Oxygen-Resistant $CO₂$ Reduction Enabled by Electrolysis of Liquid Feedstocks

Douglas J.D. Pimlott,¹ Andrew M.L. Jewlal,¹ Yongwook Kim,¹ Curtis P. Berlinguette*^{1,2,3,4}

¹Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.

²Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada.

³Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada.

⁴Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University

Avenue, Toronto, Ontario, M5G 1M1, Canada.

*Corresponding author: Curtis P. Berlinguette (cberling@chem.ubc.ca)

Abstract:

Electrolytic CO₂ reduction fails in the presence of O₂. This failure occurs because the reduction of O₂ is thermodynamically favored over the reduction of CO_2 . Consequently, O_2 must be removed from the CO_2 feed prior to entering an electrolyzer, which is an expensive process. Here, we show the use of liquid bicarbonate feedstocks (e.g., aqueous 3.0 M KHCO₃), rather than gaseous $CO₂$ feedstocks, enables efficient and selective CO_2 reduction without additional procedures for removing O_2 . This advance is made possible because liquid bicarbonate solutions deliver high concentrations of captured $CO₂$ to the cathode, while the low solubility of O_2 in aqueous media maintains a low O_2 concentration at the same cathode surface. Consequently, electrolyzers fed with liquid bicarbonate feedstocks create an environment at the cathode that favors the reduction of $CO₂$ over $O₂$. We validate this claim by electrochemically converting CO_2 into CO with reaction selectivities of ~65% at 100 mA cm⁻² using 3.0 M KHCO₃ solution bubbled with 100% CO₂ or 100% O₂. Similar experiments performed with a gaseous CO₂ feedstock showed that merely 1% of O_2 in the feedstock reduced CO selectivity to 11 \pm 3.7%. Our findings demonstrate that a liquid bicarbonate feedstock enables efficient CO₂ reduction without the need for expensive O_2 removal steps.

The electrolytic reduction of $CO₂$ can reduce greenhouse gas emissions by converting waste $CO₂$ into valuable products (e.g., CO, formate, methanol, ethylene, alcohols).^{1–3} However, practical sources of $CO₂$ contain high concentrations of $O₂$; for example, air and flue gasses contain 21% and 5-15% $O₂$, respectively.^{4–8} Concentrations of O_2 need to be managed because the O_2 reduction reaction (ORR, Eq. 1) occurs at a less negative reduction potential than the $CO₂$ reduction reaction (CO2RR, Eq. 2).^{4,9,10} Electrochemical reactors therefore do not efficiently convert $CO₂$ into valuable products in the presence of O_2 ^{4,10,11}

ORR:
$$
O_{2(g)} + 4H^+_{(aq)} + 4e^- \rightarrow 2H_2O_{(l)}
$$
 $E^0 = 1.23$ V vs. SHE (1)

CO2RR: $CO_{2(g)} + 2H^{+}_{(aq)} + 2e^{-} \rightarrow CO_{(g)} + H_{2}O_{(l)}$ $E^{0} = -0.11$ V vs. SHE (2)

Any electrolyzer fed with gaseous $CO₂$ ("gas-fed electrolyzer") must contain a high concentration of CO₂ and low concentration of O₂.⁷ Direct air capture (DAC) can generate concentrated streams of CO₂ containing $\leq 1\%$ O₂ through successive drying and calcination steps.^{5,6} These steps require 200 kJ of thermal energy input per mol of $CO₂$ generated (Figure 1).¹² Amine-based sorbents can generate pure streams of $CO₂$ from flue gasses, but this process also requires thermal energy to desorb captured $CO₂$ (Figure 1). $13,14$

An alternative way to electrochemically convert $CO₂$ into fuels is to feed an electrolyzer with a liquid CO_2 carrier such as aqueous $KHCO_3$.^{15–21} The delivery of $KHCO_3$ to the cathode compartment of a "liquid-fed electrolyzer" can generate high *in-situ* concentrations of CO_2 ("*i*- CO_2 ") at the catalyst surface after reaction with acid delivered by the membrane.^{15,22,23} These liquid-fed electrolyzers can reach electrolyzer performance metrics (e.g., voltage, current densities, carbon efficiencies) that match or exceed those of gas-fed electrolyzers.^{21,24} Importantly, KHCO₃ is an eluent of certain CO_2 capture units, and thus the liquid-fed electrolyzer enables $CO₂$ capture and conversion (Figure S1).²⁵

Here, we highlight another significant advantage of a liquid-fed electrolyzer: a low concentration of O_2 at the cathode. By delivering CO_2 to the cathode in the form of aqueous bicarbonate solutions, the exceptionally low solubility of O_2 in aqueous medium (0.0012 M ω) 1 atm, 298 K)²⁶ naturally maintains a low concentration of O_2 in the reaction environment. Thus, the electrolytic conversion of aqueous bicarbonate solutions can be performed without complications arising from O_2 reduction.

