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Abstract

Deep generative models have been the subject of immense interest in various
fields of science. While seeking a molecule that favorably binds to a target is
a long-established goal of drug design, various generative models have emerged
to reach the goal. Here, we employ the concept of intermolecular interactions
between a protein and a ligand in a 3D molecular generative model, empowering
the generalizable structure-based drug design. Inspired by how the practitioners
manage to improve the potency of a ligand toward a target protein, we devised a
strategy where prior knowledge of appropriate interactions navigates the ligand
generation. We thus propose an interaction-focused generative framework, which
establishes a local interaction condition to capture the surrounding pocket envi-
ronment. We demonstrate that the condition enables precise control of ligand
generation, justifying its effectiveness in guiding a ligand design inside a bind-
ing pocket. Through this strategy, the generated ligands could stably bind to the
target pocket by forming favorable interactions, regardless of pocket type. Fur-
thermore, we highlight the broad applicability of our framework by leveraging
the site-specific interaction condition suitable for designing ligands for various
purposes.

Keywords: 3D molecular generative model, Prior knowledge, Protein-ligand
interaction, Structure-based drug design
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1 Introduction

Incorporating adequate prior knowledge is essential in applying deep learning to vari-
ous fields of science.[1–3] By providing additional constraints that guide a deep learning
model to learn more informative and representative features from the input data,
numerous works have adopted the domain-specific prior knowledge to achieve notewor-
thy successes.[4–9] For instance, AlphaFold2[10] utilized co-evolutionary information
to predict protein structure by conveying an initial guess of how residues might con-
tact, reducing the possible conformational space of protein folding. As such, prior
knowledge can enlighten deep learning models to be well generalized to a particular
task or even improve the explainability of model output. The development of a reliable
model for designing a hit molecule, a primary goal of computer-aided drug discovery,
is one such well-known task where prior knowledge can play a crucial role.[11–13]

Recent advances in deep generative modeling led to the rapid development of
the structure-based drug design paradigm, where generative models are employed to
provide molecules that can strongly bind to a target protein.[14–18] However, the data-
deficient nature often hinders the models’ ability to generate promising molecules for
unseen targets. Chan et al.[19] emphasized that poorly generalized generative models
might prioritize the learned chemical space rather than exploring other regions where
molecules with desired properties might exist. Regarding such a low generalization
problem, there have been two claimed issues that generative models may encounter.
First, designed molecules often omit the structure-activity relationships(SARs) and,
therefore, unfavorably interact with the target.[17, 19, 20] This can result in low
binding stability and drug potency. Next, designed molecules may lack structural
diversity.[21–23] This limits the size of the chemical space that the model covers, losing
the opportunity to identify a novel structure. These two problems act more severely
when only a few ligand data are available for a protein-of-interest, for example, to
target a newly found protein. Thus, in order to design potent and diverse ligand
molecules, one should leverage chemical knowledge to encourage a model to extract
generalizable rules from the protein-ligand binding data.

More recent works in 3D molecular generative models adopt a 3D structural context
of a target binding pocket.[24–29] One such approach was accomplished by Ragoza et
al.[26]; they represented the electron density of a ligand as voxels and trained their
model to reconstruct the voxelized density from the input pocket structure. Designing
a 3D structure of a ligand opened the possibility of designing a ligand directly inside a
binding pocket. Luo et al.[27] first proposed a generative model employing the concept,
which sequentially adds ligand atoms in a pocket-constrained space. This approach
can explicitly utilize the geometric information of the surrounding protein atoms to
avoid spatial occlusion and obtain a suitable ligand binding pose, saving much effort
in conformer searching.

Although 3D contexts of both a ligand and a binding pocket can effectively regular-
ize a ligand design process, a well-generalized model should comprehend the underlying
rule of the local ligand structures’ contribution to the interaction formation with the
pocket.[30] Chemical knowledge about protein-ligand interactions has been actively
considered in conventional structure-based drug design works. For example, practition-
ers elaborate on a known pharmacophore with a plausible potency to design a ligand
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that forms favorable interactions with pocket residues, achieving higher potency.[31–
33] Thus, the concepts of SARs and protein-ligand interactions can act as a suitable
prior knowledge to improve the generalizability of the ligand design process while pro-
viding explainable reasoning. Nevertheless, current approaches overlook protein-ligand
interactions during the generation processes, barely considering them.[34]

Here, we propose an interaction-focused 3D molecular generative framework that
explicitly models protein-ligand interactions for a generalizable pocket-constrained
ligand design. We first investigate and extract protein-ligand interaction patterns from
reference binding structures to inform the model about SARs. Conceived from the
idea that a particular non-covalent interaction would have a typical geometric profile,
we model a distribution of types and positions of ligand atoms conditioned on a
pocket structure and corresponding interaction patterns. Considering a local chemical
environment confined by neighboring pocket atoms, our model determines how to
design a ligand to fulfill the desired interaction. To our best knowledge, this is the
first attempt to model the 3D binding structure of ligands regarding protein-ligand
interactions and a local chemical environment of a binding pocket.

2 Results

2.1 Interaction-focused 3D Molecular Generative Framework

We demonstrate two molecular generation tasks - ligand elaboration and de novo
ligand design - inside a target binding site. The former task aims to grow a known
pharmacophore to improve its potency. The latter aims to design a ligand from scratch,
providing diverse structures that can fit in a target protein. Both tasks are crucial
in structure-based drug design, however challenging due to the enormous size of the
chemical space and the complicated chemical environment of a binding site.

Our framework utilizes protein-ligand interaction information to guide ligand gen-
eration in a 3D pocket-constrained space. While sequentially adding atoms to a ligand,
an atom’s type and its position are conditioned by locally surrounding pocket atoms
and a desired type of non-covalent interactions. The framework consists of two main
stages as illustrated in Fig. 1; in the first stage, the framework investigates pocket
atoms to designate possible interaction types from a known binding site. We use
four types of non-covalent interactions - hydrogen bonds, salt bridges, hydrophobic
interactions, and π-π stackings. Since we used the PDBbind 2020 dataset[35], which
originated from the protein data bank(PDB)[36, 37], we only consider the four most
dominant interaction types in the PDB.[38]

In the second stage, a ligand is sequentially built up based on the 3D context of
a pocket and the interaction condition preset from the first stage. For this purpose,
we devised a deep generative model named DeepICL(Deep Interaction-Conditioned
Ligand generative model) for carrying out the generation tasks. For the ligand elabo-
ration task, a binding structure of a pharmacophore is specified and used as an initial
state. In the de novo ligand design task, one can manually select a point inside a
pocket, which serves as a starting point. For convenience, we use a center-of-mass of
each reference ligand in the following experiments. Since the ligand elaboration is a
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truncation of a whole generation process, we formulate only the case of whole ligand
generation in the next section.

Fig. 1 An illustration of a proposed interaction-focused 3D ligand generative framework. The first
stage profiles a protein pocket to designate an interaction pattern on each protein atom. The next
stage then sequentially adds ligand atoms inside a protein pocket based on a predetermined interaction
condition.

