of

0.9971-0.9975 and voxel-wide accuracy of 81.83–89.59% from 2-D experimentally ob-

tained images. The reconstruction accuracy for the experimentally obtained images
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is less than the synthetic structures which demonstrated a similarity of 0.9973-0.9984

and voxel-wise accuracy of 84.31-95.77%.

Introduction

X-ray computed Tomography (XCT) tools are non-invasive imaging tools which can capture

sub-surface morphological and structural features in a range of materials and material sys-

tems.1 The fidelity of microstructure representation is essential for material property estima-

tion, simulation, and materials design.2 Three-dimensional reconstructions of materials are

often utilized to accurately model components and critically assess degradation and material

transformation pathways.3 The resiliency of any quantitative assessment is highly dependent

on the reconstruction of a 3D image from hundreds of 2D radiographic images acquired from

different projection angles4.5 The inverse Radon transform provides the mathematical basis

for the conventional reconstruction process.6 Thousands of 2-D images at varying angles

are typically acquired in order to reconstruct images into a 3D rendering. For dynamic or

operando investigations, where you combine an action with imaging (e.g. imaging particles

flowing), it is challenging to take thousands of images in the time period of the action. Thus,

3D imaging which requires fast acquisition times is fundamentally limited.7 Sparse view re-

construction approaches attempt to reduce the number of 2D images (e.g. sampling rate)

necessary for 3D reconstruction. Decreasing the sampling rate enables transient in situ and

operando studies. Reducing the number of images needed for a reconstruction can have the

added benefit of less instrument maintenance, longer system lifetime, and simpler system

design and hardware.8 Despite the promising features, sparse view reconstruction via con-

ventional reconstruction methods suffers from the inevitable information loss that hinders

correct image interpretation and quantification.

Image reconstruction in computed tomography has undergone a paradigm shift as a re-

sult of recent advancements in deep learning for computer vision applications.9 The two
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primary methodologies of deep sparse view reconstruction are image quality enhancement8

and stochastic reconstruction.2 The former adapts deep learning networks to reduce noise

and strike artifacts from the sparse view reconstruction. The networks in the data domain

interpolate missing sinogram data (i.e., Radon transform data) of sparse view reconstruction

by learning from complete projection sinograms.3,10–14 The networks in the image domain

restore the image quality by learning to detect and subtract streak-type artifacts from the

undersampled reconstruction images.15,16 Either by learning from data or images, these deep

learning models incorporate analytical transform (e.g., Radon transform) as physical-based

knowledge for image reconstructions, cutting the number of projection views needed from

hundreds to dozens. However, these methods still face the bottleneck of reconstructing im-

ages from single-digit views since they need enough views to perform the reconstruction via

the Radon transform for further quality enhancement. An alternative approach is stochastic

reconstruction. Stochastic reconstruction utilizes deep convolutional generative adversarial

networks (GANs) as layered architecture to extract and reproduce the hierarchical features

of image datasets.2 From representative 2D CT scan slices, GANs may stochastically gener-

ate a statistically equivalent 3D structure of porous media,17 three-phase electrodes,2,18 and

anisotropic polymer membranes.2 The synthetic volumes via stochastic approaches demon-

strate statistical similarity with the original datasets, while they cannot reveal the real 3D

structure from the input 2D images. The loss of localized geometric information is inevitable.

Therefore, they are ineffective for transient in situ and operando studies or heterogeneity

studies, where realistic variations in localized properties across time or space matter.

