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ABSTRACT  

High-resolution nuclear magnetic resonance (NMR) spectroscopy is a powerful 

analytical tool with wide application. However, the conventional shim technique may 

not guarantee the homogeneity of the magnetic field when the experimental conditions 

are unfavorable. In this study, we proposed a data post-processing method called 

Restore High-resolution Unet (RH-Unet), which uses a convolutional neural network 

to restore distorted NMR spectra that have been acquired in inhomogeneous magnetic 

fields. The method generates feature-label pairs from singlet peak regions and ideal 

Lorentzian line shape and trains a RH-Unet model to map low resolution spectra to high 

resolution spectra. The method was applied to different samples, and showed superior 

performance than the REFDCON method incorporated in Bruker Topspin software. The 

proposed method provides a simple and fast way to obtain high resolution NMR spectra 

in inhomogeneous fields, which can facilitate the application of NMR spectroscopy in 

various fields. 
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INTRODUCTION 

High-resolution nuclear magnetic resonance (NMR) spectroscopy is a powerful 

analytical tool for studying molecular structure, conformation, composition and 

dynamics at the level of atoms. It provides detailed information about chemical shifts, 

J-coupling and relaxation rate, and has been widely used in chemical analysis, structural 

biology and life sciences [1-3]. The spectral resolution and signal-to-noise ratio are 

crucial criteria for the quality of NMR spectra. With the continuous development of 

NMR equipment hardware (e.g., stronger superconducting magnet [4], cryogenic probe 

[5]) and experimental techniques (e.g., cross polarization [6], hyperpolarization [7]), 

sensitivity has been greatly improved in modern NMR spectroscopy. On the other hand, 

the resolution of NMR spectra is also highly valued. Various techniques have been 

developed to improve the resolution of spectra, such as various decoupling techniques 

[8] and TROSY [9]. However, ultimately, the resolution of NMR spectra is determined 

by the uniformity of the magnetic field. The more uniform the magnetic field, the higher 

the NMR resolution. The resolution of modern NMR spectrometers is usually up to 0.1 

Hz, which requires that the magnetic field uniformity must reach 1 part in 109. 

Therefore, before performing NMR experiments, operators should carefully optimize 

the magnetic field by adjusting the current of shim circuits. 

The development of advanced magnets and the implementation of advanced 

magnetic shimming and deuterium locking techniques have greatly improved the 

homogeneity of the magnetic field in NMR experiments. However, in some 

experimental conditions, the magnetic field may still suffer from spatial inhomogeneity 

or temporal instability, such as measurements on biological tissues with intrinsic 

magnetic susceptibility variations. Shimming is sometimes difficult to avoid these 

magnetic field inhomogeneities in some NMR equipment, even for homogeneous 

samples [10]. In addition, slight disturbance or unsatisfactory shimming can also reduce 

the homogeneity of the magnetic field. Magnetic field inhomogeneity is a common 

issue in NMR experiment. If the magnetic field cannot meet the requirements after 

automatic shimming before sampling, it must take a lot of time to shimming manually, 

or accept poor spectral quality, which results in missing information about J-coupling 

and overlapped peak, and makes it challenging to extract useful information from 

spectra. Therefore, it is necessary to develop corresponding methods to obtain higher 

resolution NMR spectra under inhomogeneous magnetic field conditions. 

There are several techniques that have been proposed to achieve this goal [11]. 

Chen et al reviewed three types of experimental techniques that can measure high-

resolution NMR spectra free from the influence of inhomogeneous magnetic fields [11]. 

These are the techniques based on intermolecular multiple-quantum coherences 

(iMQCs) that originate from long-range dipolar interactions among spins in different 

molecules [12], the techniques based on nutation echo and/or z-rotation pulse [13], and 

the techniques based on spatial encoding and phase correction that make direct phase 

compensation for the dephasing caused by field inhomogeneities [14]. In addition to 



the experimental techniques mentioned above, high-resolution spectra can also be 

obtained from inhomogeneous magnetic fields using data post-processing methods [15, 

16]. Compared with experimental techniques, data post-processing methods have better 

compatibility and can be used in conjunction with various pulse sequences [17]. The 

representative of this type of method is the reference deconvolution method, which can 

correct the effects of instrumental distortion including field inhomogeneity [11]. 