2.1.1 Factorizing a Probability Distribution of Ligand Structure

The goal of the second stage of our framework is to model a probability distribution
of a ligand conditioned on a target protein and the interaction patterns. We represent
a ligand and a protein as a set of atoms, L := {Li} and P := {Pj}, respectively. Each
ligand atom, Li, is defined as a tuple of an atom type, Xl

i ∈ RF l

, and an atom position,
rli ∈ R3. Similarly, each protein atom, Pj , is represented by an atom type, Xp

j ∈ RFp

,

and its position, rpj ∈ R3. Note that F l and F p denote the dimension of atom features
for a ligand and a protein, i and j correspond to a ligand atom and a protein atom
index, respectively. Details of atom features are summarized in Appendix A.1. The
main objective is to model a conditional probability distribution, p(L|P, I), where
I indicates the interaction pattern obtained from the first stage of the framework.
We factorize the conditional distribution in an autoregressive manner similar to cG-
SchNet[39], where the probability of the upcoming ligand atom depends on the existing
atoms. By defining a protein-ligand complex at a time step t as Ct := ({Li}ti=1, {Pj}),
we can formulate the factorization as follows:

p(L|P, I) =
T∏

t=1

[
p(Lt|{Li}t−1

i=1, {Pj}, I)

]
· p(stop|L,P, I)

=

T∏
t=1

[
p(Lt|Ct−1, I)

]
· p(stop|L,P, I), (1)
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where T is the number of ligand atoms. p(stop|L,P, I) is a probability of termination,
which determines when to stop the generation. We further factorize the conditional
probability of a ligand atom at a time step t as:

p(Lt|Ct−1, I) = p(Xt|Ct−1, I) · p(rt|Xt, Ct−1, I) (2)

so that the position of the next ligand atom depends on its atom type. We regard both
probabilities of the atom type and position as a joint distribution over each preceding
atom in Ct−1:

p(Xt|Ct−1, I) ∝
t−1∏
i=1

p(Xt|Li, I) ·
∏
j

p(Xt|Pj , I), (3)

p(rt|Xt, Ct−1, I) ∝
t−1∏
i=1

p(d ll
t,i|Xt, Li, I) ·

∏
j

p(d lp
t,j |Xt, Pj , I), (4)

where d ll
t,i and d lp

t,j are Euclidean distances between corresponding pairs of atoms,
respectively. We assume that the type and position of a ligand atom mostly depend
on its proximal protein atoms since a non-covalent interaction between a protein
and a ligand happens between closely contacting atom pairs. Hence, the probabilities
conditioned on protein atoms can be approximated as follows:∏

j

p(Xt|Pj , I) ≃
∏

j∈Nk(t∗)

p(Xt|Pj , I), (5)

∏
j

p(d lp
t,j |Xt, Pj , I) ≃

∏
j∈Nk(t∗)

p(d lp
t,j |Xt, Pj , I), (6)

where Nk(·) yields k-nearest neighboring pocket atom indices of a given ligand atom
index and t∗ is an index of a ligand’s atom-of-interest at a time step t which is sampled
from an available set of ligand atoms. This approximation enables the atom addition
to be rationally guided by a local pocket environment to enhance the possibility of
constructing protein-ligand interactions.

2.1.2 Interaction Condition

In this work, we promote an interaction pattern between a protein and a ligand to guide
a 3D generation of a ligand. Recently, Zhang et al.[34] built a conditional RNN-based
molecular generative model which used interaction fingerprints(IFPs) to incorporate
protein-ligand interaction information in SMILES generation. Likewise, we develop
a protein atom-based local interaction conditioning strategy. Since k-nearest pocket
atoms are captured at each atom addition, the corresponding local interaction condi-
tion is set instead of using the whole information at every step. This can mimic how
the practitioners think to design a ligand molecule for a given target; they aim to
build a ligand molecule to form a favorable interaction with the target by reflecting
its proximal pocket environment.
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Here, we define an interaction condition as a set of protein atoms’ interaction
classes, I := {Ij}, which indicates whether the atom can be involved in a particular
interaction and its role in the interaction. Protein atoms are categorized into one of
7 classes - anion, cation, hydrogen bond donor and acceptor, aromatic atoms for π-π
stacking, hydrophobic atoms, and non-interacting atoms.

In the training phase, where a ground-truth structure of a protein-ligand complex is
available, we run the protein-ligand interaction profiler(PLIP)[40] to extract an inter-
action condition. This software identifies non-covalent interactions between a protein
and a ligand by analyzing their binding structure. Meanwhile, reference interaction
information might not be available during the sampling phase. In case, we proceed
with rule-based interaction typing of protein atoms using predefined criteria for each
class. For instance, we render SMARTS patterns[41] to determine hydrogen bond
acceptors and donors. More details of the rule-based interaction typing are described
in Appendix D. From the practical perspective, one can manually designate a desired
interaction condition from one’s insight based on the knowledge of the target system.

2.2 Effect of Interaction Conditioning

We first demonstrate the effect of interaction conditioning on the ligand elaboration
task. In drug design processes, it is crucial to construct specific protein-ligand interac-
tions, as this can be directly related to the potency and selectivity of a drug. Supposing
the ”hot spots” of a binding pocket, sites where ligands can readily interact with, are
known, then a generative framework should be capable of designing a ligand that can
favorably interact with these sites. To establish a reasonable guess of hot spots, here,
we extracted interaction patterns from original protein-ligand complexes. From this
setting, we show that the local interaction conditioning strategy enables our model to
satisfy the particular condition while elaborating on a pharmacophore.

Among the test complexes discussed in section 4.1, which belong to protein fam-
ilies different from those in the training data, we selected complexes that exhibit a
wide range of protein-ligand interactions. From the original ligand, we extracted an
interaction condition and removed several chains and functional groups to obtain a
core structure. Fig. 2(a) illustrates several examples of interaction conditions and ini-
tial core structures with the surrounding protein binding pocket. Although interaction
conditions are represented at an atom level, we illustrate them as patches for a better
visual representation.

To analyze how well the resulting ligands satisfy the given condition, we measured
interaction similarities between interaction fingerprints of the original ligand and the
designed ones(for their definitions, see section 4.3). We elaborated each core structure
to generate 1,000 ligands and sampled a ligand with the highest interaction similarity.
The 3D structures of the original(green) and the sampled ligand(cyan), along with
their interaction similarity values, are shown in Fig. 2(b). We confirmed that the
sampled ligand showed a large portion of spatial overlaps with the original ligand and
was well elaborated while avoiding collision with the pocket. For further analysis, we
profiled the interaction between each protein-ligand complex with PLIP software. Fig.
2(c,d) depicts interactions for each ligand in 2D diagrams, where the circles indicate
amino acid residues and the dashed lines indicate the interactions. Different colors are
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used to distinguish interaction types, where circles with multiple colors correspond to
the residues involved in more than one type of interaction. The core structures are
highlighted in each ligand structure. We comprehensively investigated each case by
contrasting the interaction of the sampled ligand(Fig. 2(d)) with that of the original
ligand(Fig. 2(c)) to rationalize the high interaction similarities.

For the first case, which is displayed in the left column of Fig. 2, ligands were
elaborated from azabicyclo[2.2.1]heptane to fit in the bone morphogenetic protein
1(BMP1, PDB ID: 6bto). The ligand sampled from our model, DeepICL, successfully
constructed hydrogen bonds, π-π stacking, and salt bridges as the given interaction
condition(d-1). Notably, the result shows that the model can generate the thiophene
ring instead of the original benzene ring to construct π-π stacking with TYR68. It
implies that the model learns the characteristic of aromatic motifs, which avails to form
a π-π stacking. Although the model added the aliphatic carbons near the hydropho-
bic PHE157, the distance was slightly larger than the threshold to be profiled as a
hydrophobic interaction.