Ultra-sparse view 3D tomography reconstruction with deep learning methods is an un-

der explored area due to model limitations and insufficient training data. Herein, we in-

troduce a learnable framework capable of reconstructing high-fidelity 3D microstructures

from single-digit radiographic images (Tomo-NeRF). Tomo-NeRF is distinct from the qual-

ity enhancement and stochastic reconstruction methods and does not rely on the analytical

knowledge of inverse transform for reconstruction. Instead, Tomo-NeRF is a physics based
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approach which utilizes the Beer-Lambert law to reconstructe samples. Enlightened by pix-

elNeRF,19 a photorealistic novel view synthesis model, Tomo-NeRF aligns pixel and voxel

in the 3D coordinate system via relating the x-ray attenuation to the material properties

of the sample. The algorithm learns to predict the phase of each voxel with the grayscale

value from 2D radiographic images. We train the model with a set of multi-view radiogra-

phy projections along with the 3D voxel labels so that the model can learn the scene prior

to reconstruction from two-view radiographic images. Obtaining thousands of 3D and 2D

training datasets from real experiments for training is cost-prohibitive. Herein, we utilize a

numerical simulator to create synthetic data. Synthetic reconstructions are combined with

physics based equations (e.g. Beers-Lambert) to generate artificial radiographic images for

the 2D training datasets. To demonstrate the functionality of Tomo-NeRF and the artificial

training datasets, we conduct real full-view tomography imaging experiments on a two-phase

granular ceramic proppants with mono-dispersed sizes. These ceramic proppants are made

of bauxite and are commonly utilized for high temperature heat transfer from concentrated

solar power plants. The bauxite particle heat exchangers are comprised of spheroid materials

which can exhibit a range of aspect ratios and varying morphologies. Herein, we combine

synthetic data with experimental data to evaluate the ability for Tomo-NeRF to reconstruct

reconstruct 3D image from less than 10 views.

Tomo-NeRF

Tomo-NeRF is a learning framework that can reconstruct 3D images from a limited number

of fixed radiographic projection views. Neural radiance field (NeRF) was previously devel-

oped for novel photorealistic views synthesis with an incomplete set of photos.20 It leverages

a continuous volumetric radiance field of color and density for volumetric scene prediction

and uses gradient descent to optimize the scene using the input photos. Our Tomo-NeRF

employs the convolutional approach to the conventional NeRF, pixelnerf.19 Convolutional
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layers in convolutional neural networks (CNNs) utilize a local receptive field defined by the

size of the convolutional kernel.21 This design enhances network’s flexibility and compu-

tational efficiency when extracting image features, compared to fully connected structure.

Therefore, CNNs would be more suitable for computed tomography reconstruction in toler-

ating potential noise within the input radiographic images. To realize the ultra-sparse view

reconstruction in X-ray computed tomography, we embed the physical field of X-ray imaging

into NeRF, making it correspond to real experiments.

Physical field of X-ray imaging

Radiographic images are 2D images which capture variable attenuation characteristics in a

material or component.22 An X-ray source emits fluxes of X-ray photons that pass through

or interact with the sample.23 Any interaction, via scattering or absorption, removes the

photon from the X-ray beam.24 The attenuation coefficient (µ) is a material property which

describes how easily a X-ray can pass through a material. The attenuation coefficient of

a material depends on the type of material (atomic number and density) and the photon

energy of the radiation.25 The X-ray attenuation often varies in space for heterogeneous

materials comprised of either multiple materials or local variations in density. The detector

electronically detects the photons that pass through the sample. Other than the material

types and incident photon energy, the decrease in detected X-ray intensity is dependent upon

the depth of X-ray beam penetration through the sample (i.e., material heterogeneity).24 The

computer will further process the through-thickness projection data (e.g., adjust brightness

and contrast) and visualize it as a grayscale radiographic image. Beer-Lambert law relates

the X-ray beam attenuation to the material properties (attenuation coefficient) and the

penetration depth (z). With a parallel beam approximation, the general equation to calculate

detected X-ray intensity Id is:

