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Abstract 8 

With the continuously growing number of scientific articles on synthesis of nanomaterials, it 9 

becomes impossible for researchers to grasp and comprehend the landscape of synthetic protocols 10 

available for a particular material. The aim of this study is to explore the feasibility of extracting the 11 

collective knowledge on synthesis of a particular material accumulated over the years from the 12 

published corpus of articles and organizing it in a systematic manner.  Accordingly, we developed 13 

methods to perform detailed text mining on a single nanomaterial target for the purposes of 14 

methodology optimisation. Taking the common material ZIF-8 as a case study, we analysed 1600 15 

synthesis protocols to identify trends in parameters, such as reagents, concentrations, and reaction 16 

time/temperature. We used this information to find the distribution of synthesis parameters and 17 

their relationships to one another, identifying the limits of common reaction parameters and 18 

revealing subtle details, such as insolubility of metal acetate reagents in alcoholic solvents, or the 19 

occurrence of amorphous oxides at low stoichiometric ratios. We then clustered similar synthesis 20 

protocols together, using their relative popularity to identify promising regions of the synthesis 21 

phase space for optimisation, reducing the need for brute force synthesis optimisation. The 22 

techniques developed here are a general tool accelerating the synthesis development of a wide 23 

range of nanomaterials by aggregating existing research trends, averting the need for laborious 24 

manual comparison of existing synthesis protocols or repetition of previously-developed techniques. 25 

Introduction 26 

The number of chemical syntheses reported is large and growing exponentially.1 While naturally 27 

indicative of greater scientific progress, this leads to two significant challenges. Firstly, researchers 28 

are confronted with the growing difficulty of maintaining a comprehensive overview and 29 

understanding of the diverse landscape of synthetic routes and conditions accessible for a particular 30 

group of compounds. Secondly, although the repository of published synthesis data contains an 31 

immense wealth of information, its potential for systematic development of new synthesis protocols 32 

remains largely untapped and underutilized. In response to this, various informatics approaches 33 

have been adopted to standardise the data produced during chemical research. For example, the 34 

creation of chemical synthesis ontologies2–4 and automated reactionware5,6 has enabled new 35 

procedures to be directly compared against previously-published data or shared openly through 36 

chemical “programming languages”.7,8 However, the nature of reporting synthesis protocols – as 37 

unformatted prose in a written report – has remained largely unchanged. 38 

As a result, most new publications and the entire body of prior chemical synthesis reports remains 39 

unlabelled, with the potential for far broader data mining and informatics research if these reports 40 

could be standardised. Accordingly, with the advent of text mining methods and natural language 41 

processing (NLP),9 software has been developed to interpret chemical details from the plain text 42 

within chemistry publications10,11 including compound structure,12 reaction stoichiometry,13 and 43 

performance.14 Using these tools, large databases of organic14,15 and inorganic16–19 chemicals and 44 

reactions have been developed and used for novel materials discovery. For example, Cole and co-45 
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workers created a database of organic dyes to identify ideal mixtures for broad-spectrum light  46 

absorption in dye-sensitized solar cells, regardless of the intension of the original studies.15 Similar 47 

strategies have been used by Olivetti and co-workers to analyse how synthesis gel composition and 48 

organic structure directing agent (OSDA) can dictate crystal polymorphs for a range of zeolite 49 

syntheses.16  50 

One weakness of these text mining approaches is their reliance on unambiguous identification of the 51 

chemical entities in question, using named-entity recognition (NER)9,20 and the programmatic 52 

naming conventions defined by IUPAC21 to succeed. In the absence of such well-accepted naming 53 

schemes – as is the case for a variety of emerging nanomaterial families like porous silicas, polymers 54 

of intrinsic microporosity, and covalent organic framework materials – large scale data mining 55 

becomes far less practical. An excellent example of this is metal-organic framework (MOF) materials 56 