Another example is an elaboration of 2-(oxan-3-yloxy)oxane, a skeletal structure
of a disaccharide, to fit in the fibroblast growth factor-1(FGF1, PDB ID: 3ud9, the
middle column of Fig. 2). Since the original ligand forms multiple hydrogen bonds with
neighboring backbone atoms and the polar side chain of ASN9(c-2), the interaction
condition extracted from the original complex is expected to induce the model to
generate hydrogen bond acceptors on the core structure. Indeed, DeepICL successfully
designed a ligand of an identical interaction pattern with the original complex by
generating phosphate and carboxylate groups instead of a sulfate(d-2). Interestingly,
LYS119 formed a hydrogen bond with an equatorial hydroxyl group of the generated
ligand, where the original ligand possesses an axial methoxy group that is directed
away from LYS119.

Lastly, we generated ligands from the benzene inside the pocket of the dihydrofolate
reductase(DHFR, PDB ID: 1dis, the right column of Fig. 2). The original complex
shows a sophisticated interaction pattern, including multiple salt bridges and π-π
stackings(c-3). The sampled ligand contains a guanidine moiety similar to the original
ligand so that it can form a salt bridge and hydrogen bonds with surrounding amino
acids simultaneously(d-3). Additionally, the pyruvate-like group of the sampled ligand
could form both a hydrogen bond and a salt bridge with ARG31. However, the sampled
ligand could not interact with HIS28, which the original ligand forms a salt bridge
with.

We further carried out an ablation study to validate the effect of the interaction
conditioning. We masked the interaction condition I to neglect the information about
both the interaction and non-interaction. We compared the distribution of interaction
similarities from two different sets of generated ligands. Fig. 2(e) clearly shows that
the ligand elaboration guided by the interaction information of the reference ligand
achieves higher interaction similarities. In addition, the results show multi-modal dis-
tributions, which happened from the construction of particular motifs that can form
multiple interactions existing in the original complex. For instance, whether the model
constructs a hetero-aromatic ring at the position near PHE30 and ASP26 of DHFR
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plays a critical role in the subsequent bimodal distribution(e-3). More examples from
the ligand elaboration task are provided in Appendix G.

2.3 Binding Stability Analysis of Elaborated Ligands with
Short MD Simulation

In section 2.2, we justified that our framework can design ligands that satisfy a spe-
cific interaction condition. Then the question follows: do the designed protein-ligand
interactions from our framework actually contribute to the protein-ligand binding?
We aim to validate the benefit of an interaction conditioning strategy in designing a
ligand that can stably bind to a target protein. The ligand might change its binding
pose dramatically or even be detached from the target if its interaction is unfavorable.
Thus, we postulate that a well-designed ligand would undergo less conformational
change while bound to a protein.

We adopt a short MD simulation to measure the conformational change of ligands
while considering the solvation and protein flexibility. Albeit the large coverage of long
MD simulation, short simulation(∼10 ns) has proved its ability to discriminate the
correct binding poses in a virtual screening scheme.[43, 44] From the MD trajectories,
the root-mean-square deviations(RMSDs) of ligand structures are calculated to evalu-
ate their binding stabilities. Protein backbone structures from each frame are aligned
to capture the ligand movement only.

We conducted a comparison between two sets of elaborated ligands, which were
generated with and without interaction information, using the same test complexes
as in section 2.2. Here, we used rule-based interaction typing, which we described in
section 2.1.2, instead of using the reference information to enable diverse interactions.
From both sets of elaborated ligands, we randomly sampled ten ligands in which the
number of heavy atoms was the same as that of the original ligand. In this manner,
we could strictly compare the quality of the ligand elaboration, which undergoes an
identical number of atom addition.

We plotted ligand RMSDs during each simulation in Fig. 3. RMSD values of ten
sampled ligands were averaged, and the 95% confidence interval was depicted. Blue
curves indicate the elaborated ligands guided by rule-based interaction typing, while
red curves indicate the ligands elaborated without the information. Grey curves illus-
trate the ligand RMSDs of original ligands, regarded as baselines of rational binding
stabilities. In every case, a set of ligands elaborated with the help of interaction con-
ditioning showed smaller RMSDs than the ones without. This tendency implies that
the strategy is capable of designing a ligand with a stable binding pose. Especially,
Fig. 3(a) shows a clear difference between the two sets of BMP1, where the ligands
generated without the information showed extensive deviations in their binding poses.
The ligands that employed the interaction information achieved comparable binding
stability with the original, showing that the ligands designed from our strategy can
favorably interact with a target.

Fig. 3(b) exhibits a large fluctuation in ligand RMSDs in the FGF1 case. We ratio-
nalize this result by recalling the structure of FGF1 in Fig. 2(b), where the original
ligand is less surrounded by protein atoms and attached to the target only with mul-
tiple hydrogen bonds. Hence, the construction of hydrogen bonds was exceptionally
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Fig. 2 Illustration of the effect of interaction conditioning. (a) Initial core structures and surfaces
of binding pockets marked with interaction conditions, (b) original ligands and sampled ligands with
top-1 interaction similarities, (c-d) diagrams of profiled interactions between the pocket and the
original ligands or the sampled ligands, and (e) distributions of interaction similarities of ligands
generated with and without interaction information of the reference ligand. Left: bone morphogenic
protein 1(BMP1, PDB ID: 6bto), middle: fibroblast growth factor 1(FGF1, PDB ID: 3ud9), right:
dihydrofolate reductase(DHFR, PDB ID: 1dis). We visualized the protein surface and the ligand
structure in 3D via PyMOL software.[42]

crucial to stabilize the ligand binding in this case. Although the overall ligand RMSD
values are high, the ligands elaborated with the interaction information exhibit rela-
tively low ligand RMSDs. Additionally, Fig. 3(c) illustrates ligand binding stabilities
of DHFR. The ligands of DHFR moved in a much narrower region than in other cases
for both sets. The result suggests that the generation of a ligand directly inside a
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well-defined binding pocket can be advantageous to achieve fair binding stability, even
without the help of an interaction condition.

Fig. 3 Plots of ligand RMSDs during short MD simulations to evaluate the ligand binding stability
toward target proteins: (a) BMP1, (b) FGF1, and (c) DHFR. Red and blue curves depict the averaged
RMSDs of ten sampled ligands of each generated set with 95% confidence intervals. Grey curves show
ligand RMSDs of the original ligands.

2.4 Exploring Modeled Intermolecular Geometry in de novo
Ligand Design

We analyzed the overall structure of a target protein and corresponding generated lig-
ands to reveal whether the intermolecular geometric distributions of each interaction
type follow the observed distributions. For each type of protein-ligand interaction,
the more stable structural pattern will be more populated, having a specific geomet-
ric distribution. Thus, how accurately the generative model reproduces the observed
geometric distribution of each interaction type can serve as empirical evidence for the
model’s understanding of protein-ligand interactions. However, recent deep generative
modeling approaches for structure-based ligand design have neglected the evaluation of
protein-ligand interactions at a geometric level, instead focusing solely on the ligand’s
intramolecular geometry. In this section, we validate the performance of our frame-
work by analyzing the interatomic distances between the atom-atom pairs involved in
a particular protein-ligand interaction.