Id(x, y) =

∫ εmax

0

η(ε)I0(ε) exp(−
∫

µ(x, y, z; ε)dz)dε (1)
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where η(ε) is the quantum efficiency of the detector and I0(ε) is the incident X-ray intensity

with the unit of photons per unit area per unit electron energy (photons/(m2keV)). The ini-

cident X-ray intensity is a function of X-ray energy (ε). Variations in material properties are

more detectable than variations in X-ray energies, particularly when utilizing a synchrotron

facility that can generate an almost mono-chromatic X-ray source.24 Therefore, Tomo-NeRF

neglects the incident energy variation and simplifies the Beer-Lambert Law function as only

an integral function of penetration thickness:

Id(x, y) = η · I0 · exp(−
∫

µ(x, y, z)dz) (2)

The Beer-Lambert law function allows for a continuous 3D field representation and aligns

material microstructure in spatial location (x, y, z) with the radiographic projection on the

2D plane (x, y).

X-ray computed tomography 3D reconstruction requires through-thickness information

from different views (conventional methods would require hundreds of views). Therefore, the

tomography imaging experiment involves radiographic scanning around a sample by fixing

the X-ray source and detector and rotating the sample at a constant altitude around the

central axis.26 To represent spatial location of X-ray beams from different imaging direction,

we encode the projection direction into Cartesian coordinate system. We sample points

along the 0 deg projection beam as a reference coordinate (x0, y0, z0), and rotate the X-ray

parallel beams in the reverse direction of the sample rotation. For a field of view of w × w,

the reference point (x0, y0, z0) on X-ray parallel beams rotates angle θ around the central

vertical axis (i.e., y-axis) where (xc, yc) = (w/2, w/2) will be (x1, y1, z0). Here,

x1 = (x0 − xc) cos (θ)− (y0 − yc) sin (θ) + xc (3)

and

y1 = (x0 − xc) sin (θ)− (y0 − yc) cos (θ) + yc (4)
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Model pipeline

Figure 1: The overview of Tomo-NeRF pipeline (memory size of whole model is ∼80MB)

Tomo-NeRF (Figure 1) utilize a encoder-decoder convolutional neural network to extract

features from images and align the features of the input image with 3D geometry in a voxel

grid (see Methods). Tomo-NeRF uses a modified ResNet34 as a 2D encoder to extract local

and global information from radiography images. 3D decoder further process the output

feature vector from 2D encoder with the upsampling methods of transposed convolution and

bilinear interpolation. It reshapes and restores the feature vector into a 3D feature map

that aligns with the 3D ground truth in the voxel grid. The last layer of convolution neural

network within 3D decoder is a sigmoid activation function S (x) = 1
1+e−x to bound the

output between 0 and 1,27 turning each voxel grid into a classifier. For a two-phase sample

(e.g., ceramic proppants), the numerical prediction in each voxel within the 3D feature map

represents the probability prob of finding the solid phase in that spatial location. If prob >

0.5, the grid has a higher chance to be occupied by a solid material (e.g., ceramic), otherwise

it is unoccupied (e.g., air).

During the training process (see Supporting Information), the encoder-decoder convo-

lutional neural network takes the 0 deg and 90 deg projection images as input and produces

a 3D feature grid of probability information that matches the original size of the volumetric

grid (100 × 100 × 150). The model samples voxel grids, along X-ray beams among the six

projection directions (i.e., beam rotation angle θ). Each direction ranges from 0-180 deg with

a step of 30 deg. It sends the query specification of the spatial location along with the input
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image into the Tomo-NeRF network to retrieve the corresponding feature from the predicted

3D feature grid. The model compares the retrieved 3D prediction along the X-ray beam

with the 3D ground truth and has a cross-entropy loss (LCE) for each grid to learn from

the 3D dataset. Tomo-NeRF programs that each X-ray beam in the network may produce

a grayscale pixel on the radiographic image under a given projection direction. Therefore,

the model can further make a 2D prediction of pixel value by integrating the 3D predictions

on the specified X-ray beams with the Beer-Lambert law (Equation 2). By comparing the

2D prediction (i.e., a radiographic image from 3D predictions) with the radiography ground

truth corresponding to its projection direction, the model can learn from the 2D dataset

(i.e., six direction radiographic images for each sample) via mean squared error (MSE) loss.