- infinite condensation polymers of various organic ligands and metal ions or clusters. There are 57 

millions of possible MOFs,22–25 and hundreds of thousands of frameworks already synthesized,26–29 58 

necessitating data-driven approaches to accelerate progress in the field. However, unambiguous 59 

naming conventions for MOFs have yet to be fully adopted,30 frustrating text-mining of the primary 60 

publications themselves. Instead, informatics methods have largely been driven by the creation of a 61 

subset of the Cambridge Structural Database (CSD)31 focused on MOF materials,28 as these resources 62 

allow researchers to analyse the full range of experimentally known MOF structures, identifying the 63 

best experimentally-realised materials for future research and development. 64 

To accelerate development of experimental procedures to make MOFs, however, data-mining 65 

approaches must look beyond structure into the synthesis protocols leading to different 66 

frameworks. By understanding the relationships between protocol and eventual material, new 67 

synthesis methods can be digitally generated, obviating the need for arduous trial-and-error or 68 

intuition-based approaches.6 To this end, large-scale post-hoc analyses of experimental MOF 69 

synthesis protocols have recently been developed.32,33 These studies apply NLP to the underlying 70 

publications in the CSD MOF subset to interpret their synthesis protocols, identifying such details as 71 

solvents used, specific reagents, solvents, and reaction parameters. As a result, broad descriptive 72 

statistics about the synthesis strategies to produce MOFs have been developed,33 and even 73 

predictive models to suggest synthesis parameters for novel MOF materials when given a 74 

hypothetical structure.32  75 

While these approaches give an excellent overview of the field of MOFs in general, they are 76 

vulnerable to bias in the papers submitting to the CSD. As the database focuses of chemical structure 77 

rather than synthesis protocols, only 1-2 synthesis examples of each framework are included. 78 

Further, the synthesis protocols are generally submitted from initial studies reporting the discovery 79 

of a material, rather than exploring the full range of potential approaches to a single target, meaning 80 

that only a very vague understanding of any individual MOF can be generated with this approach. 81 

For example, while candidate solvents and reaction parameters can be suggested, other salient 82 

parameters such as reagent ratios, product isolation methods, and alternative synthesis strategies 83 

(e.g. hydrothermal or mechanochemical versus solvent crystallisation) cannot. Deeper insight into 84 

individual MOFs and the peculiarities of their synthesis protocols can be gained through targeted 85 

meta-analysis of studies focusing on that particular material,34 enabling regression of product 86 

properties like defect density against synthesis details. However, challenges of manually comparing 87 

synthesis protocols against one another severely limit the scale of such meta-analyses, preventing 88 

their widespread use. 89 

To address these issues, in this article we pose the following questions: can we leverage previously-90 

developed chemistry text mining tools to analyse the synthesis protocols for a single target 91 
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nanomaterial? If so, can we develop methods to process the extracted information on a uniform 92 

basis, enabling like-for-like comparison regardless of original format? Finally, can we harness this 93 

information to accelerate synthesis refinement of the material e.g. by generating proposed synthesis 94 

conditions correlated to high material quality and yield? 95 

As a case study, we consider ZIF-8, a commonly synthesized MOF material which has been 96 

extensively studied within the literature. ZIF-8 is constructed from a combination of zinc ions and 2-97 

methylimidazole in the sodalite topology, held together with metal-amine bonds rather than the 98 

more common metal-carboxylate bonds, thus rendering the material both hydrophobic and water-99 

stable.35,36 Accordingly, ZIF-8 has garnered significant interest in the literature for applications 100 

including gas storage and separation, adsorptive refrigeration,37 biomolecule encapsulation,38 101 

catalysis,39 and sensing.40 Further, ZIF-8 can be synthesized from a number of strategies – for 102 

example using protic or aprotic solvents,41 a range of temperatures,42 reagent concentrations,43 103 

modulators and crystal growth modifiers,44 and acid/base conditions.45 In sum, over 7500 papers 104 

have been published regarding ZIF-8 to date. Given the breadth of synthesis protocols established 105 

for ZIF-8, it practically impossible to manually compare all possible synthesis methodologies to one 106 

another. Applying text mining methods to automatically and quantitively analyse ZIF-8 synthesis 107 

protocols would enable larger-scale analysis and the identification of promising synthesis strategies. 108 

