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Abstract

In situ transmission electron microscopy (TEM) has enabled researchers to visual-

ize complicated nano- and atomic-scale processes with sub-Angstrom spatial resolution

and millisecond time resolution. These processes are often highly dynamical and can

be time-consuming to analyze and interpret. Here, we report how variational au-

toencoders (VAEs), a deep learning algorithm, can provide an artificial intelligence’s

interpretation of high-resolution in situ TEM data by condensing and deconvoluting

complicated atomic-scale dynamics into a latent space with reduced dimensionality. In

this work, we designed a VAEs model with high latent dimensions capable of deconvo-

luting information from complex high-resolution TEM data. We demonstrate how this

model with high latent dimensions trained on atomically resolved TEM images of lead

sulfide (PbS) nanocrystals is able to capture movements and perturbations of periodic

lattices in both simulated and real in situ TEM data. The VAEs model shows ca-

pability of detecting and deconvoluting dynamical nanoscale physical processes, such

as the rotation of crystal lattices and intraparticle ripening during the annealing of

semiconductor nanocrystals. With the help of the VAEs model, we can identify an

in situ observation that can serve as a direct experimental evidence of the existence

of intraparticle ripening. The VAEs model provides a potent tool for facilitating the

analysis and interpretation of complex in situ TEM data as a part of an autonomous

experimental workflow.

Introduction

Transmission electron microscopy (TEM) has been a standard method for the characteri-

zation of nanomaterials, allowing researchers to directly visualize nanoscale structures and

processes.1,2 TEM imaging is powerful, yet conclusions drawn from it must be carefully

drawn due to issues relating to small samples sizes, selection bias, and in some cases diffi-

culty quantifying complex features.2–5 Introduction of automated TEM data acquisition has

drastically improved the amount of data that can be collected for a sample in a reasonable
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amount of time.2–10 Further, advancement in techniques such as in situ imaging5,11–13 and

aberration correction14,15 allows for the acquisition of TEM data with high spatial and/or

temporal resolution with relative ease. Enabled by such enhancements, it may be possible

to achieve an autonmous electron microscopy workflow to analyze, or even fabricate, the

structure of nanomaterials with atomic precision on a statistical scale.8,16

However, a significant challenge is the development of data analysis protocols to eluci-

date the desired information from sufficiently large sample set in a time-efficient manner.

High-resolution TEM images contain a high density of multiplexed information which typ-

ically requires meticulous effort from a human expert, either through manual analysis or

development of custom written analysis software, to elucidate statically significant results,

as exemplified by many previous works.17–21 Such a workflow for data analysis can be time

consuming to implement, especially when the dataset is large and the desired information

is convoluted. In a recent work by Sainju et al.,17 it took three researchers 20 weeks to

manually analyze and label 1200 time-correlated TEM images, while these data could be

collected in as short as 12 seconds using a 103 frame per second in situ detector.

A valuable solution to this challenge would be an artificial intelligence algorithm that

can extract information from TEM data with minimum human supervision. Many works

have been focused on the application of artificial intelligence and machine learning for the

analysis of large and/or complex data.5,16,22–28 However, the algorithms presented in many

of the previous works require either a human labeled training data set, or human-made

assumptions about the information contained in the data.5,16,24–26 Such requirements on the

input of human knowledge and assumptions limit the applicability of these algorithms to

datasets collected by automated TEM data acquisitions workflows, which not only are large

in size, but also could contain unexpected information. Maskov et al. demonstrated the

use of variational autoencoders (VAEs) to differentiate between different types of defects

in two-dimensional WS2 from high-angle annular dark-field scanning transmission electron

microscopic (HAADF-STEM) images without the need of human assumptions.23 VAEs are
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a type of deep neural network designed to encode input data into a correlated latent space

with much lower dimensionality, and subsequently reconstruct the input data from the latent

space.23,29 After the network is trained, the latent space becomes a dimensionally reduced

representation of the input data, and previous studies have found that the latent variables

in the latent space can often be correlated to real physical descriptors underlying the input

data.23,30 As such, the latent space provided by VAEs can be seen as an artificial intelligence’s

interpretation of the input data. Since the output of the network is reconstruction of the

input data, the training of VAEs does not require a human labeled training dataset, making

it an instance of self-supervised machine learning. VAEs have shown great performance on