To demonstrate these claims, we tested how varying amounts of O_2 affected the formation of CO from CO2 in gas- and liquid-fed electrolyzers. The same electrolyzer was used for all experiments in the study, with the only difference being the feedstock for the cathode chamber; the gas-fed electrolyzer was provided CO_2 and the liquid-fed electrolyzer was provided 3.0 M KHCO₃. The volume fraction of O_2 in the CO_2 feed varied from 0-10%, while 0-10% O_2 was bubbled through the liquid feedstock prior to entry into the electrolyzer. The results outlined herein show that even low concentrations of O_2 in the CO_2 stream rendered CO2RR ineffective, while the performance of the liquid-fed electrolyzer was not affected by bubbling O_2 through the feedstock. This outcome demonstrates how to carry out O_2 -resistant CO_2 conversion.

Figure 1: Schematic of various CO₂ capture and conversion pathways from O₂-containing CO₂ streams. Pathways 1 and 2 depict the capture and conversion of $CO₂$ sourced from the atmosphere using gas- and liquid-fed electrolyzers, respectively. Pathways 3 shows the direct conversion (i.e., no capture steps) of $CO₂$ sourced from industrial flue gas. Pathways 4 and 5 show the conversion of flue gas $CO₂$ captured using amine and alkaline sorbents, respectively. Streams of $CO₂$ purified using amine absorption serve as the feedstock for a gas-fed electrolyzer. Similarly, the $KHCO₃$ eluent from the alkaline absorber is fed into the liquid-fed electrolyzer.

The liquid-fed electrolyzer used in this study consisted of a composite silver-carbon (Ag/C) cathode and nickel foam anode pressed between cathodic and anodic serpentine flow plates (Figure S2- 3). The cathode was prepared by dispersing 8 mg of Ag nanoparticles into an ethanol solution containing $10 \mu L$ of 20 wt% NafionTM. The resulting dispersion was deposited onto carbon paper with a commercial gravity-fed pneumatic spray-coater. The cathode and anode were separated by a hydrated FumasepTM bipolar membrane (BPM), which mediated water dissociation under reverse-bias, transporting H^+ to the cathode and OH⁻ to the anode. The H⁺ reacted with HCO_3^- or CO_3^{2-} to form *i*-CO₂, which was then reduced at the cathode. The OH⁻ was oxidized to O_2 and H_2O at the Ni foam anode. Assembly of the gasfed electrolyzer was the same as for liquid-fed experiments, with the exception of a Sustainion® X37-50 Grade RT anion exchange membrane (AEM) in place of the BPM and a microporous layer on the carbon paper (Figure S3). Gaseous products were detected using in-line gas chromatography in both experimental set-ups.

Figure 2: a) Schematic of CO₂ conversion in the cathode compartment of a gas-fed CO₂ electrolyzer (top) and a liquid-fed bicarbonate electrolyzer (bottom). b) CO selectivity following electrolysis of humidified gaseous CO_2 containing 0-10% O_2 at 100 mA cm⁻². c) CO selectivity following electrolysis at 100 mA $cm⁻²$ using 3.0 M KHCO₃ continuously bubbled with CO₂ containing 0-10% O₂ c) CO selectivity following electrolysis of humidified gaseous CO_2 containing 0-10% O_2 at 100 mA cm⁻².

We first examined the effects of O_2 on a gas-fed electrolyzer that converted CO_2 into CO (Figure 2b). Control experiments were performed using 100% CO₂ fed to the cathode compartment at a flow rate of 200 sccm. Electrolysis performed at 100 mA cm-2 resulted in a faradaic efficiency for CO (*FECO*) of 96 \pm 2% (Table S1). When the CO₂ stream contained just 1% O₂, the *FE_{CO}* decreased to 85 \pm 4%. A volume fraction of 10% O₂ caused a near-total loss of CO selectivity, which decreased to $6 \pm 2\%$. Over 90% of the total FE was unaccounted (Figure S4), indicating that >90% of the electrons were diverted to the parasitic ORR. These losses in CO formation were consistent with previous studies that showed $O₂$ suppresses CO2RR due to the favorable thermodynamics of ORR. $4,10,11$