By continuously minimizing cross-entropy (Equation S2 in Supporting Information) and

MSE (Equation S3 in Supporting Information) losses during the training process, Tomo-

NeRF can learn to increase the probability of predicting the voxel phase from 3D labels and

six views. Learning from one projection direction can serve as relevance and share knowl-

edge for other directions. The model can rely more directly on the input image feature if

the query projection direction and input orientation are similar; otherwise, the model needs

to leverage the learned prior.

There are three reasons for further making projections on the 3D predictions. Firstly, it

enables Tomo-NeRF to learn from both 3D labels and 2D labels, allowing for learn the scene

prior to reconstruction. In addition, for the testing or experimental validation process, in

which only radiographic images are available, the trained network optimizes itself through

image features and the grayscale label from the input of projection views. Furthermore, for

the actual experiments (e.g., in situ imaging) that lack 3D labels to verify the fidelity of

the deep reconstruction results, we may compare the 2D predictions on the same projection

angle with the input images and assess the novel view quality.

8

https://doi.org/10.26434/chemrxiv-2023-3qrhl ORCID: https://orcid.org/0000-0002-5222-7288 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-3qrhl
https://orcid.org/0000-0002-5222-7288
https://creativecommons.org/licenses/by/4.0/


Results

Tomo-NeRF reconstruction capabilities were evaluated on an bauxite granular material.

Granular media are commonly used for high temperature heat transfer, catalysis, food, and

pharmaceutical applications.28,29 Understanding the kinetics of dense granular flow via a

non-invasive method is essential to flow phenomena studies (e.g., Brazil nut effect,30 pattern

formation,31 jamming transition,32,33 and local rearrangement,34 etc.) and heat transfer

analysis.35,36 However, dynamic granular flow studies with a non-invasive method have been

limited to radiographic studies due to the rate dependency in granular flow. Tomo-NeRF

enables prediction of complex 3D microstructures from a limited number of radiographic

images.

X-ray micro-computed tomography imaging was conducted on a sintered bauxite prop-

pant sample (see Methods). We obtain both real tomographic (reconstruction from full-

view) and radiographic images as a reference sample (i.e., real sample) for evaluating re-

construction performance. Training Tomo-NeRF requires thousands of 2D and 3D image

training datasets for an accurate reconstruction. Acquisition of such a large number of real

datasets faces the limitations of time, cost, and synchrotron source availability. Herein, we

propose an artificial image generator (see Methods) as a means for obtaining an affordable

training dataset. The artificial image generator prepares two different types of datasets:

(1) synthetic data with regular spheres and (2) synthetic data with irregular spheres (non-

smooth). The first type of dataset is randomly packed identical spherical particles with 600

µm diameter in a 3 mm inner diameter tube (i.e., artificial sphere sample). The second

dataset is randomly packed mono-dispersed particles in a 3.95 mm inner diameter tube. The

irregular spheres more closely resemble the real bauxite materials (e.g. ceramic proppant)

used in the experimental tomography imaging experiment.

To validate the reconstruction capabilities of Tomo-NeRF, we conduct four deep learning

experiments (Table 1). Each experiment used a specific type of synthetic data set as the

training data and a specific input to test the algorithm’s ability to convert two-, four- and
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Table 1: Summary of four experiments with input data and training input data for model.

Experiment # Input Data Training Data for Model

Experiment 1 Real XCT Synthetic Data - Irregular Spheres
Experiment 2 Synthetic Data- Irregular Sphere Synthetic - Data Irregular Sphere
Experiment 3 Synthetic Data- Regular Sphere Synthetic Data - Regular Sphere
Experiment 4 Synthetic Data - Irregular Sphere Synthetic Data - Regular Sphere

six-views into a 3D image. Two-view means two radiographic images taken from two dif-

ferent angles, while six-views means six radiographic images taken from six different angles.