HAADF-STEM datasets. However application of VAEs to phase contrast HRTEM datasets,

which are more complicated due to coherent elastic scattering giving raise to the image,

has not been demonstrated. Phase contrast HRTEM is more amenable to quick collected of

large, atomic-resolution datasets due to the parallel image formation process, and is more

widely accessible suggesting an unmet need in unsupervised machine learning algorithms.

Here, we demonstrate the use of VAEs to analyze and interpret an in situ HRTEM

dataset of lead sulfide (PbS) semiconductor nanocrystals (NCs) while being annealed by

the electron beam. Annealing of semiconductor NCs has been studied extensively due to

their implications for the achievement of defect-free ”artificial solids”.18,20,31–36 Because of

the highly dynamic nature of these processes, this in situ TEM data is often challenging

to interpret, and often requires extensive time and efforts from a human expert to fully

analyze.18,31 In this work, we will show that VAEs trained on high-resolution TEM images

of PbS NCs can produce a latent space consisting of latent variables encoding the lattice

structures of these NCs. By tracking the changes of these latent variables as a function

of time over the course of the annealing of a pair of NCs, one can deconvolute nanoscale

dynamics with physical interpretability from the complicated annealing process. In this

way, the VAEs provide an artificial intelligence approach to analyze and interpret the highly

complex nanoscale annealing processes. We have found the VAEs are capable of accurately
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pinpointing locations where lattice structures are shifting during the annealing processes, as

well as recognizing dynamics that are more complex and convoluted. As such, we believe

that the VAEs show potential to serve as an artificial intelligence tool for the automated

analysis of TEM datasets.

Results and discussion

Training of the VAEs

VAEs are a type of deep neural network that typically consists of two sets of 2-dimensional

convolutional neural networks. The first one, called an encoder, passes the input data

through a series of 2-dimensional convolutional layers with reducing dimensionality, until the

input data is compressed into a vector consisted of an arbitrary number of latent variables

zn, hence constructing a latent space, a low-dimensional representation of the original data.

The second network, called a decoder, takes samples from the latent space as input, and

passes them through a series of convolutional layers that mirrors the layers of the encoder,

to reconstruct the input data. In this work, we trained our VAEs model using 64-by-64

pixels segments (Figure 1a) of high-resolution TEM images of PbS NCs. The 4096-by-4096

pixel HRTEM images were taken at a pixel scale of 0.014 nm/pixel, and hence each image

represents a field of view of about 59-by-59 nm. A total of 20,400 segments containing

lattice fringes of PbS obtained from 27 HRTEM images were used to train the VAEs, and

this dataset is henceforth referred to as the training dataset. It is estimated that about 200

recognizable PbS nanoparticles were present in the 27 HRTEM images. Importantly, the

in situ HRTEM data analyzed by the VAEs model presented in this manuscript, including

those presented in the Supplementary Data, were not included in the training dataset. This

is to prevent the overtraining of the model on the in situ data. For a detailed discussion

regarding how the training dataset was generated, the reader is referred to the Supplementary

Information.
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Figure 1: a) Schematic of a 2D VAEs trained on high-resolution TEM images of PbS
nanocrystals. b) Training curves of the VAEs showing both the binary cross entropy re-
construction loss and the Kullback–Leibler divergence as functions of epochs trained. c)
Variances of the latent variables on the training set. Latent variables indexed based on mag-
nitude of their variances. d) Schematic of sliding frame latent space variance analysis used
to annalyze in situ TEM data.
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Figure 1b shows the changes in the training losses during the training of the VAEs

model. Over the course of the training, the reconstruction loss steadily decreased as the