Moreover, CO formation in the gas-fed electrolyzer did not fully recover following exposure to $O₂$ (Figure S5). After restoring a pure CO₂ feedstock following electrolysis at 100 mA cm⁻² using 90% CO2 and 10% O2, the *FECO* did not exceed 10%. The remaining faradaic efficiency is attributed to the formation of H2 from the parasitic hydrogen evolution reaction (HER). This result is consistent with flooding of the cathode with the H₂O produced from ORR.^{27–29}

We then measured *FE_{CO}* losses in the liquid-fed electrolyzer caused by the same volume fractions of O_2 . To simulate the steady-state capture of a CO_2 stream contaminated with O_2 , we bubbled a mixture of CO_2 containing 0-10% O_2 into a 3.0 M KHCO₃ solution at a flow rate of 200 sccm. This bubbling step was performed for 30 minutes prior to and during electrolysis. The pressure within the catholyte reservoir was maintained at approximately 1 atm. Electrolysis experiments performed at 100 mA cm⁻² using 100% $CO₂$ resulted in a FE_{CO} of 66 \pm 3% (Figure 2c, Table S2). We observed no losses in CO selectivity with increasing O_2 volume fraction. For example, *FE_{CO}* remained at $66 \pm 2\%$ when the bicarbonate solution was exposed to $CO₂$ containing 10% $O₂$.

The consistent CO selectivities in the liquid-fed electrolyzer even in the presence of $O₂$ (Figure S6) signals that ORR did not occur. We attribute this result to low concentration of O_2 in solution. Prior to bubbling, the dissolved O_2 concentration in 3.0 M KHCO₃ was consistent with Henry's law at a value of 0.27 ± 0.1 mM in ambient conditions.³⁰ When the bicarbonate feedstocks were bubbled with CO₂ containing $0-10\%$ O_2 , the O_2 concentrations in solution decreased (Figure S7). This decrease is likely because CO_2 increased the gas-liquid interface, which caused dissolved O_2 to diffuse into the gas phase.³¹ This degassing effect decreased as the $O₂$ volume fraction increased. After 30 minutes of bubbling with

100% $CO₂$, the $O₂$ concentration measured in solution was 0.04 mM, compared to 0.16 mM when the gas stream contained 10% O_2 . These low amounts of O_2 in solution limit mass transport for ORR.

To further assess the O_2 resistance of the liquid-fed electrolyzer, we converted bicarbonate solutions bubbled with more concentrated streams of O_2 (up to 100% O_2). At higher volume fractions, no degassing occurred and dissolution of O_2 into solution was observed (Figure 3a). When 100% O_2 was used, the O_2 concentration in solution reached 0.9 mM, which nears the solubility limit of O_2 under ambient conditions.²⁶ Electrolysis of the bicarbonate solutions at 100 mA cm⁻² following 30 minutes of bubbling prior to and during electrolysis resulted in CO selectivities of ~65% (Figure 3b), which is similar to the *FECO* values obtained in experiments using 0% O2. These results indicate that the low solubility of O2 in solution suppresses ORR in liquid-fed electrolyzers.

b)

Figure 3: a) Concentration of dissolved O₂ in a 3.0 M KHCO₃ solution prior to electrolysis. Humidified $CO₂$ (0-100%) and $O₂$ (0-100%) was bubbled into the solution for 30 minutes prior to and during electrolysis at a contact flow rate of 200 sccm. b) Product distributions from the electrolysis of 3.0 KHCO₃ bubbled for 30 minutes with CO_2 (0-75%) and O_2 between (0-100%). Electrolysis was performed for 5 minutes at a constant applied current density of 100 mA cm⁻².

a)

In this study, we demonstrate the effects of O_2 on CO formation in an electrolyzer fed with either $CO₂$ or bicarbonate. When 10% $O₂$ was present in the $CO₂$ feed entering the gas-fed electrolyzer, CO selectivity decreased by $>90\%$. The liquid-fed electrolyzer was unaffected by the dissolved O_2 in the bicarbonate solution. The conversion of bicarbonate solutions all resulted in FE_{CO} values of ~65% at 100 $mA \, cm^{-2}$ when bubbled with gas streams containing 0-100% O₂. Our findings indicate that the electrolysis of bicarbonate solutions is an O_2 -resistant approach to generating valuable products from waste CO_2 .