In recent years, deep learning has made significant progress and has been 

successfully applied in many disciplines such as image processing [18], natural 

language processing [19], etc. Deep learning has also been successfully applied in the 

NMR for spectrum denoising [20], spectral reconstruction of undersampled data [21, 

22], fast shimming [23], etc. In this work, we proposed a data post-processing method 

that uses Restore High-resolution Unet (RH-Unet) to correct and restore low-resolution 
1H NMR spectra collected in inhomogeneous magnetic fields, which will help expand 

the application range of NMR spectroscopy.  

 

METHODS 

In NMR experiment, the acquired signal comes from the sum of all nuclear spins 

across the whole sample. In inhomogeneous field, nuclear spins at different position 

may experience different field strength, and have different resonance frequencies, 

therefore, inhomogeneous magnetic field will cause peak broadening and distortion in 

NMR spectra. For the same reason, each spectral peak in the spectrum should share the 

same peak broadening and shape distortion. Therefore, for a NMR spectrum collected 

from an inhomogeneous magnetic field, if the ideal line shape of a distorted singlet peak 

is known in prior, then a certain image transformation which can correct the distorted 

singlet peak to the ideal line shape, could correct the line shapes of other peaks in the 

spectrum too. Based on the above principle, a singlet peak with known correct chemical 

shift and line shape is chosen as the reference peak from a spectrum distorted by 

inhomogeneous field, and a neural network is designed and trained to correct the 

reference peak into an ideal peak, then other resonance peaks should also be corrected 

simultaneously, which is just the idea of the proposed method in this research. The 

neural network is derived from Unet [24] to restore high resolution spectrum from NMR 

spectra acquired in inhomogeneous fields, so this method is called Restore High-

resolution Unet (RH-Unet). 

In machine learning, it is common to split the input data into three datasets: 

training dataset, validation dataset, and test dataset, where training dataset is used to fit 

the model parameters, validation dataset is used to evaluate the model performance and 

tune the model hyperparameters, and test dataset is used to estimate the final 

performance of the model [25]. However, every NMR spectrum is unique, which means 

that we can only use this one NMR spectrum for model training, and the trained model 

can only handle this one spectrum too. For other spectra that need to be corrected, each 



spectrum needs to train a separate neural network. In fact, this method can be classified 

as one-shot learning [26]. Fortunately, we found later that the model training time is 

very short and within a tolerable range. 

The first step of this method is to construct a dataset for model training. A singlet 

signal in the original spectrum is chosen as the reference peak, whose chemical shift 

should be known in prior. It is recommended to choose NMR internal standard as the 

reference peak. Since the reference peak is singlet, its ideal shape should be Lorentzian 

line shape, and could be simulated. The dataset consists of two NMR spectra, which are 

the input spectrum and the reference spectrum. The input spectrum is just the 

preprocessed original spectrum with distorted peaks due to magnetic field 

inhomogeneity. Preprocessing mainly involves rescaling the amplitudes of datapoints 

in the spectrum. The reference spectrum is actually a copy of the input spectrum, but 

all the peaks in the reference spectrum are replaced with ideal Lorentzian line shapes. 

These peaks are detected by a peak picking program [27, 28], regardless of whether 

there are false peaks caused by magnetic field inhomogeneity. The most important step 

in the RH-Unet method is to generate the feature-label pair, which is based on the peak 

pick conducted by the find_peaks function from the scipy.signal package [27]. After 

these peaks are detected, Lorentzian line shapes are simulated based on their chemical 

shifts and intensities, and these simulated peaks replace the original ones. A special case 

is the reference peak, which is replaced by a Lorentzian line shape regardless of how 

many local peaks it is split into by the magnetic field inhomogeneity. The role of the 

reference spectrum is to calculate the loss function for model training together with the 

output spectrum obtained by the neural network model from the input spectrum. The 

replacing of peak shape in reference spectrum is to impose necessary constraints on the 

model training.  