Kullback–Leibler divergence increased. The decrease in reconstruction loss indicates that the

network was learning to reconstruct the input images, while the increase in the KL divergence

is expected as the distribution of the latent variables is expected to be more complicated than

the assumed normal distribution built into the model. Of note, the increase in KL divergence

is also expected, because the distributions of the latent variables representing the information

in the training dataset are expected to be different from the normal distributions used to

modulate the latent space. The reconstruction loss converged after the model has been

trained for 20 training steps (epochs), at which point the training was stopped. Inspections

of the reconstruction performance of the trained VAEs confirm that the model is capable

of a reasonable reconstruction of training images, verifying that training has been sufficient

(Figure 1a).

Figure 1c shows the variances of the latent variables encoding the training dataset. The

latent variables were indexed based on the magnitude of their variances. Out of the 64 latent

variables in the latent space, about 34 of them have significantly higher variances than the

rest. This indicates that 34 latent dimensions are sufficient to encode all the information in

the training dataset. However, this does not indicate that the 30 latent variables that do

not have significant variances are unnecessary. In fact, the performance of the VAEs model

worsens both qualitatively and quantitatively as latent dimension decreases (Figure S1).

While it remains uncertain whether an optimum number of latent variables exists, it is clear

that the latent variables contribute to the overall performance of the model even if they do

not have non-trivial variances. Of note, previous studies using VAEs to analyze STEM data

used much lower latent dimensions.23,37 We believe that moving to a higher latent dimension

is crucial for adapting the VAEs model to the much more complex HRTEM data.

It is important to note that, during the training of the VAEs model, each latent variable

was treated equally by the model, with no pre-assigned meaning or role. To distinguish
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the latent variables from each other, we assigned an index to each latent variable based on

its variance on the training dataset (Figure 1c), such that z63 is the latent variable with

the highest variance and z0 is the one with the lowest. Although the latent variables were

degenerate before the model was trained, the fact that they had vastly different variances

after the training shows that they likely encoded different information. In the following

section, we will explore how information was encoded in the latent space, and whether

physical interpretation can be associated to the latent variables.

Interpretation of the latent space

To confirm that the latent space has encoded information with physical interpretability, we

constructed simulated HRTEM data. PbS lattice fringes were simulated with Gaussian-

distributed dark contrast on a bright background with the same periodicity as PbS lattices

under HRTEM. Simple geometric permutations, including translations and rotations, were

introduced to the simulated lattices to observe how the latent variables change in response

to these permutations.

As shown in Figure 2, when the simulated lattices were going through different permu-

tations, the latent variables changed accordingly. indicating that the latent space is indeed

correlated to the physical positions and orientations of the simulated PbS lattices. Dur-

ing the training of the VAEs model, a regularization factor (β) was applied to the KL loss

to enforce orthorgonality onto the latent space. In an ideal orthorgonal latent space, each

latent variable should be uniquely correlated to one physical factor or process underlying

the dataset. By inspecting the variances of the latent variables in Figure 2, it can be seen

that, for each of the three permutations, a few latent variables showed significantly higher

variances than the rest, and, importantly, the sets of latent variables that show higher vari-

ances for different permutations have minimum overlaps. This shows that while imperfect,

orthorgonality is present in the latent space. This is further confirmed by the fact that by

permuting a single latent variable, one can introduce a specific type of permutation to the
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Figure 2: Distributions and variances of latent variables in simulating in situ TEM data
showing a) translation by one lattice period in the y-axis, b) translation by one lattice
period in the x-axis, c) rotation by 90deg clockwise. Snapshots of the simulated in situ TEM
data at different time points are shown at the top of each subfigure. Red texts and boxes in
each subfigure denotes the latent variables with the highest variance in each permutation.
Other latent variables with notably high variances are denoted by pink texts.
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lattice in the reconstructed image (Figure 3). Of note, while z43 showed high variances in

both translation along the x-axis (Figure 2b) and rotation (Figure 2c), this can be explained

by the fact that during the rotation of the simulated lattice, the center of rotation did not

align perfectly with the center of the lattice, and hence the lattice after rotation was off-

set from the original lattice by a fraction of one lattice vector, resembling the effect of a

translation.