Acknowledgements:

The authors are grateful to the Canadian Natural Sciences and Engineering Research Council (RGPIN-2018-06748), Canadian Foundation for Innovation (229288), Canadian Institute for Advanced Research (BSE-BERL-162173) and the Canada Research Chairs for financial support. This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program.

Author contributions: D.P. conceived the idea, performed electrolysis experiments and measurements, carried out data analysis, and wrote the manuscript. A.J. supervised gas-fed $CO₂$ electrolysis experiment. Y.K. supervised liquid-fed bicarbonate electrolysis experiments. C.P.B. conceived the idea and supervised the project. All authors discussed the results and assisted with manuscript preparation.

Competing interests: The authors declare no competing interests.

Data and materials availability: The data supporting the findings of the study are available within the paper and its Supplementary Information.

References:

- (1) Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A.; Berlinguette, C. P. Electrolytic CO2 Reduction in a Flow Cell. *Acc. Chem. Res.* **2018**, *51* (4), 910–918.
- (2) Banerjee, S.; Han, X.; Thoi, V. S. Modulating the Electrode–Electrolyte Interface with Cationic Surfactants in Carbon Dioxide Reduction. *ACS Catal.* **2019**, *9* (6), 5631–5637.
- (3) Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F.; Chorkendorff, I. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. *Chem. Rev.* **2019**, *119* (12), 7610–7672.
- (4) Xu, Y.; Edwards, J. P.; Zhong, J.; O'Brien, C. P.; Gabardo, C. M.; McCallum, C.; Li, J.; Dinh, C.-T.; Sargent, E. H.; Sinton, D. Oxygen-Tolerant Electroproduction of C 2 Products from Simulated Flue Gas. *Energy Environ. Sci.* **2020**, *13* (2), 554–561.
- (5) Sanz-Pérez, E. S.; Murdock, C. R.; Didas, S. A.; Jones, C. W. Direct Capture of CO2 from Ambient Air. *Chem. Rev.* **2016**, *116* (19), 11840–11876.
- (6) Keith, D. W.; Holmes, G.; St. Angelo, D.; Heidel, K. A Process for Capturing CO2 from the Atmosphere. *Joule* **2018**, *2* (8), 1573–1594.
- (7) Harmon, N. J.; Wang, H. Electrochemical CO2 Reduction in the Presence of Impurities: Influences and Mitigation Strategies. *Angew. Chem. Int. Ed Engl.* **2022**, *61* (52), e202213782.
- (8) Legrand, U.; Apfel, U.-P.; Boffito, D. C.; Tavares, J. R. The Effect of Flue Gas Contaminants on the CO2 Electroreduction to Formic Acid. *Journal of CO2 Utilization* **2020**, *42*, 101315.
- (9) Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C.-T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. *Adv. Mater.* **2019**, *31* (31), e1807166.
- (10) Lu, X.; Jiang, Z.; Yuan, X.; Wu, Y.; Malpass-Evans, R.; Zhong, Y.; Liang, Y.; McKeown, N. B.; Wang, H. A Bio-Inspired O2-Tolerant Catalytic CO2 Reduction Electrode. *Sci Bull (Beijing)* **2019**, *64* (24), 1890– 1895.
- (11) Li, P.; Lu, X.; Wu, Z.; Wu, Y.; Malpass-Evans, R.; McKeown, N. B.; Sun, X.; Wang, H. Acid-Base Interaction Enhancing Oxygen Tolerance in Electrocatalytic Carbon Dioxide Reduction. *Angew. Chem. Int. Ed Engl.* **2020**, *59* (27), 10918–10923.
- (12) Sharifian, R.; Wagterveld, R. M.; Digdaya, I. A.; Xiang, C.; Vermaas, D. A. Electrochemical Carbon Dioxide Capture to Close the Carbon Cycle. *Energy Environ. Sci.* **2021**, *14* (2), 781–814.
- (13) Aaron, D.; Tsouris, C. Separation of CO2 from Flue Gas: A Review. *Sep. Sci. Technol.* **2005**, *40* (1-3), 321– 348.