To obtain the image transformation that corrects the distorted spectral peaks into 

ideal spectral peaks, a neural network model called Restore High-resolution Unet (RH-

Unet) was designed based on U-Net [24]. U-Net is a popular neural network and has 

wide application in image segmentation, and image noise suppression [20]. As shown 

in Figure 1, the architecture of RH-Unet consists of a down-sampling path and an up-

sampling path. The down-sampling path mainly consists of convolutional layers and 

pooling layers, which are used to extract features of NMR spectrum, and the up-

sampling path consists of deconvolutional layers and skip connections, which are used 

to restore the high-resolution NMR spectrum. The architecture is actually an encode-

decoder network [29]. The down-sampling path is the encoder, and the up-sampling 

path is the decoder. The details of the RH-Unet are shown in the SI.  

A loss function is a mathematical function that measures how well a model 

performs on a given dataset. Model training is to adjust model's parameters to minimize 

the value of loss function. The loss function of model training is the mean square error 

(MSE) of each data point of output spectrum and reference spectrum. There is a special 

feature in this method, which is using the normalized MSE of the reference peak in the 

output and reference spectra as the criterion for stopping model training. The reason for 

using the normalized MSE is that there may be a large fluctuation in the absolute value 



of MSE in the training of different spectra. After the model training stops, the corrected 

spectrum is obtained by the inverse operation of preprocessing on the output spectrum. 

 

Figure1. The overall architecture of the RH-Unet includes down-sampling, up-sampling and skip 

connections. The network consists of convolutional neural network (CNN) layer and encoder-decoder 

(ED) structure. It adopts the splicing method of skip connection to realize feature fusion, and its 

structure is simple and stable. The model consists of a contraction path that captures context and a 

symmetric expansion path that contains location information. The encoder and decoder structures of 

the network consist of a convolutional layer and a deconvolution layer, respectively. The convolutional 

layer is directly connected to the corresponding deconvolution layer to preserve the spectral details of 

the output of the deconvolution layer. In the encoder module, the maximum pooling layer operation 

realizes the down-sampling, while in the decoder module, the deconvolution layer realizes the up-

sampling.  

RESULTS AND DISCUSSION 

The proposed method utilizes a specially designed method to generate feature-

label pair for model training, and then employs the RH-Unet model to correct realistic 

low-resolution 1H NMR spectra that have been acquired in inhomogeneous magnetic 

fields. To verify the performance of RH-Unet, the method was applied to several 

samples with different magnetic field homogeneities and the results were compared 

with the reference deconvolution method. The first sample was a D2O solution of L-

glutathione (GSH) with DSS as an internal standard, and it was a representative of the 

sample with complex J-coupling peaks. The second sample was a chloroform solution 

of cholesterol with TMS as an internal standard, and it was a representative of the 

sample with overlapping peaks. The third sample was a chloroform solution of 
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azithromycin with TMS as an internal standard, and it was a representative of the 

sample with two reference peaks. The NMR spectra of these three samples were 

collected on Bruker 850MHz and 700MHz spectrometers respectively, and each sample 

not only collected a spectrum in a homogeneous magnetic field, but also collected 

spectra under slight and moderate magnetic field inhomogeneity conditions 

respectively. Here, slight field inhomogeneity means that the field inhomogeneity 

causes some broadening of resonance peaks, but does not cause obvious distortion of 

peak shape. And moderate field inhomogeneity means that the field inhomogeneity not 

only causes peak broadening, but also causes obvious distortion of peak shape, such as 

the DSS peak that should be a single peak splitting into two peaks. The processing of 

the reference deconvolution method was implemented through the macro called 

REFDCON provided in Bruker TopSpin3.6.5 software. The processing of RH-Unet was 

performed using a homemade Python program. See SI for the detailed parameters of 

acquisition and processing. 

The spectra of GSH acquired in homogeneous and slight inhomogeneous fields 

were shown in Figure 2a and 2b. Most of the peaks in the NMR spectra of GSH shown 

complex J-coupling. Compared with the spectrum shown in Figure 2a, the peaks shown 

in Figure 2b were significantly broadened and the resolution was poor. The spectrum 

shown in Figure 2b was processed using the reference deconvolution method and RH-

Unet respectively, and the results were shown in Figure 2c and 2d respectively. The 

results showed that both methods can correct the influence of field inhomogeneity on 

NMR spectrum and improve spectral resolution, when field inhomogeneity is slight.  

 

Figure 2. 1D 1H NMR spectrum of 65mM GSH in deuterium oxide (D2O) with DSS as the internal standard. 