Here, we performed a de novo ligand design task; entire ligand atoms are generated
instead of starting from a core structure. We used the interaction condition obtained
from the original ligands. We first generated 100 ligands for each of the 100 test
pockets and analyzed the interatomic distances between them. We plotted the distance
distributions of each interaction type in Fig. 4. The blue histogram represents the
training data, while the red histogram represents the generated data.

Fig. 4(a) shows a distance distribution of hydrophobic interactions, the most com-
mon type in the PDB.[45] Our DeepICL effectively captured the observed trend of
density decaying as the distance decreases. As the distance of hydrophobic interaction
is defined between two hydrophobic carbons, the plot shows that the model avoids
spatial hindrance while adding a carbon atom. The distances are mostly populated at
around 3.8 Å, much longer than hydrogen bonds or salt bridges, in accordance with
the observed tendency.
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Next, Fig. 4(b) shows a distribution of hydrogen bonding distance. It is known that
heavy atoms involved in a hydrogen bond are separated at a median distance of around
3.0 Å.[45] The distribution from the generated data also shows a peak near 3.0 Å,
overlapping with the tendency. Fig. 4(c) shows a distance distribution of salt bridges
measured between two charge centers. The generated distribution shows a decaying
pattern similar to the training data. Still, our model has room for improvement as the
sharp peak near 3.5 Å does not appear on the generated distribution.

Finally, Fig. 4(d) demonstrates a distribution of π-π stacking distances, which is
defined between two centers of aromatic rings. The distance distribution of π-π stack-
ings exhibits bimodal behavior, each from the parallel and the perpendicular stackings.
Generating a π-π stacking geometry poses a particular challenge for our model, as
it requires adding multiple atoms in the same plane to construct an aromatic ring.
Moreover, the lack of explicit information about an aromatic ring center during the
generation process increases the difficulty of the task; these combinatorial requirements
must be fulfilled to form a π-π stacking. Although the generated distribution deviates
slightly from the training data, it apparently represents the two distinct modes.

Fig. 4 Distributions of protein-ligand intermolecular distances for (a) hydrophobic interactions, (b)
hydrogen bonds, (c) salt bridges, and (d) π-π stackings of the reference training data(blue) and the
generated data(red).
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2.5 Chemical Diversity and Novelty of Designed Ligands

Achieving high chemical diversity is another essential goal in structure-based lig-
and design, which can be assessed in terms of the diversity of core structures or
scaffolds.[46–48] Although the overall structure of a molecule is novel, if it shares the
same scaffold with existing drugs, it may be considered less innovative and, therefore,
less likely to be accepted for drug development. Thus, we evaluated the diversity and
novelty of generated ligands by enumerating Bemis-Murcko scaffolds[49] within the
generated data. We compared them with the training data and the bioactive chemical
database, ChEMBL[50, 51].

We first evaluated the chemical diversity in terms of the uniqueness of scaffolds
among the 10,000 generated ligands in section 2.4. Out of the 9,679 extracted scaf-
folds, duplicates were removed to yield 5,667 unique scaffolds or a scaffold uniqueness
of 58.6%. For comparison, we also assessed the scaffold uniqueness of the training
data. It possesses 5,783 unique scaffolds out of 10,752, resulting in a scaffold unique-
ness of 53.8%. Notably, our framework achieves greater diversity than the training
data, despite using the interaction condition extracted from the reference ligands. We
conducted further analysis on the ten most commonly appearing scaffolds among the
generated ligands(Fig. H3(a)). Our model generates the benzene ring most frequently,
which is also the most prevalent scaffold in the training data. Our model also gener-
ates molecules with scaffolds that are less frequently observed in the training data;
diphenylmethane ranks 6th among the generated ligands, whereas it is in 17th place
in the training ligands. Thus, our model does not solely follow the observed structural
priority of the training data.

Then, we evaluated the structural novelty of the generated ligands at the scaffold
level. We examined whether a generated ligand shares its scaffold with any compounds
in the ChEMBL database. We used 1,568,892 compounds in the ChEMBL database,
of which the molecular weight is under 500. Among the 10,000 generated ligands,
4,975 molecules exhibit novel scaffolds that are not present in the ChEMBL database.
About half of the generated ligands comprise novel scaffolds, demonstrating that our
model generates unique scaffolds instead of relying on those from the training data.
A few examples are illustrated in Fig. H3(b).

2.6 Site-specific Interaction Conditioning

To demonstrate the broader applicability of our approach, we applied our generative
framework to ligand design tasks specialized in particular target systems. One of the
key advantages of our framework is the possibility to establish the interaction condition
manually, guiding the ligand design based on one’s insight. Hence, we set the specific
interaction condition coinciding with the objective of each task. Here, we chose two
well-known tasks where interactions at specific locations play a crucial role.

12

https://doi.org/10.26434/chemrxiv-2023-jsjwx ORCID: https://orcid.org/0000-0001-7499-2063 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-jsjwx
https://orcid.org/0000-0001-7499-2063
https://creativecommons.org/licenses/by-nc-nd/4.0/


2.6.1 Selective ligand design of a double-mutated epidermal growth
factor receptor(L858R/T790M EGFR)

The first task is to design ligands that can selectively bind to a mutant epidermal
growth factor receptor(EGFR) while sparing the wild-type EGFR. A leucine-to-
arginine mutation at residue 858(L858R) in a kinase domain of EGFR is one of the
most frequently observed causes of non-small-cell lung cancer.[31, 52] Despite the early
trials that have developed drugs to target the single-site mutated EGFR, patients
often exhibit drug resistance due to the gate-keeper mutation of T790M.[53–55] Thus,
developing a drug to selectively inhibit an L858R/T790M double-mutated EGFR while
sparing the wild-type EGFR to prevent an off-target effect is a clinically important
problem. Nevertheless, the task is exceptionally challenging due to the identical nature
of the rest of the protein sequence, except for the two mutated residues, which leads
to a remarkably conserved set of target structures.

We conceived from the idea that if a ligand strongly interacts with the mutated
residues, the ligand will favorably bind to the mutated pocket more than the wild-type.
Primarily, we retrieved complex structures of a wild-type and a double-mutated EGFR
reported by Sogabe et al.(PDB ID: 3w2s and 3w2r, respectively)[53] Two complexes
share the same ligand and have a similar pocket structure. Then, we underwent de
novo ligand generation inside the double-mutated pocket(3w2r). To selectively target
the two mutated residues, we manually designated the possible interaction types of the
atoms of MET790 and ARG858 while sparing other atoms. We used this site-specific
conditioning strategy, which informs the model about the explicit position and type
of interactions, to gain selectivity.

After generating 1,000 ligands inside the double-mutated EGFR, we also placed
them in the aligned pocket of the wild-type EGFR. We then carried out a local
optimization followed by energy scoring via SMINA[56], a docking software based
on AutoDock Vina[57], for each pocket. We selected a well-designed ligand with a
visual inspection among the ones predicted to have a selectivity toward the mutated
EGFR by forming desired interactions and provided its structure in Fig. 5(a). The
ligand is forming hydrophobic interactions with a side chain of MET790 while form-
ing a hydrogen bond with a backbone of ARG858. Although not all of the generated
ligands exhibit strong interactions with the mutated residues, the utilization of site-
specific conditioning allows for the identification of a desirable molecule by generating
just 1,000 molecules. Additional statistics regarding predicted binding affinities of
generated ligands on the wild-type and mutated EGFR are provided in Appendix I.