Conventional tomography combines 1000s of radiographs from 1000s of different angles to

created 3D images. All input data sets were original and were not utilized in the training pro-

cess. Experiment #1 uses real x-ray radiographic images of the bauxite particles as an input

for the model trained with synthetic data comprised of irregular spheres (non-smooth). The

first experiment specifically aims to evaluate the practicality of the proposed Tomo-NeRF in

real XCT applications. Experiment #2 and #3 use the synthetic data as the input data and

utilize algorithms trained with their respective types of data-sets (Table 1). These experi-

ments aim to validate the feasibility of the proposed Tomo-NeRF’s reconstruction principal

and to investigate the the role of geometric complexity (e.g. uniform vs. irregular spheres)

on the reconstruction results. Experiment #4 utilizes radiographic images of artificial irreg-

ular sphere samples into the model trained by the artificial spherical shape sample dataset.

Tomo-NeRF takes the two-view, four-view, or six-view images as the input (Figure 2a) and

reconstructs a 3D image as the output (Figure 2b). We visualize the 2D prediction images

by further making projections on the 3D output in both the same and different directions

of the input images (i.e., validation view and novel view). The novel view represents the

model reconstruction capability in a direction that is different from the projecting direction

of the input images. Other than visual comparison, we quantitively evaluate the reconstruc-

tion accuracy with 3D structural similarity (SSIM), voxel-wise accuracy and the standard

deviation of localized porosity (see Methods) by using the 3D ground truth sample as the

reference.
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∫
Beer-Lambert

90 deg

0 deg

Tomo-NeRF
Input images

45 deg

0 deg

3D sample
(ground truth) 3D output

Validation view

Novel view
a b

Evaluation metrics: 
voxel-wise accuracy, SSIM, and localized porosity

Figure 2: An example of a two-view reconstruction for an artificial sphere sample (in a voxel-
wise accuracy of 90.39%) for illustrating the experimental workflow. a. The artificial image
generator first produces a 3D sample of identical sphere particles with a discrete element
method simulator and then makes artificial radiographic images in 0 and 90 deg projecting
direction, respectively. b. Tomo-NeRF takes the concatenated two images as input and
predicts a 3D image. Beer-Lambert Law applies to the 3D output to make 2D radiographic
projections in the same projection angle of input images as the validation view (e.g., 0 deg)
and the different projection angle as the novel view (e.g., 45 deg).

The reconstruction accuracy increases with an increasing number of input views for each

of the four experiments (Figure 3a). The rate of improvement decreases for Experiment #1,

#2, and #3 but steadily increases for Experiment #4. Experiment #3 which uses uniform

spheres as an input and an algorithm trained on synthetic data with uniform spheres has

the highest accuracy across all number of views. Eight synthetic samples in the testing pro-

cess have an average accuracy of 88.71% in two-view reconstruction, and this increases to

96.63% with six-input views. It is unsuprising that Tomo-NeRF performs better in recon-

structing images smooth and predictable surfaces and regular sizes (e.g. uniform spheres).

Reconstructing ’real XCT’ data (Experiment # 1) results in lower reconstruction accuracy.

The real x-ray dataset has voxel-wise accuracy around 81.83%, 87.77%, and 89.59% for two-

view, four-view, and six-view reconstructions, respectively. The fourth experiment, which

incorporates irregular shaped spheres into a model trained for regular spheres has the lowest
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reconstruction accuracy with 2 views. However, the fourth experiment shows the greatest

improvement in voxel-wise accuracy with increasing projection views.

a b

c d

Experiment #1
Experiment #2
Experiment #3
Experiment #4

Experiment #1
Experiment #2

Experiment #2Experiment #1

Figure 3: a. The reconstruction voxel-wise accuracy increases with more available input
projection views, and the new task samples have the highest increasing rate. b. Structural
similarity (SSIM) with exponent for structural term (γ) of 3 exceed 0.997 and it increases
with more input views. The standard deviation (SD) of localized porosity decreases with
more views. c.The localized porosity radial profile from the center to the near wall region for
the real sample (voxel-wise accuracy ranges from 81.83–89.59%) shows the major deviations
occur near the central region. d.The localized porosity radial profile for the artificial sample
(voxel-wise accuracy ranges from 86.40–95.37%) has a smaller deviation than the real sample.