The orthogonality of the latent variables has important implications for the generalizabil-

ity of the VAEs model, as it suggests that the latent variables could serve as an ”orthogonal

basis set”. Assuming it allows comparisons to be drawn between different datasets. In

the Supporting Information, we demonstrate an example of such a comparison between the

dataset shown here, and a dataset of PbS NCs imaged by aberration-corrected transmission

electron microscopy.

Finally, to confirm that the changes in the latent variables are indeed correlated to the

permutations in the simulated lattices, we examined the latent variables that showed the

highest variances in each type of permutation in detail (Figure S4). Taking translation in

the y-axis as an example (Figure 2a, Figure S4a), we can see that as the simulated lattice

was translated by one period, the change in latent variable (z40), the latent variable with

the highest variance during the permutation, was also periodic. Such periodicity can also

be observed in the other two permutations (Figure 2b,c, Figure S4b,c). This further proves

that the latent space is encoding information with real interpretable physical meaning.

It is of note that the latent variables that did not show high variances in the geometric

permutations could also carry important information. For example, z63 did not show signif-

icant variances in Figure 2, but varying its value caused significant changes in the contrast

of the simulated lattice (Figure 3d). When analyzing real in situ TEM data using the VAEs

model, it is important to take into account the information carried by these latent variables,

as will be demonstrated in the following section.
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Figure 3: Effects of permuting one latent variable while keeping all the others constant on
the reconstruction of a simulated lattice. The red dotted lines were drawn at the same pixel
locations in each panel, serving as a visual aid for comparing the positions of the lattices.
The latent variables permuted were the ones that showed highest variances during the a)
translation in the y-axis, b) translation in the x-axis, c) rotation clockwise permutations
of the simulated lattices. d) A latent variable that did not show large variances in simple
geometric permutations of the simulated lattices, but capable of ”erasing” the lattice on the
edge. The same analysis on all latent variables is shown in Figure S7.
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Analysis of in situ HRTEM data

After confirming that the VAEs model is capable of encoding physical information in sim-

ulated lattices into the latent space, we applied the model to analyze real high resolution

in situ TEM data observing the dynamics of PbS NCs while being annealed by the elec-

tron beam. The annealing of heavy metal chalcogenide NCs has been studied extensively

to understand mechanisms through which crystal defects can be removed from these mate-

rials.18,20,31–36 It is well-known that when two NCs attach to each other, a variety of crystal

defects can arise if the orientations of the two nanocrystals are not epitaxial, or if step edges

exist on the surface of one or both of the NCs. These defects represent kinetic products and

if given enough thermal energy to activate atom rearrangement, the defects can move to the

surface of the nanocrystal dimer and be eliminated.18,20,31–36 Such annealing processes can

be observed under in situ TEM, with the electron beam of the TEM providing excitation

which mimics thermal annealing.18,31? Studies on these processes have provided significant

insights into the fundamental mechanisms into the formation of defect-less lattices and bear

important implications for the design of artificial solids.18,31,38 Compared to the materials

used in previous in situ TEM studies (PbTe,18 PbSe,20,34,35 CdSe31), PbS NCs used in this

study offers the unique advantage of high air stability, allowing them to be handled in much

larger quantities with less stringent requirements on inert environments, hence leading to a

much faster rate of TEM data generation. While the rock salt lattice of PbS is relatively

easy to visualize under HRTEM, due to the smaller atomic weight of sulfur, compared to se-

lenium and tellurium, the lattices of PbS NCs show lower contrast under HRTEM compared

to other lead chalcogenides, making them more challenging to be analyzed using traditional

methods. However, as demonstrated in Figure 1, the VAEs model is able to accurately rec-

ognize and reconstruct these lattices, showing that AI models such as the VAEs model have

the potentials to reduce the requirements on the quality of the data from which information

can be extracted.