2.6.2 Designing hinge binders of Rho-associated protein kinase
1(ROCK1)

The next is to design hinge binders of Rho-associated protein kinase 1(ROCK1). The
ATP binding site of ROCK1 contains a hinge region that recognizes the adenine moiety
through multiple hydrogen bonds.[58] Hence, ROCK1 inhibitors are often designed to
target the hinge region, thus called hinge binders.[59, 60] We retrieved the ROCK1
structure reported from Li et al.(PDB ID: 3v8s)[59]. In the complex, the ligand forms
hydrogen bonds with the carbonyl oxygen of GLU154 and the amide nitrogen of
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MET156 within the hinge region. To design hinge binders that can form hydrogen
bonds with both residues, we conditioned the carbonyl oxygen and the amide nitrogen
as hydrogen bond acceptor and hydrogen bond donor, respectively.

We generated 100 ligands inside a pocket of ROCK1, and their structure ensem-
ble is shown in Fig. 5(b). The yellow dashed lines indicate hydrogen bonds formed
between hinge residues and the original ligand. Our framework successfully generated
polar functional groups containing nitrogen or oxygen atoms near the hinge region, as
highlighted with a white dashed circle. This implies that our generative framework is
capable of designing hinge binders.

Fig. 5 (a) An example of a well-designed ligand that is expected to possess a selectivity toward
double-mutated EGFR. Its interactions with mutated residues are shown in yellow dashed lines. (b)
Designed ligands inside a ROCK1, where the hinge binding region is specified with a white dashed
circle. Each pocket surface is colored grey.

3 Conclusions

In this work, we demonstrated the significance of incorporating prior knowledge for
guiding a deep generative model to learn more informative features from the raw data.
As a practical example, we employed the concept of protein-ligand interaction to gen-
eralize a deep generative model for structure-based ligand design. Conceiving from the
idea that the patternization of protein-ligand binding structures can render a sophisti-
cated contact surface more understandable, we focused on the local geometric patterns
of non-covalent interactions. In this manner, we developed an interaction-focused gen-
erative framework that utilizes a local interaction conditioning strategy. Our main
model, DeepICL, is trained to reconstruct the ligand structure with the interaction
pattern profiled from the original protein-ligand complex. The results showed that
the modeled probability distributions of atom-atom distances between a pocket and
a ligand follow the observed distributions of each interaction type in experimental
structures. Also, our model could reproduce the desired interaction condition with a
different elaboration from the original core structure. Furthermore, ligands generated
from the pocket-extracted interaction condition gained higher binding stabilities than
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the ones generated without the interaction information. While chemical diversity and
novelty can be a pitfall of a conditional molecular generative modeling scheme, ligands
designed from the specific interaction condition included highly diverse and innovative
scaffold structures.

Our proposed framework can enjoy further practical advantages when specific
residues of a target binding site are known to play a crucial role in the pharma-
ceutical perspective. We demonstrated two such tasks - designing selective ligands
toward a mutant pocket and designing hinge binders of a kinase. We introduced the
site-specific conditioning scheme by manually setting up a condition to target the
residue-of-interest. This scheme increases the chance of sampling a ligand satisfying
the desired chemical properties by forming the interaction as expected. We, therefore,
suggest that employing the proper prior knowledge can be a benign navigator for deep
generative modeling in a variety of fields.

4 Materials and Methods

4.1 Training and Test data sets

We used the 2020 version of the PDBbind general set[35], consisting of X-ray crystal
structures of 19,443 complexes. We split the data via protein sequence similarity with
a 60% cutoff, which is calculated and clustered by CD-HIT software[61]. As a result of
data processing, we used 11,284 structures for training our model and 2,109 structures
for validation. We filtered out the rest of the data to leave 100 test complexes that
satisfy the following three conditions: ligand’s Tanimoto similarity is less than 0.6 with
all the ligands in the training set, every data corresponds to distinct protein families,
and the number of protein heavy-atoms is less than 300.

4.2 DeepICL

As briefly introduced in section 2.1, DeepICL is a deep generative model that designs
a ligand suitable for a specific protein pocket, taking a given interaction condition
into account. DeepICL utilizes information about the 3D structure of the binding
pocket and its corresponding interaction pattern to produce a 3D binding structure of
a newly designed ligand. We adopt a variational auto-encoder(VAE) architecture[62]
consisting of two main modules, an encoder, and a decoder, as illustrated in Fig 6.
The encoder module encodes the structure of a given protein-ligand complex, L and
P, into a latent vector z that follows a standard normal distribution. The decoder
module then sequentially generates a ligand structure in an atom-wise manner from
the latent vector z. The interaction condition is integrated into the latent vector z
for placing a suitable ligand atom to form a desired interaction with the target. The
encoder and decoder modules share the same embedding layers, which are composed
of multiple layers of E(3)-invariant interaction network that propagates the messages
between a protein and a ligand. More details about the model architecture can be
found in Appendix A.

DeepICL employs two additional dummy atoms that only hold positional informa-
tion, the center-of-mass and the atom-of-interest, to assist the ligand design process as
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in the work of G-SchNet[63]. The center-of-mass of the original ligand roughly deter-
mines a global position of a ligand to be generated. The atom-of-interest confines a 3D
space where the next ligand atom would be placed; only its neighboring protein atoms
are concerned in the prediction of the next atom type and its position in each step.
Consequently, DeepICL can learn the relationship between a local pocket environment
and a structural preference of a ligand to fulfill the given interaction condition, lever-
aging the robustness of DeepICL in ligand design tasks for any protein. The above
two dummy atoms are treated as individual ligand atoms in the training and sampling
process. Then, they are removed when finalizing the ligand structure.

Fig. 6 Illustration of the model architecture of DeepICL. The encoder module(qϕ) is trained to
encode a whole protein-ligand complex(L,P) and corresponding interaction condition, I, into a latent
vector z which follows a prior distribution. The decoder module(pθ) is trained to reconstruct the
ligand structure from the given protein pocket and an interaction condition with an autoregressive
process. Note that the decoder of the figure describes a single atom addition step, where a type and
a position of t-th ligand atom is determined from the protein-ligand complex of step t− 1.

4.2.1 Training DeepICL

The training objective of DeepICL is to predict the next atom, Lt, from a previous
complex state, Ct−1, and the atom-of-interest, Lt∗ . Since there is no canonical order
in an atom-wise designing process, we randomly traverse a trajectory of placing atoms
of a ligand in each training epoch. The next atom is always picked from the atoms
covalently bonded to the atom-of-interest in the original ligand. DeepICL then learns
the likelihood of a type of the next atom and its position.