Similar to the voxel-wise accuracy, the trend for structural similarity (SSIM) increases

with the number of projection views (Figure 3b) for the real XCT data (e.g. Experiment #1)

and synthetic irregular spheres (e.g. Experiment #2). Tomo-NeRF shows a high fidelity in

structural restoration. When the input data is real XCT data the two-view reconstruction

has a low accuracy but the structural similarity (SSIM) still reaches as high as 0.9971. The
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highest value of structural similarity (SSIM) is 0.9984 for the six-view reconstruction of the

artificial sample (e.g. synthetic data with irregular spheres). Another way to evaluate the

resiliency of the reconstruction is to extract local microstructure properties (e.g. porosity)

for the different particle beds. The porosity radial profile through the reconstructed sample

was systematically compared for the true XCT data (e.g. Experiment #1) and input data

containing irregular spheres (e.g. Experiment #2). Figure 3c and d demonstrates the radial

porosity for input data (e.g. original) and 2-, 3-, and 6-view reconstructions. The real XCT

data (e.g. Experiment #1) demonstrates wide porosity variations between the different views

(Fig. 3c) and capture the sub-surface variability in the learning exercise. The standard

deviation of localized porosity distribution is between 3.14-4.85% for the synthetic data with

irregular spheres (Fig. 3d, Experiment #2) and 10.05-12.43% for the real XCT sample (Fig.

3c, Experiment #1)

Synthetic data was constructed with irregular shaped spheres of varying sizes (e.g. Exper-

iment #2). The 3D ground truth (Figure 4a) and predicted images (Figure 4c) demonstrate

that all the reconstructions (2-, 4- and 6-views) demonstrate similar packing densities as the

ground truth. As the number of projection views increases, the details of the particles’ shape

are more accurate and the surface is smoother. The adhesion between some of the particles

is attenuated since the reconstructed particles’ shape is more accurately represented. The

2D predictions in the validation views (Figure 4d) shows a high similarity to the input view

(Figure 4b) at the same projection angle (0 deg) in all reconstructions except for the high

contrast particle overlapping region in the two-view reconstruction. The novel view projec-

tions define more clearly particle boundaries as the number of views increases to four (Figure

4d).

Similar to the synthetic sample with irregular particles, the reconstruction of the real XCT

data appears more similar to the input data with higher input views (Figure 5c). However,

the overall reconstruction quality is not as high as the artificial sample in Figure 4. The XCT

data has more artifacts due to x-ray scattering and local variations in the material which leads
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3D ground truth

Input views

0 deg

90 deg

Two-view
reconstruction

0 deg

45 deg

Projection

Validation view

Novel view

Four-view
reconstruction

Projection

0 deg

Six-view
reconstruction

Projection

a

b

c

d

0 deg

90 deg

0 deg

45 deg

0 deg

30 deg

0 deg

15 deg

Figure 4: a. 3D ground truth of an example of synthetic sample of irregular shape (Exper-
iment #2). b. Input view examples in 0 deg and 90 deg. c. 3D visualization of two-view,
four-view, and six-view predictions. There is less adhesion between some of the particles as
more input views (blue box). d. The validation views exhibit a strong overall structural
similarity to the input view. In the two-view reconstruction, there is a high-contrast region
has a marginally poor restoration of details (red box) and it gets improved with more input
views. In the novel view visualizations, individual particles outlines is becomes more distinct
with more input views.