In this work, we collected in situ HRTEM data of PbS based on the methods reported
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by Ondry et al.18 The NCs, about 5 nm in size, were imaged at close to Scherzer focus under

in situ HRTEM to visualize the reorganization of the lattices. The datasets which showed

clear annealing processes were selected manually to be encoded by the VAEs model. It is

important to note that, unlike STEM, the periodic contrast in HRTEM data (eg. Figure 4a)

does not correspond to the physical locations of atomic columns in NCs, and should not be

interpreted as such.39,40 However, the contrast does reflect the lattice periodicity of the NCs,

and therefore movement of periodic contrast seen under in situ HRTEM can be interpreted

as a representation of the lattice reorganization happening in the annealing NCs.18,39,40

To analyze the in situ HRTEM data of annealing NCs with the VAEs model, we per-

formed a sliding frame analysis (Figure 4b). A sliding frame 64-by-64 pixels in size was

applied to the in situ HRTEM data with a step size of 8 pixels. Then, each time frame in

each sliding frame was encoded into the latent space by the VAEs model, and the variance

of each latent variable over time were calculated for each sliding frame (Figure 1d). To rule

out the influences of random background fluctuations in the HRTEM data on the latent vari-

ables, Spearman’s ρ correlation score was computed for each latent variable in each sliding

frame as a function of time. The computed Spearman’s ρ was multiplied to the variance, and

the product was squared to make the final result a positive number. This squared product

is henceforth referred to as the time correlated variance. Through such a sequence of anal-

ysis, each in situ HRTEM video was transformed to a 2D array of time correlated variance

(Figure 1d).

Here, we will focus our analysis on the in situ HRTEM video in Figure 4a. Figure S6

shows the same analysis performed on another in situ video, demonstrating that the analysis

method is generalizable. Figure 4a shows the oriented attachment of two PbS NCs along the

{100} direction. Initially, the two NCs were offset by 13.7°, preventing them from achieving

a strain-free attachment geometry. When exposed to the electron beam in TEM, the NCs

received energy from electron beam irradiation, leading to an annealing process in which

strain was reduced as the lattices reorganized and dislocations moved in the lattice. Over
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Figure 4: a) Snap shots of in situ TEM data showing the annealing of two PbS nanocrystals,
with the corresponding power spectra obtained from 2D Fourier transforms. The in situ was
taken under an electron dose rate of ∼ 1250 e−/Å2 · s. b) Maps of time correlated variances
of latent variables z29, z31 and z63 in each sliding frame, demonstrating how the two latent
variables are capturing different dynamics in the in situ TEM data.
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the course of 38 s, the angle between the two NCs was reduced by 4.4°, which can be

measured both directly from the HRTEM images, and from the 2D Fourier transform of the

images. While it is easy for a human expert to recognize the beginning and end point of the

annealing, delineating the exact pathways of the annealing process on an atomic level by

manual analysis is challenging. However, we will demonstrate that insights on the annealing

pathways can be gained by an analysis of the time correlated variances of the latent variables.

Figure 4b shows the time correlated variance maps of three latent variables: z29, z31

and z63. A quality inspection of the three maps shows that while z29 shows very little

variance within the boundaries of the annealing nanocrystals, z31 has a spatial distribution

of variances that roughly correlates to the distribution of lattices inside the nanocrystals,

and z63 shows variances mainly on the boundaries of the nanocrystals. This observation

further demonstrates that the VAEs model is capable of deconvoluting distinct information

into different latent variables. This can be seen further by inspecting the time correlated

variance maps of all latent variables (Figure S8). While z29 does not seem to have encoded

significant information in this example, in the following discussions, we will attempt to

understand the information encoded in latent variables z31 and z63, and correlate them to

interpretable physical information.