For each step of an atom placement, DeepICL is trained to predict the next
atom type, Xt, and its position, rt, based on the previous complex state, Ct−1, the
latent vector, z, and interaction condition, I. DeepICL embeds the information of
Ct−1 into two sets of hidden vectors for the ligand and protein, hl

t−1 := {hlt−1,i}
and hp

t−1 := {hpt−1,j}, respectively. Again, i and j denote the atom index of a ligand
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and a protein, respectively. We use two models for atom type prediction; one model,
θl, predicts the likelihood from already placed ligand atoms, and the other, θp, pre-
dicts the likelihood from k-nearest neighboring protein pocket atoms. We minimize
the Kullback-Leibler(KL) divergence between the predicted atom type distribution,
ptypet , and the ground-truth atom type distribution, qtypet , which is a one-hot encoding
of Xt. Formally, we minimize the following type loss:

ℓtypet =
1

t− 1

t−1∑
i=1

KL(ptypet,i ||qtypet )︸ ︷︷ ︸
ligand-based type

+
1

k

∑
j∈Nk(t∗)

KL(ptypet,j ||qtypet )

︸ ︷︷ ︸
pocket-based type

, (7)

where ptypet,i = pθl(Xt|hlt−1,i, I, z) and ptypet,j = pθp(Xt|hpt−1,j , I, z). We also train the
distance prediction model by minimizing the KL divergence loss for the distance
distribution over the already placed ligand atoms and the proximal protein atoms,

ℓdistt =
1

t− 1

t−1∑
i=1

KL(pdistt,i ||qdistt,i )︸ ︷︷ ︸
ligand-ligand distance

+
1

k

∑
j∈Nk(t∗)

KL(pdistt,j ||qdistt,j )

︸ ︷︷ ︸
ligand-pocket distance

, (8)

where pdistt,i = pθl(d
ll
t,i|Xt, h

l
t−1,i, I, z) and pdistt,j = pθp(d

lp
t,j |Xt, h

p
t−1,j , I, z). Here, qdist

is a Gaussian expansion of a ground-truth distance, whose detailed definition can be
found in Appendix A.1.

We note that the training losses on pocket atoms incorporate only k-nearest neigh-
boring pocket atoms that are close to a ligand atom-of-interest so that the type of a
newly added ligand atom is determined solely based on the surrounding local chemical
environment. The atom type loss, ℓtypet , and distance loss, ℓdistt , are minimized simulta-
neously to train the model to reconstruct a ligand structure. Thus, the reconstruction
loss can be written as follows:

ℓrecon =
∑
t

[
ℓtypet + ℓdistt

]
. (9)

The VAE architecture of DeepICL also requires a minimization of the following
additional loss known as the regularization loss:

ℓreg = KL(qϕ(z|L,P, I)||p(z)), (10)

where p(z) is a standard normal distribution.

4.2.2 Designing ligands with DeepICL

DeepICL produces a ligand in three stages, 1) initialization, 2) sequential addition of
atoms, and 3) termination of the process.
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In the initialization stage, two additional dummy atoms, the center-of-mass and
atom-of-interest, are combined into C0 to guide the overall sampling process. The
center-of-mass remains unmoved throughout the entire sampling process, whereas the
atom-of-interest moves its position to one of the already placed ligand atoms in each
addition step. Although one can manually select an arbitrary point as a starting point,
in this work, we choose the center-of-mass of a reference ligand for convenience. In
order to increase the diversity of generated ligands and decrease the dependency on
the center-of-mass of the original ligand, we introduce a roto-translational Gaussian
noise during a sampling phase. For the ligand elaboration task, where the generation
starts from a pre-defined core structure, the initial structure is noised without the
change in internal coordinates. More details about the Gaussian noise can be found
in Appendix C.1.2.

In the second stage, DeepICL designs a ligand by sequentially adding new atoms.
Based on the initialized state, DeepICL predicts the following atom type and its
position autoregressively. Each likelihood of type and position is composed of the like-
lihoods obtained from the ligand and protein sides, respectively. Thus, we integrate
them as follows:

log p(Xt|Ct−1, I) ∝
t−1∑
i=1

log ptypet,i + λ
∑

j∈Nk(t∗)

log ptypet,j , (11)

log p(rt|Xt, Ct−1, I) ∝
t−1∑
i=1

log pdistt,i + λ
∑

j∈Nk(t∗)

log pdistt,j . (12)

Here, λ is a pocket coefficient that tunes a contribution of a pocket in determining the
next atom. The value of λ is determined depending on how far an upcoming ligand
atom is apart from pocket atoms. We tempt to decrease the contribution of the pocket
if the ligand atom is placed away from the pocket since the protein-ligand interaction
occurs at a short range. The detailed approach is explained in Appendix C.2.

If DeepICL predicts the STOP sign for the next atom type, the current atom-
of-interest t∗ is marked as unavailable and no longer selected as an atom-of-interest.
Then, the next atom-of-interest, (t+ 1)∗, is sampled from a currently available set of
ligand atoms and used for the next step. The sampling process terminates when every
placed ligand atom is marked as unavailable. As a result, DeepICL yields a ligand
structure designed inside a target pocket.

4.3 Interaction Fingerprint and Interaction Similarity

We define interaction fingerprint and interaction similarity to evaluate how well the
sampled ligands satisfy the given interaction condition. The interaction fingerprint
describes the pattern of a protein’s interaction with a specific ligand at an atom level.
Each protein atom falls into one of four classes depending on the type of interaction it
is involved in - hydrogen bond, hydrophobic interaction, salt bridge, and π-π stacking -
to represent a one-hot vector. Unlike the interaction condition we introduced in section
2.1.2, the non-interaction class is neglected to build an interaction fingerprint. We then
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concatenate all the atom-wise one-hot vectors to obtain an interaction fingerprint as
a single vector while preserving the atomic order in the protein. This ensures that the
resulting interaction fingerprints can be compared across different ligands bound to a
single target.

Next, we define interaction similarity as a cosine similarity between the interaction
fingerprints of two ligands for a single target. To measure how well the ligand satis-
fies the given condition, we use the interaction fingerprint obtained from the original
ligand as a reference to compare with those of the generated ligands. High interaction
similarity indicates that the sampled ligand possesses an interaction pattern similar to
that of the original ligand. Hence, it follows the given interaction condition. With this
interaction similarity metric, we can quantitatively evaluate the performance of our
local interaction conditioning strategy to control the ligand design process. We note
that a low interaction similarity does not necessarily imply a low binding affinity for
the sampled ligand. Still, the ligand may have the potential to form a better binding
with a target by adopting a different interaction pattern compared to the original one.
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Appendix A Model architectures of DeepICL

A.1 Node and edge features

The input node features of ligand and protein atoms, Xl
i ∈ RF l

and Xp
j ∈ RFp

, are
used as described in the Table A1. Each of the features is represented as a one-hot
vector of a corresponding category. Only an atom type is used for a ligand atom feature,
while more informative features are used for a protein atom feature by concatenating
every one-hot vector. The resulting feature dimension of a ligand and a protein atom
are F l = 9 and F p = 51, respectively. Initial node features of a ligand and a protein
are then embedded into a hidden dimension Fh with a single linear layer.

Ligand atom feature, Xl
i Available list

Atom type C, N, O, F, P, S, Cl, Br, stop (one-hot)

Protein atom feature, Xp
j Available list

Atom type C, N, O, F, P, S, Cl, Br, else (one-hot)
Atom degree 0, 1, 2, 3, 4, else (one-hot)

Hybridization s, sp, sp2, sp3, sp3d, sp3d2, else (one-hot)
Formal charge -2, -1, 0, 1, 2, 3, else (one-hot)
Amino acid type G, A, V, L, I, C, M, F, Y, W, P, S, T,

Q, N, D, E, H, R, K, else (one-hot)
Aromaticity 0 or 1

Table A1 The table of used node features of ligand and protein atoms, and each available item
list for a one-hot vector

We used the Gaussian expansion of a distance between the i-th and j-th nodes as
an edge feature, eij := {en(dij)}Nn=1. Each Gaussian distribution is located at each
center value of a distance bin, where a total distance is divided into N bins with a
spacing of ∆µ. The smoothness of the expansion is controlled by γ. Formally,

en(dij) =
e−γ(dij−n∆µ)2∑N−1

n′=0 e
−γ(dij−n′∆µ)2

. (A1)

Specific values of each hyper-parameter will be summarized in Appendix E.