In this study we developed methods to extract and aggregate synthesis protocols in a uniform 109 

format. We studied 1600 synthesis protocols of ZIF-8 and related materials from 3197 original 110 

articles, performing an automated meta-analysis of the synthesis methods contained. We analysed 111 

the chemical identities used alongside quantities and reaction conditions to provide a systematic 112 

design space for ZIF-8, identifying key trends in the approaches used. Finally, we group similar 113 

synthesis protocols together with unsupervised clustering techniques, identifying hidden patterns in 114 

the data.  115 

Methods development 116 

The workflow of extracting and analysing synthesis protocols was split into four overarching steps: 117 

text collection, where a corpus of research papers is identified and downloaded; paragraph 118 

identification, where raw synthesis protocols are identified within the prose; grammar parsing, 119 

where the natural language is converted into hierarchical data for later interpretation; and synthesis 120 

protocol extraction, where the extracted data is standardised to produce a structured “recipe” for 121 

each synthesis protocol. Key steps in the workflow are depicted in Figure 1. The first three steps 122 

have been widely described elsewhere, and only a brief description is provided in this section (with 123 

associated code provided by the authors on GitHub at https://github.com/SarkisovTeam/SynOracle-124 

preprocessing). The final stage of the workflow was developed in this study using python 3.9,46 and is 125 

made freely available by the authors on GitHub at 126 

https://github.com/SarkisovTeam/SyntheticOracle. 127 

 128 

Figure 1 – Scheme of the data processing pipeline used in this study. 129 

https://github.com/SarkisovTeam/SynOracle-preprocessing
https://github.com/SarkisovTeam/SynOracle-preprocessing
https://github.com/SarkisovTeam/SyntheticOracle
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Text collection, paragraph identification, and grammar parsing 130 

To produce a corpus of ZIF-8 synthesis protocols, we initially followed established methods to 131 

download collections of papers and identify synthesis protocols within them.32,33 Synthesis papers 132 

were identified by searching the SCOPUS database using Elsevier’s elsapy software 133 

(https://github.com/ElsevierDev/elsapy). Papers were identified using the search term “ZIF OR 134 

zeolitic imidazol* AND synthesis,” returning 4198 results. These were then categorised by publisher, 135 

from which the three largest groups were targeted for downloading (ACS, RSC, and Elsevier), 136 

reducing the total corpus to 3179 papers. XML or HTML versions of each paper were then 137 

downloaded according to their publisher’s specifications – using elsapy in the case of Elsevier, web 138 

scraping in the case of the RSC, and through the text and data mining service at the ACS. 139 

Once downloaded, synthesis paragraphs were identified using ChemDataExtractor2.110 according to 140 

previously developed protocols for identifying MOF synthesis methods.32,33 In this procedure, 141 

chemical named entity recognition was performed using BERT47 to identify potential reagents, and 142 

part-of-speech (POS) tagging was carried out on the remaining tokens to interpret sentence 143 

grammar. Chemical quantities were identified from the POS tags as CD-NN bigrams (phrases 144 

consisting of a cardinal number followed by a noun), and regex matching of the noun against a 145 

library of SI units. Synthesis paragraphs were identified as containing three or more chemical named 146 

entities and three or more chemical quantities, after which each paragraph was extracted as plain 147 

text for manual confirmation and later analysis.  148 

Once confirmed that each extracted paragraph contained a synthesis procedure, hierarchical 149 

grammar parsing was performed in the ChemicalTagger software11 to associate chemical named 150 

entities with quantities and specific synthesis actions  (termed ActionPhrases). These were stored as 151 

nested tags within an XML document.   152 

Synthesis protocol extraction 153 

To interpret and compare synthesis protocols against one another, data about synthesis steps, 154 

conditions, and chemicals involved had to be converted from nested XML data into useful 155 

information using the software developed in this study. To perform this, XML data extracted from 156 

ChemicalTagger was recursively parsed into strings within a pandas48,49 DataFrame object such that 157 

each row consisted of a single ActionPhrase, its associated time and temperature, and details of any 158 

chemical entity involved.  159 

Chemical identities were first confirmed by cross-referencing identified chemical names against the 160 