- (14) Rochelle, G. T. Amine Scrubbing for CO2 Capture. *Science* **2009**, *325* (5948), 1652–1654.
- (15) Li, T.; Lees, E. W.; Goldman, M.; Salvatore, D. A.; Weekes, D. M.; Berlinguette, C. P. Electrolytic Conversion of Bicarbonate into CO in a Flow Cell. *Joule* **2019**, *3* (6), 1487–1497.
- (16) Li, T.; Lees, E. W.; Zhang, Z.; Berlinguette, C. P. Conversion of Bicarbonate to Formate in an Electrochemical Flow Reactor. *ACS Energy Lett.* **2020**, *5* (8), 2624–2630.
- (17) Lees, E. W.; Liu, A.; Bui, J. C.; Ren, S.; Weber, A. Z.; Berlinguette, C. P. Electrolytic Methane Production from Reactive Carbon Solutions. *ACS Energy Lett.* **2022**, *7* (5), 1712–1718.
- (18) Pimlott, D. J. D.; Jewlal, A.; Mowbray, B. A. W.; Berlinguette, C. P. Impurity-Resistant CO2 Reduction Using Reactive Carbon Solutions. *ACS Energy Letters*. 2023, pp 1779–1784. https://doi.org/10.1021/acsenergylett.3c00133.
- (19) Zhang, Z.; Lees, E. W.; Habibzadeh, F.; Salvatore, D. A.; Ren, S.; Simpson, G. L.; Wheeler, D. G.; Liu, A.; Berlinguette, C. P. Porous Metal Electrodes Enable Efficient Electrolysis of Carbon Capture Solutions. *Energy Environ. Sci.* **2022**, *15* (2), 705–713.
- (20) Lees, E. W.; Goldman, M.; Fink, A. G.; Dvorak, D. J.; Salvatore, D. A.; Zhang, Z.; Loo, N. W. X.; Berlinguette, C. P. Electrodes Designed for Converting Bicarbonate into CO. *ACS Energy Lett.* **2020**, *5* (7), 2165–2173.
- (21) Zhang, Z.; Lees, E. W.; Ren, S.; Mowbray, B. A. W.; Huang, A.; Berlinguette, C. P. Conversion of Reactive Carbon Solutions into CO at Low Voltage and High Carbon Efficiency. *ACS Cent Sci* **2022**, *8* (6), 749–755.
- (22) Li, Y. C.; Lee, G.; Yuan, T.; Wang, Y.; Nam, D.-H.; Wang, Z.; García de Arquer, F. P.; Lum, Y.; Dinh, C.- T.; Voznyy, O.; Sargent, E. H. CO2 Electroreduction from Carbonate Electrolyte. *ACS Energy Lett.* **2019**, *4* (6), 1427–1431.
- (23) Diaz; Gao; Adhikari; Lister; Dufek. Electrochemical Production of Syngas from CO 2 Captured in Switchable Polarity Solvents. *Green*.
- (24) Ozden, A.; García de Arquer, F. P.; Huang, J. E.; Wicks, J.; Sisler, J.; Miao, R. K.; O'Brien, C. P.; Lee, G.; Wang, X.; Ip, A. H.; Sargent, E. H.; Sinton, D. Carbon-Efficient Carbon Dioxide Electrolysers. *Nature Sustainability* **2022**, *5* (7), 563–573.
- (25) Welch, A. J.; Dunn, E.; DuChene, J. S.; Atwater, H. A. Bicarbonate or Carbonate Processes for Coupling Carbon Dioxide Capture and Electrochemical Conversion. *ACS Energy Lett.* **2020**, *5* (3), 940–945.
- (26) Xing, W.; Yin, G.; Zhang, J. *Rotating Electrode Methods and Oxygen Reduction Electrocatalysts*; Elsevier, 2014.
- (27) Bhattacharya, P. K. *Water flooding in the proton exchange membrane fuel cell*. https://www.sciencetheearth.com/uploads/2/4/6/5/24658156/waterflooding_protonexchangemembrane.pdf (accessed 2023-04-02).
- (28) Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z. Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. *ACS Catal.* **2015**, *5* (8), 4643–4667.
- (29) Yang, K.; Kas, R.; Smith, W. A.; Burdyny, T. Role of the Carbon-Based Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical CO2 Reduction. *ACS Energy Lett.* **2021**, *6* (1), 33–40.
- (30) Sander, R. Compilation of Henry's Law Constants (version 4.0) for Water as Solvent. *Atmos. Chem. Phys.* **2015**, *15* (8), 4399–4981.
- (31) Butler, I. B.; Schoonen, M. A.; Rickard, D. T. Removal of Dissolved Oxygen from Water: A Comparison of Four Common Techniques. *Talanta* **1994**, *41* (2), 211–215.