The spectrum was acquired on a Bruker 850 MHz AVANCE III spectrometer equipped with a cryoprobe. (a) 

Spectrum collected with 8 scans in the homogeneous magnetic field. (b) Spectrum collected with 8 scans in a slightly 

inhomogeneous magnetic field. Spectrum obtained after correcting the spectrum in panel b by using the reference 

deconvolution method (c) and RH-Unet method (d).  

When the magnetic field homogeneity further deteriorates, the peak broadening 

becomes more serious and the peak shape is obviously distorted, such as the spectrum 

of GSH collected under moderate field inhomogeneity condition shown in Figure 3b. 
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The results of processing the spectrum using the reference deconvolution method and 

RH-Unet were shown in Figure 3c and 3d. In Figure 3c, the corrected spectrum from 

the reference deconvolution method showed a vibrating baseline and lost some peaks 

nearby. In the spectrum processed by RH-Unet shown in Figure 3d, all the peaks were 

corrected for peak shape and line width. As shown in the expanded view of the 

shadowed region (1.7-3.1 ppm), those peaks with fine J coupling splitting, which were 

broadened and distorted into wide bubbles by the field inhomogeneity, can also be 

correctly displayed by J coupling splitting after being processed by RH-Unet. In 

contrast, in the spectrum processed by the reference deconvolution method in Figure 

3c, it is difficult to correctly recover these J coupling splitting.  

  

Figure 3. 1D 1H NMR spectrum of 65mM GSH in deuterium oxide (D2O) with DSS as the internal standard. 

The spectrum was acquired on a Bruker 850 MHz AVANCE III spectrometer equipped with a cryoprobe. (a) 

Spectrum collected with 8 scans in the homogeneous magnetic field. (b) Spectrum collected with 8 scans in a 

severely inhomogeneous magnetic field. Spectrum obtained after correcting the spectrum in panel b by using the 

reference deconvolution method (c) and RH-Unet method (d). 

In Figure 2 and Figure 3, we can observe that the two distorted spectra can be 

corrected by the RH-Unet model, while the reference deconvolution method limited by 

the reference peak lineshape, resulting in a corrected spectrum that contains a vibrate 

baseline.  

Peak overlapping usually makes the peaks appear irregular in shape, and look 

similar to the peak distortion caused by field inhomogeneity from the appearance, so 

peak overlapping will make it more difficult to obtain high-resolution spectra from 

inhomogeneous fields through post-processing method. Like the example demonstrated 

above, the spectra of cholesterol were collected in different fields, and processed using 

the reference deconvolution method and RH-Unet. The 1H spectra of cholesterol 

acquired in homogeneous and slight inhomogeneous field were shown in Figure 4a and 

4b. The spectrum in Figure 4b was processed by the reference deconvolution method 

and RH-Unet respectively, and the results were shown in Figure 4c and 4d. As can be 

seen from Figure 4, both methods had good performance, but in terms of details, RH-

Unet has a better recovery effect on the spectral peaks near 1.8 ppm. From the two 

expanded view of the regions marked in shadow rectangles (0.60-1.05 ppm and 1.02-
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2.35 ppm), the complex overlapped regions in the low-resolution spectrum of Figure 

4b was restored by RH-Unet method (Figure 4d), which allows for the extraction of 

useful splitting information and the correction of spectrum keep the prominence peaks.  

 

Figure 4. 1D 1H NMR spectrum of 167mM cholesterol in deuterochloroform (CDCl3) with TMS as the internal 

standard. The spectrum was acquired on a Bruker 700 MHz AVANCE III spectrometer equipped with a cryoprobe. 

(a) Spectrum collected with 32 scans in the homogeneous magnetic field. (b) Spectrum collected with 32 scans in a 

slightly inhomogeneous magnetic field. Spectrum obtained after correcting the spectrum in panel b by using the 

reference deconvolution method (c) and RH-Unet method (d).  

After deliberately increasing the inhomogeneity of the magnetic field, the 

spectrum was sampled again and shown in Figure 5b. Compared with Figure 4b, the 

resolution of this spectrum was obviously further reduced. The reference deconvolution 

method and RH-Unet were applied again to process this spectrum, and the results 

showed the latter has a much better recovery performance than the former, as shown in 

Figure 5c and 5d. 