to deviation between the assumptions of the model and artificial image generator. Tomo-

NeRF and artificial image generators assume a monochromatic beam. In reality, synchrotron

facilities produce monochromatic beams (I0) through single-crystal monochromators and X-

ray diffraction at a higher intensity than the in-house imaging facility in our experiment.37

The in-house imaging facility uses the filter to decrease the intensity of the beams with an

unwanted wavelength, yet the emitted radiation is still polychromatic, which is different

from the ideal assumption (Eq. 2). This deviations results in an attenuation coefficient

which is dependent on the local spatial heterogenity in the sample and X-ray energy (i.e.,

µ(x, y, z; ε)). In addition, the lower energy of the in-house facility increases the contrast

Id/I0 (e.g., the overexposure for the void region near the overlapping particles), and results

14

https://doi.org/10.26434/chemrxiv-2023-3qrhl ORCID: https://orcid.org/0000-0002-5222-7288 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-3qrhl
https://orcid.org/0000-0002-5222-7288
https://creativecommons.org/licenses/by/4.0/
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Input views

0 deg
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Two-view
reconstruction

0 deg
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Projection

Validation view

Novel view

Four-view
reconstruction

Projection
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a

b

c

d

Figure 5: a. 3D ground truth of tomographic image reconstructed from the full-view X-ray
imaging experiment (Experiment #1) b. Input view examples in 0 deg and 90 deg.The
lower energy intensity and noise in the real in-house imaging experiment blur the outline of
particles’ projection on the radiographic images, resulting in information loss (red box). c.
3D visualization of two-view, four-view, and six-view predictions. More input views tend to
aggravate the particle adhesion (blue box). d. With more input views, the validation views
shows a higher structural similarity to the input view. In the novel view visualizations, the
outline of particles’ projection gets clearer with more input views.

in more noise in the real experiment (Figure 5b). By comparing the input images from

the real sample (Figure 5b) and that from the artificial samples (Figure 4b), we can see

that there is information loss in the particle shape, where the boundaries of the overlapping

particles cannot be resolved due to high contrast and noise. It is more difficult for the

convolution network to extract features from blurrier input radiographic images, leading to

higher deviations of localized porosity in the central region (Figure 3c).

More input views mitigate the particle adhesion phenomenon when synthetic data is in

the input (Figure 4c). However, more artifacts due to particle stacking with increasing views

is observed with real XCT data (blue box in Figure 5c). The cone beam of the x-ray source

and sample shifting during imaging can lead to this observed flaw when the input data is real
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radiograph. In Tomo-NeRF and the artificial generator, we assume parallel-beam geometry

for the flux of photons with the X-ray point source at an infinite distance from the testing

object. In a real experiment, the distance between the X-ray source and the object is limited,

forming a cone beam at an angle of 3.28 degrees. The cone beam can distort the projection

image away from the angle bisector of the cone. The higher energy for the photon flux near

the angle bisector results in a brighter image (i.e., overexposure). In addition to cone-effect,

slight misalignment during the experimental setup can result in part of the sample to be cut

off in the field of view (orange box in Figure 5a). Particles obstructed or cut-off from the

field of view will not emerge in reconstructed experimental data (orange box in Figure 5b).

The final challenge with experimental data is that Tomo-NeRF assumes the sample rotates

around a central axis. Any shift in the central axis will change the projection angle in the

input data. Over long imaging experiments, where 1000s of images are taken, it is common

for some shifting to occur. One of the benefits of the sparse-view imaging approach is a

decrease in imaging time and thus reduction of these artifacts.

According to the 2D validation views and the novel views from the 3D predictions, the

validation views capture the input views structure (Figure 5d). More input views increase the

sharpness of novel views, indicating a better reconstruction quality in the given projecting

angle. There are visible differences between the 2D predictions and the input views. It is due

to the inaccurate assumption of the attenuation coefficient in particles and quartz containers.