A visual inspection of the time correlated variance map of z31 showed that the distribution

of high time correlated variances corresponds with the distribution of lattice periodicity of

the NCs. Taking into account the observed annealing process of the two NCs (Figure 4a)

and the behaviors of z31 in simulated lattices (Figure 2c), one can hypothesize that the

observed changes in z31 is correlated to the rotation of the lattices during the annealing of

the NCs. To confirm the hypothesis, we constructed two simulated lattices that are offset by

a similar degree, measured as the angle between the two sets of lattice planes, as the in situ

HRTEM data, and gradually rotated them to reduce the offset angle in a similar time frame

(Figure 5c). We then selected a 64-by-64 pixels region of the in situ HRTEM data where the

reorganization of the lattices is clearly visible (Figure 5a), and found a similar region in the
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simulated data, and compared how z31 changes in the two regions (Figure 5b,c). While z31 of

the in situ HRTEM data showed fluctuations, after taking the mean of every 10 time steps,

it can be seen that the trends of z31 in in situ HRTEM data closely agree with each other

(Figure 5b). As such, it is likely that the changes in latent variable z31 indeed correspond to

rotational lattice movement captured in the in situ HRTEM data.

Figure 5: a) A 64-by-64 pixels subregion (blue box) of the in situ TEM data of PbS nanocrys-
tals annealing in which the reorganization of the two lattices can be seen. Scale bar represents
3 nm. b) (Left axis) The values of latent variable z31 in the subregion (real data) as a func-
tion of time, compared to those of simulated data showing the same annealing behaviors of
two lattices. (Right axis) Angles between the two nanocrystals measured from the Fourier
transform of the TEM data, and the angles between the two simulated lattices in simulated
data, as functions of time. c) Comparisons between the real and simulated data at selected
time points (denoted by red dots in b). Red dotted lines represents sets of lattice vectors
forming a close circuit, shown as a visual aid.

Latent variable z63, on the other hand, showed high time correlated variances mainly on
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the edges and corners of the NCs (Figure 4c). To understand what physical processes z63

may be capturing, we performed a Fourier transform analysis on the in situ HRTEM data.

The lattice frequencies of the two NCs were separated and rotated such that the {100} axis

is in the upright position, allowing us to obtain the traces of the lattices of the two NCs as

a function of time (Figure 6c,d). By overlaying the traces of the lattices, it can be observed

that the regions where z63 showed high time correlated variances (Figure 6a,b) correspond

to the regions in which lattices were shrinking or growing over the course of the annealing

process (Figure 6c,d). This can be further seen by comparing the changes in the values of

z63 to the changes of the areas occupied by the lattice in the same region, computed by

performing an image thresholding after Fourier filtering (Figure 6e). Considering that z63 is

capable of reducing lattice periodicity in simulated lattices (Figure 3d), it seems likely that

the changes in z63 correspond to the movement of atoms on the surfaces of the NCs over

the course of annealing, a processed known as intra-particle ripening.33,38 Since no temporal

correlation was including in the training dataset, and no a priori physical knowledge was

built into the model, the VAEs model had no opportunity to ”learn” about intra-particle

annealing during its training. As such, in a sense, the VAEs model ”discovered” intra-particle

annealing without any human intervention or preconceived human knowledge.