A.2 E(3)-Invariant interaction network architecture

While updating the node features of a protein and a ligand, we devise an E(3)-
invariant interaction network that can propagate the inter- and intra-molecular
messages between a protein and a ligand. A single layer of the network consists of three
steps: inter- and intra-molecular message calculation and aggregation(equation A2 to
A5), gate coefficient calculation(equation A6), and node feature update(equation A7).
Formally,

mk→i = ϕintra(h
l
k, h

l
i, eki), ml→j = ϕintra(h

p
l , h

p
j , elj), (A2)
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µl→i = ϕinter(h
p
l , h

l
i, eli), µk→j = ϕinter(h

l
k, h

p
j , ekj), (A3)

mi =
∑
k

mk→i, mj =
∑
l

ml→j , (A4)

µi =
∑
l

µl→i, µj =
∑
k

µk→j , (A5)

zi = ψgate(mi, µi), zj = ψgate(mj , µj), (A6)

hli
′
= χl

(
hli, zi ·mi + (1− zi) · µi

)
, hpj

′
= χp

(
hpj , zj ·mj + (1− zj) · µj

)
. (A7)

For convenience, subscript i, k denotes ligand atom indices, and j, l denotes protein
atom indices. ϕintra, ϕinter, and ψgate are learnable models shared on both a ligand and
a protein. ϕintra and ϕinter are multi-layer perceptrons (MLPs) activated by sigmoid
linear units (SiLUs), while ψgate is a single linear layer followed by a sigmoid function.
Intramolecular message m and intermolecular message µ are linearly interpolated by
a gate coefficient z, then used to update the current node state. The atom feature
updates for a ligand and a protein are done by χl and χp, respectively, which are gated
recurrent units (GRUs)[64].

A.3 Atom type and position prediction model

After node feature updates through multiple layers of E(3)-invariant interaction net-
works, the features are joined with a latent vector, z. After that, only protein node
features are additionally joined with an interaction condition, I. The resulting features
then undergo fully-connected layers into dimensions of type and distance distributions
individually. We used SiLU as an activation function, where final prediction outputs
go through a softmax function for normalization.

Appendix B Training details

B.1 KL divergence loss annealing

A decoder that generates an output in an autoregressive fashion can be susceptible
to the KL-vanishing problem, which might cause undesired model behaviors such as
mode collapse[65, 66]. To mitigate this KL-vanishing problem, one can employ an
annealing schedule for the KL divergence term. Various strategies for the annealing
schedules have been proposed[65–68]. In our study, we adopted the simplest monotonic
KL annealing, gradually increasing the weight of the KL divergence term up to a
predefined value during training. Formally, the weight β(t) is scheduled at t-th epoch
as:

β(t) = βf + (βi − βf ) · ηt, (B8)

where βi is the initial weight, βf is the final wight, and η is the weight annealing
factor. Their specific values used in this work can be found in Appendix E. Thus, our
final loss function can be written as follows:

ℓtotal(t) = ℓrecon + β(t) · ℓreg. (B9)
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Appendix C Sampling details

C.1 Controlling the randomness

In conditional deep generative models, ensuring diversity and novelty in the sampled
outputs is an important concern. One simple way to increase them is by introducing
some randomness into the sampling process. In our study, we control the randomness
of the proposed ligands by employing a temperature factor and a roto-translational
noise to the sampling process using DeepICL.

C.1.1 Temperature factor

As in the work of G-SchNet[63], we use an additional temperature factor that allows
for controlling the randomness of the generation. We reformulate equation 11 and
equation 12, which is to define the likelihood of the next atom type and its position
in the sampling process, to introduce temperature factors τtype and τpos:

p̃(Xt|Ct−1, I, z) =
1

a
exp

(
log p(Xt|Ct−1, I, z)

τtype

)
, (C10)

p̃(rt|Xt, Ct−1, I, z) =
1

b
exp

(
log p(rt|Xt, Ct−1, I, z)

τpos

)
, (C11)

where a and b are normalization constants. Increasing τtype and τpos will smoothen
the predicted probability distributions, adding more randomness to the next atom
prediction, whereas small values will produce sharper distributions, leading to less
randomness.

C.1.2 Adding roto-translational noise

We adopt an additional method that introduces a random noise to the initial state
of the sampling process. We use a different random noise depending on the ligand
design task being considered; in the case of de novo ligand design, a translational
noise is added to the given center-of-mass, whereas a roto-translational noise is added
to the initial ligand core structure for a ligand elaboration task. A translational noise
is simply a vector sampled from a Gaussian distribution in 3D space centered at the
origin with variance σt, which is a hyper-parameter to control the randomness of the
translational noise. Then, the center-of-mass is moved by the vector.

For applying extra rotational noise, the rotation axis is sampled from a uniform
distribution, and its rotational angle is sampled from a Gaussian distribution centered
at the origin with variance σr, which is a hyper-parameter to control the randomness
of the rotational noise. By increasing σt and σr, the initial state will be scattered with
a greater variance, appending more randomness to the ligand sampling process.
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C.2 Determining pocket coefficient

We introduce a pocket coefficient λ in equation 11 and 12 of section 4.2.2, which
controls the weight of a pocket-side prediction during the atom sampling. When the
space where the next atom is going to be added is located far from the pocket, the
dependence of ligand atom types and positions on the pocket diminishes. To reflect
this, we allow the distance between a ligand and a pocket determines the pocket
coefficient. We average the distances between the ligand atom-of-interest and its k-
nearest pocket atoms as described in equation C12. Then, the pocket coefficient λ is
determined by a function defined in equation C13. The function decays as the average
distance, d̄, increases in the region where d̄ is larger than 2.5 Å. We set its decaying
coefficient so that λ ≃ 1 at d̄ = 5.0 Å.

d̄(t∗) =
1

k

∑
j∈Nk(t∗)

dt∗,j , (C12)

λ =

{
10 if 0 ≤ d̄ ≤ 2.5 Å

10 · e−0.91(d̄−2.5) otherwise.
(C13)

Appendix D Rule-based interaction typing details

We used a rule-based interaction typing for a given protein pocket in the case when
no ligand information is available. Atoms involved in salt bridge anions and cations,
hydrogen bond acceptors, and donors are selected by using SMARTS descriptors sum-
marized in Table D2. Since only particular motifs that appear on amino acid chains
are known to have cations or anions, we set SMARTS patterns to fully cover them,
even their resonance structures. Halogen atoms or carbons, which are surrounded only
by carbon or hydrogen atoms, are classified as hydrophobic atoms, and atoms within
aromatic rings are classified as aromatic atoms.