PubChem database50 using the pubchempy python library 161 

(https://pubchempy.readthedocs.io/en/latest/index.html). From this, a unique identifier for each 162 

individual chemical was generated, enabling extraction of key information about each chemical and 163 

summation of identical chemicals together. To prevent semantically identical reagents from being 164 

considered separately (e.g. zinc nitrate and their hydrates), PubChem identifiers were supplemented 165 

with structural information gathered from the cheminformatics tool RDkit.51 Specifically, chemicals 166 

whose formulae contained the elements zinc or cobalt, as well as the nitrate, acetate, sulfate, and 167 

imidazole substructures were separately identified.  168 

Then, numerical quantities associated with each chemical were calculated. To do this, chemical 169 

quantities were categorised by type from the structured XML output of ChemicalTagger (e.g. by 170 

volume, moles, mass etc.), and parsed into physically meaningful units with the pint python library 171 

(https://pint.readthedocs.io/en/0.20.1/index.html). To prevent double-counting in situations where 172 

two units were mentioned, e.g. by the common phrase “5 g of [reagent] (0.8 mmol),” only a single 173 

https://pubchempy.readthedocs.io/en/latest/index.html
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unit type was considered for each chemical entity according to the priority list (moles > mass > 174 

volume). These units were then converted into moles using the molecular mass identified from the 175 

PubChem identity. In the case of converting volume to moles, densities were estimated from the 176 

ChEDL database of critical point properties52 using the COSTALD method.53 Once chemical identities 177 

and quantities had been fully converted, these were aggregated into a single bill of materials for 178 

each synthesis (visualised in Table 1). Conditions (i.e. time and temperature values) were similarly 179 

parsed from strings into meaningful units using the pint python library, and stored as minutes and 180 

degrees Kelvin, respectively. 181 

Table 1 – example of a synthesis protocol bill of materials taken from reference 54 182 

PubChem 
Identifier 

Chemical name Original 
quantities 

Amount 
(millimoles) 

12749 2-methylimidazole 0.24 g, 3.4 
mmol 

3.4 

15865313 Zn(NO3)2.6H2O 0.956 g, 3.2 
mmol 

3.2 

6212 Chloroform 40 mL 500 
6228 DMF 70 mL 1210 

 183 

Finally, to reduce semantically meaningless differences between different synthesis sequences, 184 

synthesis actions were grouped using a similar technique to the recently developed ULSA for 185 

inorganic nanomaterials syntheses.55 Synthesis actions were categorised as either being related to 186 

“addition,” “extraction,” “reaction,” or “other” (Table 2) and collocated steps of the same kind were 187 

grouped together. A fifth category, “start,” was used to signify opening statements of synthesis 188 

protocols (e.g. “ZIF-8 was produced by our previously published method”), which would otherwise 189 

be miscategorised as an “extraction” or “other” action. “Start” actions were then excluded from 190 

further analysis.  191 

Table 2 – Relationship between ChemicalTagger-identified ActionPhrase types and aggregated action types used here. 192 

Action type ActionPhrase 

“addition” Add, Dissolve, Stir 
“reaction” ApparatusAction, 

Synthesize, Wait 
“extraction” Degass, Dry, Extract, 

Filter, Partition, 
Precipitate, Purify, 
Quench, Recover, 
Remove, Yield 

“other” Concentrate, Cool, Heat 

 193 

Grouping similar synthesis protocols together 194 

To group synthesis protocols together, we related individual syntheses to one another by the 195 

identity of the reagents used only. To calculate the mathematical relationship between different 196 

synthesis protocols the list of chemicals was first vectorised, creating a numerical representation of 197 

the chemical combination used in each synthesis. Briefly, an 𝑀 × 𝑁 matrix was created, where M is 198 

the number of synthesis protocols, and N is the number of unique chemicals present across all of 199 

synthesis protocols studied. To reduce noise in the data, only synthesis protocols containing 2-200 
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methylimidazole were considered, and metal sources were grouped by chemical substructures as 201 

described previously. In total, 139 unique chemicals were identified across 1134 synthesis protocols. 202 

For each synthesis protocol, a vector was generated using the term frequency–inverse document 203 

frequency algorithm (TF-IDF), a commonly used text mining method to estimate the importance of 204 

words in a group of documents.56 The TF-IDF algorithm weights the frequency of a word used in each 205 

document against its frequency across the group of documents – words present in many documents 206 

are given a low weight, while words occurring in only rarely are given a high weight. This is shown in 207 