The ability of the model to ”interpret” without the need of interpretation makes it a

promising candidate as a component of an autonomous TEM data acquisition and analysis

pipeline. The minimum requirement on human input and intervention enables the model

to efficiently extract physically meaningful information from large volumes of data, while

also allowing it to ”notice” information that a human analyzer may miss. Such capabilities

allow the model to potentially play the essential role of an on-the-fly experimental decision

maker in an autonomous electron microscopy setup.9,10 For example, Figure S9 demonstrates

how variances of latent variables can inform a human operator, or an autonomous image

acquisition algorithm, on where nanoscale dynamics might be happening, and hence worthy

of further data collection, based on a relatively short (18 s) in situ HRTEM video data.
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Figure 6: a, b) The two annealing nanoparticles. The particles are rotated such that the
{100} facets are facing upward. Red regions denotes regions where latent variable z63 shows
high variances. c-d) Traces of lattices of the two annealing nanoparticles in the first and last
frame of the in situ data. Regions where lattice where present in the first frame, but not the
last frame (red) were considered regions of lattice shrinkage. Regions where lattice where
present in the last frame, but not the first frame (blue) were considered regions of lattice
growth. If lattices were present in both frames, the regions were considered regions of lattice
unchanged (cyan). Note that the lattice frequencies in the two frames were not exactly the
same, likely due to a fluctuation in the stigmatism of electron lenses during data collection.
e) Comparisons between the values of z63 and the relative areas occupied by the lattice as
functions of time at two selected subregions of the in situ data.
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Additionally, the relatively small volume of data required to train the VAEs model potentially

allows it to be re-trained for different electron microscopes (eg. Figure S11, S12) with

relative ease, making the model suitable for a generalizable workflow for automated electron

microscopy. We envision that in the near future, the VAEs model will become an integral

part of an autonomous laboratory focused on automated data acquisition and analysis by

electron microscopy.

Conclusions

In this work, we demonstrated that the VAEs model can be trained to faithfully reconstruct

atomically-resolved TEM images, and construct a latent space that encodes physically in-

terpretable information contained in the TEM data. We showed that the latent space can

capture permutations and reorganizations of lattices in both simulated and real HRTEM

data. Based on the insights provided by the latent variables, we proposed a mechanism for

the annealing of PbS NCs, which can be seen as an artificial intelligence’s interpretation

of the HRTEM data. The model shows great potential to serve as part of an autonomous

workflow for automated electron microscopy.

Methods

Materials

Lead chloride (PbCl2), lead nitrate (Pb(NO3)2) elemental sulfur, oleic acid (OA), oleylamine

(OLA), hexanes, toluene, acetone were purchased from Sigma-Aldrich and used without

further purification. Aqueous ammonium sulfide ((NH4)2S, 40 wt%) was purchased from

Sigma-Aldrich and titrated with Pb(NO3)2 to determine the actual sulfide concentration

based on methods reported by Zhang et al.41 Molecular sieves (3 Å) were purchased from

Sigma-Aldrich and activated at 300 °C for at least 12 hours before being used.
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Synthesis of PbS NCs

Cubic PbS NCs about 6 nm in diameter were synthesized based on a two step approach.

First, pseudo-spherical PbS NCs were prepared based on the methods reported by Weidman

et al.42 Briefly, 2.5 g PbCl2 was mixed with 7.5 mL OLA. The mixture was degassed at room

temperature for 10 min, then at 110 °C for 5 min. After degassing, the mixture was heated

to 120 °C to form a milky white suspension. The sulfur source was prepared by adding 7.5

mL OLA to 40 mg of S. The mixture was degassed for 20 minutes at 120 °C, and then cooled

to close to 30 °C to form a dark orange solution. To form the NCs, 2.25 mL of the S solution

was swiftly injected into the Pb solution. When a dark color was observed in the mixture,

the reaction was allowed to continue for 10 min at 120 °C. Then, the reaction mixture was

removed from heat source, and 20 mL of hexanes was injected into the mixture to quench

the reaction. PbS NCs were collected by adding 10 mL IPA and 5 mL MeOH to the reaction

mixture, and centrifuge at 4000 rpm for 3 min. Solid products collected were resuspended

in 10 mL hexanes. Then, 20 mL OA was added to the resuspended products. The mixture

was sonicated for 5 min, and centrifuged at 4000 rpm for 3 min to collect solid products.