 

Figure 5. 1D 1H NMR spectrum of 167mM cholesterol in deuterochloroform (CDCl3) with TMS as the internal 

standard. The spectrum was acquired on a Bruker 700 MHz AVANCE III spectrometer equipped with a cryoprobe. 

(a) Spectrum collected with 32 scans in the homogeneous magnetic field. (b) Spectrum collected with 32 scans in a 

severely inhomogeneous magnetic field. Spectrum obtained after correcting the spectrum in panel b by using the 

reference deconvolution method (c) and RH-Unet method (d).  
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In Figure 5 all of the distorted peaks in the isolate region have been corrected 

(0.60-1.05 ppm), including those with complex J-coupling. However, some of the 

distorted peaks in the overlap regions showed a slightly different high-resolution 

spectrum due to the inhomogeneous field (1.02-2.35 ppm), making it difficult to 

recognize complex crowed peaks. If the severely distorted peaks superposition the 

overlapped regions, the find_peaks function [27] may miss some peaks. Therefore, the 

corrected spectrum may have a slightly different result from the high-resolution 

spectrum in the overlap regions, while other regions can restore well. 

The same conclusion can be drawn from azithromycin sample, and verified the 

corrected spectrum will not be influenced by the reference peak (e.g., CDCl3 or TMS). 

In Figure 6, the azithromycin sample shows J-coupling information, and with a broad 

range of signal intensities. The 1D 1H NMR spectrum of azithromycin acquired in an 

inhomogeneous field (Figure 6b) corrected by the RH-Unet method, and the reference 

peak was the residual solvent of CDCl3 (Figure 6d) and TMS (Figure 6e), respectively. 

The corrected spectral from RH-Unet (Figure 6d and 6e) were similar to that acquired 

in the homogeneous magnetic field (Figure 6a), shows that the multiple splitting peaks 

hidden in the broad envelope can be recovered and the redundant stray signals can be 

effectively suppressed.  

 

Figure 6. 1D 1H NMR spectrum of 55mM azithromycin in deuterochloroform (CDCl3) with TMS as the internal 

standard. The spectrum was acquired on a Bruker 700 MHz AVANCE III spectrometer equipped with a cryoprobe. 

(a) Spectrum collected with 32 scans in the homogeneous magnetic field. (b) Spectrum collected with 32 scans in 

an inhomogeneous magnetic field. (c) Spectrum obtained after correcting the spectrum in panel b by using the 

reference deconvolution method. Corrected by the RH-Unet method, and the reference peak was the residual solvent 

impurities of CDCl3 (d) and TMS (e), respectively.   

These results in above figures demonstrated that the proposed RH-Unet method 

effectively restores and corrects distortion spectrum caused by different 

inhomogeneous magnetic fields. These corrected spectra are highly accurate and 

compare well with carefully shimmed field NMR spectra.  

To stop the training and obtain an acceptable corrected spectrum, a discussion was 
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held regarding the choice of a threshold value for evaluation metrics in SI. The value of 

the threshold was set to 0.05. And the comparison of the RH-Unet with different layers 

are shown in the SI, with a threshold value to 0.05.  

CONCLUSIONS 

In this study, we proposed a data post-processing method called RH-Unet, which 

combines an encoder-decoder architecture with a convolutional neural network (CNN) 

to restore and correct distorted NMR spectra that have been acquired in different 

inhomogeneous magnetic fields. The real singlet peak region of the reference and 

standard Lorentz lineshape were used as basic peak pattern to construct feature-label 

pair. The training results showed that the RH-Unet model was suitable for diverse 

solvent systems and was not affected by the reference. The RH-Unet method is 

universal to all experimental samples and NMR platform data, and can be processed 

quickly on a personal computer. It provides a relatively economical and rapid method 

for obtaining high-resolution NMR spectra in inhomogeneous magnetic fields. The RH-

Unet method showed excellent ability in corrected the distortion spectrum caused by 

inhomogeneous magnetic fields, with a performance that surpasses that of the reference 

deconvolution (REFDCON) method incorporated in Bruker Topspin software. The 

excellent performance of the RH-Unet method in obtaining high-resolution NMR 

spectra in inhomogeneous magnetic fields will greatly promote the application of high-

resolution NMR. 
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