Equation 1, which calculates the weight of word t in the individual document d as part of the group 208 

of documents D, where f is the frequency the word occurs. As in this study the “words” are chemical 209 

names, common chemicals like methanol are afforded a low weight, while rarer chemicals like CTAB 210 

are afforded a relatively higher weight. 211 

 212 

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑓𝑡,𝑑 ⋅ log10 (
1 + 𝑛

1 + 𝑓𝑡,𝐷
) 213 

Once the chemical identities had been vectorised, similarity was calculated by the DBSCAN clustering 214 

method.57 DBSCAN calculates the local density of data points in Euclidean space (synthesis protocols 215 

in the case of this study), defined as the number of neighbours closer than a threshold distance from 216 

each data point. Clusters are identified as disconnected regions containing a high density of data 217 

points, while isolated data points with no connection to a larger cluster as identified as noise.  218 

To visualise the results of the clustering analysis, the high dimensional data were projected into two 219 

dimensions using the t-distributed stochastic neighbour embedding (t-SNE) method.58 To do this the 220 

algorithm calculates the distances between each datapoint in high dimensional space, and estimates 221 

low-dimensional coordinates for each datapoints which preserves the distance between each point 222 

and its neighbours. 223 

Results and discussion 224 

Validation against manually-extracted information 225 

To perform a quantitative meta-analysis of ZIF-8 synthesis, we first demonstrate the validity of the 226 

information extracted by comparing the performance of our text mining approach against a 227 

manually identified “ground truth” from a small number of papers sourced from the NIST database 228 

of emerging adsorbent materials. Using this database served two purposes: it was sufficiently small 229 

to provide a tractable number of articles for high-fidelity analysis, and each synthesis report was 230 

confirmed to contain ZIF-8 by the isotherm data provided. Overall, 44 publications describing ZIF-8 231 

synthesis were identified, of which full information could be extracted for 42. The manuscripts were 232 

downloaded from their publisher, synthesis paragraphs manually identified, and synthesis 233 

information extracted both manually and using our software. In all cases, data reported within the 234 

paper and manually collated were considered as the ground truth.  235 

From these paragraphs, three key parameters were extracted: a sequence of synthesis actions 236 

taken, a table of constituent chemicals, and the reaction conditions (i.e. temperatures and quoted 237 

times). For each parameter, the F1-score was calculated providing a numeric score for each text 238 

mining task compared against the manually-extracted ground truth. Extracted chemical identities 239 

were cross-referenced against the PubChem database of compounds to act as both a unique 240 

identifier and source of key information about each species. Finally, physical quantities – the values 241 

of time, temperature, and chemical quantity – were converted from plain text to numerical units 242 
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using the pint python library and compared against their manually extracted counterparts. These 243 

data are summarised in Table 3. 244 

Table 3 – Parsing fidelity metrics as a percentage for manually-labelled quantities in the NIST ISODB corpus of ZIF-8 245 
synthesis procedures.  246 

Metric Precision Recall F1-score Matching quantities 

Synthesis 
actions 

79 53 63 - 

Aggregated 
actions 

94 94 93 - 

Reagent 
identification 

60.2 77.4 66.7 81.7 

Temperature 
parsing 

74.4 72.5 73.4 68.3 

Time parsing 73.8 91.2 81.6 73.8 

 247 

Individual synthesis actions were relatively poorly identified with text mining, with a F1-score of ca. 248 

60%. This was primarily due to the low recall (i.e. true positive) rate of action parsing. Inspection of 249 

the synthesis paragraphs themselves showed that actions that were implicitly repeated, for example 250 

in the phrase “washed with water and methanol subsequently for 3 times”,59 were not captured by 251 

ChemicalTagger thereby leading to lower scores. Conversely, when synthesis actions were converted 252 

to their conceptual types and aggregated, the F1-score increased significantly to over 90% indicating 253 

that all synthesis stages were identified even if the specific ActionPhrases themselves were not. 254 