Anion [O;$([OH0-,OH][CX3](=[OX1])),$([OX1]=[CX3]([OH0-,OH]))]
Cation (Lysine) [N;$([NX3H2,NX4H3+;!$(NC=[!#6]);!$(NC#[!#6])][#6])]
Cation (Arginine) [#7;$([NH2X3][CH0X3](=[NH2X3+,NHX2+0])

[NHX3]),$([NH2X3+,NHX2+0]=[CH0X3]([NH2X3])[NHX3])]
Cation (Histidine) [#7;$([$([#7X3H+,#7X2H0+0]:[#6X3H]:[#7X3H]),

$([#7X3H])]1:[#6X3H]:[$([#7X3H+,#7X2H0+0]:
[#6X3H]:[#7X3H]),$([#7X3H])]:[#6X3H]:[#6X3]1),
$([$([#7X3H+,#7X2H0+0]:[#6X3H]:[#7X3H]),
$([#7X3H])]1:[#6X3H]:[$([#7X3H+,#7X2H0+0]:
[#6X3H]:[#7X3H]),$([#7X3H])]:[#6X3]:
[#6X3H]1)]

Hydrogen bond acceptor [$([!#6;+0);!$([F,Cl,Br,I]);
!$([o,s,nX3]);!$([Nv5,Pv5,Sv4,Sv6])]

Hydrogen bond donor [!#6;!H0]

Table D2 SMARTS descriptors for anion, cation, hydrogen bond acceptor, and donor
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Appendix E Hyper-parameter settings

We summarized hyper-parameter settings used during the model training and sam-
pling in Table E3. We used ReduceLROnPlateau module implemented in PyTorch[69],
which reduces a learning rate if there is no improvement in the validation loss for a
fixed number of training epochs until the learning rate reaches a minimum threshold
value.

Hyper-parameters Comments Values

k number of nearest neighbors 8

Fh hidden dimension 128
num interaction layers number of interaction layers 6
num fc layers number of FC layers 3
N number of bins for Gaussian expansion 25, 300
∆µ spacing between distance bins 0.4 Å, 0.05 Å
γ smoothness of Gaussian expansion 10, 50
τtype, τpos temperature factor 0.1, 0.1
σt, σr variance of roto-translational noise 0.2 Å, 2◦

βi, βf KL-divergence annealing initial and final 0.0, 1.0
η KL-divergence annealing factor 0.2

lr initial learning rate 10−3

lr min minimum learning rate 10−6

lr decay lr decaying factor 0.8
lr tol lr decay tolerance epochs 4

Table E3 Descriptions of the notations used in this chapter

Appendix F Molecular dynamics simulation details

In this work, topology and parameter files for the ligands were generated using the
GAFF-2.11 force field[70] via the OpenMM Toolkit[71]. Protein-ligand structures were
solvated in a cubic box using TIP3P water models[72], extending 10 Å from the protein
to provide padding. The systems were neutralized by adding Na+ and Cl− ions.
Periodic boundary conditions were applied to the systems in the NPT ensemble using
the Langevin thermostat[73]. To simulate the interactions, we employed the Amber
FF14SB force field[74]. Equilibration and production runs were performed using the
OpenMM toolkit. Initially, the systems underwent energy minimization followed by 1
ns of equilibration. Production runs were conducted at 303.5 K and 1 bar, using a 2 fs
integration time step. Each protein-ligand complex underwent 10 ns production runs,
initiated with the same initial structure but differently randomized initial velocities. To
assess the stability of ligand binding to the receptor protein, we calculated the ligand
RMSD by aligning the protein structures and measuring the RMSD of the ligand’s
translation and rotation during the simulation. The proteins were superimposed based
on their heavy atom coordinates using MDtraj software[75]. For each protein-ligand
complex, the ligand RMSD was averaged over the entire 10 ns simulation time, yielding
the averaged ligand RMSD value and its variance.
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Appendix G More examples of an interaction
conditioned ligand elaboration task

Here, we provide a few more examples of interaction-conditioned ligand elaboration
results, continued from section 2.2. Five more data points were selected from the
test set, which is composed of human sialidase(PDB ID: 2f0z), beta-lactamase Mox-
1(PDB ID: 4wbg), ubiquitin ligase(PDB ID: 6do4), abscisic acid receptor(PDB ID:
6nwc), and MAP kinase-activated protein kinase 2(PDB ID: 3fpm). With DeepICL,
we sampled 100 molecules starting from the core structures of the original ligands
by using the interaction condition extracted from the original complexes. In Fig. G1,
the first column depicts the binding conformation of the original ligands, and their
core structures are highlighted in orange. The second column shows the structures of
generated ligands that achieved the highest interaction similarities, and the values are
also denoted. Finally, the last column shows shifts in the distribution of interaction
similarities as we use the interaction information rather than using a blank condition.

Notably, similarity distributions have dramatically diverged in the case of human
sialidase(PDB ID: 2f0z). However, one might concern about the chemical diversity of
the generated ligands since the structure of the top-1 ligand is so much similar to
the original ligand(the first row of Fig. G1). Thus, we further provide more molecular
structures of ligands that were generated to target the human sialidase in Fig. G2.
While sharing the common core structure, which is oxane, generated ligands are highly
diverse.
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Fig. G1 More examples of an interaction-conditioned ligand elaboration task. Left column: struc-
tures of original ligands(white) and their core structures(orange), where the surface of surrounding
pockets are shown in grey. Middle column: structures of the most similar ligand molecules elaborated
from each core structure in terms of interaction similarity, and their values are denoted in the bottom
left corner. Right column: distribution of interaction similarities of generated ligands, where the set
of ligands that employs interaction condition clearly shows higher similarities in every case.

26

https://doi.org/10.26434/chemrxiv-2023-jsjwx ORCID: https://orcid.org/0000-0001-7499-2063 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-jsjwx
https://orcid.org/0000-0001-7499-2063
https://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. G2 Additional 64 ligands elaborated from the core structure of the original ligand binding to
human sialidase(PDB ID: 2f0z) are shown. The structures are diverse, although they achieve high
interaction similarities.
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Appendix H Scaffold diversity and novelty of
ligands provided by DeepICL

Fig. H3 (a) Bar graphs illustrating the frequency of the 10 most commonly appearing scaffolds in
the generated set. For each scaffold, the graph displays the log-scaled frequencies in the generated
set(red) and the training set(blue). The labeled numbers on each bar indicate rankings of their
appearing frequencies in each set, respectively. (b) Few examples of novel scaffolds in generated
ligands.

Appendix I Predicted binding affinities for
selectively designed ligands of EGFR

Continued from section 2.6.1, the predicted binding affinities toward the wild-type and
the mutated EGFR are illustrated in Fig. I4. Points above the solid line have lower
scores on the mutated pocket than on the wild-type pocket. As a lower score indicates
a stronger binding affinity, this tendency implies that many of the generated ligands
possess the selectivity toward the mutated EGFR. Red points above the dashed line
are predicted to have 100 times lower inhibitory concentration on the mutated EGFR
than on the wild-type. Since the energy lower by 1.36 kcal/mol corresponds to a 10
times lower inhibitory concentration, we set the difference cutoff as 2.72 kcal/mol.
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Fig. I4 The predicted binding affinity of locally optimized ligands toward both a wild-type EGFR
and a double-mutated EGFR. Red points show 2.72 kcal/mol lower binding affinity(100 times less
inhibitory concentration) for the mutated EGFR.
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