Collected products were washed with OA two more times, or until the supernatant is clear,

and then one more time with 10 mL IPA and 5 mL MeOH. The resultant suspension of PbS

NCs in hexanes was then centrifuged at 4000 rpm for 3 min once more to remove remaining

solid PbCl2. The suspension was then stored in an air-free environment for at least 24 h,

after which the suspension was once again centrifuged at 4000 rpm for 3 min to remove

any remaining PbCl2. UV-Vis spectroscopy and and TEM characterization showed that the

collected NCs were 6 nm spheroidal NCs with an absorption peak at 0.79 eV with a narrow

size distribution (Figure S5a,b), agreeing with previous reports by Weidman et al.42

To modify the spheroidal NCs to form cubic NCs, we adopted a method reported by

Zhang et al.41 Under an air-free environment, 3 mg spheroidal PbS NCs were suspended in

4 mL hexanes with 0.2 mL OA. A (NH4)2S/OLA solution was prepared by adding 0.3 mmol

(NH4)2S to 10 mL OLA. The solution was then dried by ∼2 g of 3 Å molecular sieves under
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an inert environment for 30 min. The solution was kept at 30-40 °C to prevent solidification.

Then in an inert environment, 4 mL of the (NH4)2S/OLA solution was injected into the

PbS suspension. The mixture was allowed to react for 30 min. Then 20 mL acetone was

added and the mixture was centrifuged at 4000 rpm for 3 min to collect cubic PbS NCs

(Figure S5c). The NCs were suspended in 5 mL hexanes and washed with 5 mL acetone two

more times, after which they were resuspended in 5 mL toluene and used to prepare TEM

samples immediately.

Preparation of TEM samples

The suspension of cubic PbS NCs was diluted with toluene until the suspension was light

yellow. Then, 2 µL of the diluted suspension was dropcasted onto a plasma cleaned Ted Pella

400 mesh ultrathin carbon support Au TEM grid. The grid was let to dry under air-free

condition for at least 2 hours. Then, the grid was dipped into a 0.45 M solution of (NH4)2S

in methanol for 30 s, and then in pure methanol for another 30 s. The grid was then dried

in vacuum for at least 2 hours before imaging.

In situ TEM imaging

In situ TEM data of the annealing of PbS NCs were acquired using a FEI Tecnai T20 trans-

mission electron microscope equipped with a Gatan RIO16IS camera and a LaB6 filament.

All data were acquired under 200 kV accelerating voltage. Atomically resolved in situ videos

were recorded close to Scherzer focus. The dose rates of electrons the samples were exposed

to during imaging were estimated after the in situ data were collected. A conversion value

of 124 was used to convert CCD counts to electrons.
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Training of the VAEs model

The VAEs model was constructed in Python 3 using the Keras package. The encoder network

was consisted of four 2D convolutional layers with a kernel size of 4, followed by a reshape

layer and another convolutional layer that projects the output of the previous layer onto

the 64-dimensional latent space. The decoder network has the same set of layers with the

reverse sequence, and with the convolutional layers replaced by inverse convolutional layers.

The model was trained by minimizing the reconstruction loss measured by binary cross

entropy (BCE) and the original data. To modulate the distribution of the latent variables,

Kullback–Leibler (KL) divergence between the distribution of the latent variables and a

normal distribution is added to BCE during the training process as a constraint.23,29 A

factor of 2 was multiplied to the KL divergence as a regularization factor (β) to enforce

orthogonality in the latent space. The model was trained on the training dataset for 20

epochs, and the resulting latent space was analyzed for physical insights.

Data availability

Unprocessed HRTEM data and in situ TEM data, and processed data for training the VAEs

model are available on Dryad (https://datadryad.org/stash/share/kLvdk-AartSZf1GO

w1slklZ0mLmPCAkQeYorCbeBMdI).

Codes availability

Trained VAEs models, and sample codes for training and applying them, are available on

Github (https://github.com/realxingzhiwang/VAEs-for-HRTEM).
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