The incident energy of the polychromatic beam is uncertain and the particles are made of

mixtures with indeterminate proportions of materials. The model optimizes by minimizing

the difference between the pixel predictions and the 2D labels in a batch. Therefore, as

long as the assumption of the attenuation coefficients is within the acceptable range and the

2D predictions can reflect the main structure, the inaccurate assumption of the attenuation

coefficient only has a limited effect on the 3D reconstruction results.

In addition to the above-mentioned variations between the experiment and modeling,

non-uniform information density within the 3D decoder (Figure 1) can also impact the re-
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Horizontal slice from bottom to top

2 4 8 16

Artificial sample

Real-experiment sample

a

b

Figure 6: Visualization of prediction errors of synthetic data sample (a) (Experiment #2)
and real sample (b) (Experiment #1) from bottom to top. For the slices closer to the central,
the error mainly occurs near the particle surfaces. The information density gradient formed
and exacerbated as it propagates in the multilayer transposed convolution neural network.
It causes the inferior prediction accuracy near the top/bottom surface of the sample.

construction quality near the outer surfaces of the 3D predictions. We visualize the predic-

tion error of the six-view reconstructions for the synthetic irregular sphere sample (Figure

6a) and the real sample (Figure 6b) on the selected horizontal slices. The model is less

likely to accurately discern and reconstruct the particles at the bottom of the sample which

makes the particles look fused together. This issue is more exacerbated with real XCT data

(Experiment #1, Figure 6b). When the distance from the bottom/top is more than four

voxels, the reconstruction quality improves. During the transposed convolution operation,

the voxels further away from the edge are able to receive a contribution from the adjacent

voxel, i.e., overlapping information.2 The lack of overlapping information at the edge of the

sample forms an information density gradient. The information density gradient becomes
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exacerbated as it propagates in the multilayer transposed convolution neural network. Fur-

thermore, the particle projections near the top and bottom edges of the radiographic images

are incomplete, thereby more irregular than the particles of the complete shape. The low in-

formation density and the more irregular shapes cause the low-quality reconstruction region

near the top and bottom of the sample. This can be potentially resolved by subsequently

feeding partially overlapping radiographic images into the model, and then stitching together

the central part of the reconstruction (with a higher prediction accuracy). The error map

for the region away from the bottom/top shows that Tomo-NeRF manages to restore the

position and general shape of the particles. However, errors primarily occur at the surface

of the particles, indicating that the restoration of shape details is insufficiently accurate,

particularly for the real-experiment sample.

Conclusion

Three-dimensional x-ray imaging is an important materials characterization approach which

enables non-destructive and sub-surface evaluation of a wide range of materials. There is

a growing trend in 4-D imaging approaches which combine 3D imaging with time. The

latter is specifically useful for observing dynamic operating conditions also known as in

situ or operando. One of the limitations in 4D imaging is the need for 1000s of images

which severely limits the temporal resolution of such a technique. Herein, we introduce a

sparse-view reconstruction algorithm known as Tomo-NeRF. Tomo-NeRF is a physics based

learning approach which enables the reconstruction of 3D images with limited 2D views

(<10 views). The results show the ability of Tomo-NeRF to reliably restore the structure

of 3D two-phase granular media from two-view 2D radiographic images in a high structural

similarity of 0.9971 for real XCT images and 0.9973 for synthetic images with irregular par-

ticle shape. The voxel-wise accuracy for real images (81.83–89.59%) is lower than synthetic

images (86.40–95.37%). The deviation is likely because of experimental considerations which
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do not obey model assumptions (e.g., low incident energy, differences in attenuation coef-

ficients, polychromatic and cone beams, and sample shifting). Reconstruction of complex

structures with high fidelity with single-digit radiographic images can significantly impact

the temporal resoulution of 4D-imaging. Future work aims to test the resilency of these

algorithms on dynamic imaging experiments.
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