Therefore, we conclude that the text mining captures the essence of the synthesis protocol, but is 255 

unable to fully summarise the semantics of synthesis due to “linguistic noise” i.e. variability between 256 

different authors writing styles. 257 

In terms of synthesis parameters, F1-scores and quantity matching were between 60-80% in all 258 

cases. These range of scores are slightly lower than previous text-mining efforts, which generally 259 

score between 60-98%.1,60 We ascribe this relatively low score to more stringent criteria used in this 260 

study: as we define true positive to be the successful identification of a PubChem database entry, 261 

precision is lowered when cross-referencing fails. This is further exacerbated by the presence of 262 

typographical errors and colloquial chemical names which are not recognised by an automated 263 

PubChem database search (e.g. 2-methylinidazole or 2-MeIM, rather than 2-methylimidazole). 264 

Failure to successfully convert numerical quantities similarly reduced the F1-score during time and 265 

temperature parsing. 266 

In sum, while individual synthesis features could be reliably extracted using the methods developed 267 

here, it is currently impossible to reliably reproduce the entirety of any specific synthesis protocol. 268 

To achieve such high-fidelity reproduction, methods would have to be developed to estimate the 269 

completeness of a synthesis protocol, requiring a much larger set of manually-labelled synthesis 270 

sequences, similar to that developed by Wang et al. for individual synthesis actions.55 Efforts to 271 

create such a dataset are ongoing in our research group. Instead, further analysis in this study is 272 

performed by compiling a group of similar synthesis protocols to extract a representative aggregate 273 

of synthesis details, hence enabling quantitative meta-analysis.  274 

Interpreting ZIF-8 synthesis strategies 275 
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Given the effectiveness of our text mining methods to extract synthesis information from text, we 276 

progressed to a larger dataset of 3179 experimental synthesis reports of ZIF-8. From this dataset we 277 

processed 1600 synthesis protocols, enabling strong statistical analysis of the synthesis options 278 

which have been explored. 279 

We first analysed the reagent compounds used during synthesis, which should consist of 2-280 

methylimidazole and Zn salts only. As can be seen in Figure 2, this is not the case: while 281 

methylimidazole was by far the most common linker molecule mentioned (Figure 2A), 34% of the 282 

synthesis protocols mentioned cobalt salts.  In fact, 32% of the synthesis protocols omitted zinc 283 

entirely, indicating that these were synthesis protocols of ZIF-67 instead – the cobalt equivalent of 284 

ZIF-8. The remaining cobalt-mentioning synthesis protocols also contained zinc, indicating that they 285 

may be mixed-metal systems. This ambiguity highlights some of the key nomenclature issues with 286 

MOF materials – ZIF-8 and -67 are practically the same material in terms of synthesis protocol but 287 

this proximity is not reflected in the common name. The use of tools such as MOFid30 can avoid this 288 

linguistic ambiguity, even accurately describing the continuous transition between the two 289 

frameworks. 290 

 291 

Figure 2 – Histograms of reagent compound frequency in ZIF-8 syntheses, broken down by (A) linker choice and (B) metal 292 
choice. Abbreviated chemical names refer to: MeIM – 2-methyilimidazole; bIM – 2-benzylimidazole; IM – imidazole; IM-CHO 293 

– imidazole-2-carbaldehyde 294 

To further analyse the reagents used we grouped the metal salts used by anion type (Figure 2B), 295 

assuming that there was no consequence of using anhydrous versus hydrated salts. Nitrate was the 296 

most commonly used counterion, being present in 75% of syntheses. Ambiguous mentions of zinc 297 

and cobalt compounds were present in 17.2% of the 1600 protocols, encompassing minor zinc salts 298 

(e.g. Zn(OH)2 in the case of reference 61), indirect reference to zinc precursors in synthesis (e.g. “The 299 

sample obtained with Zn”62), or mis-identified zinc compounds due to word tokenisation errors (e.g. 300 

“Firstly , 645 mg ( 2.469 mmol ) of Zn (NO3)2 .4H2O was dissolved”63, where the space character 301 

between “Zn” and its counterions causes incorrect chemical parsing). Aside from nitrates and 302 

ambiguous mentions, the only other commonly-mentioned metal salt was zinc acetate (present in 303 

11.5% of synthesis protocols). The presence of chloride, acetate, and oxide precursors indicate that 304 

the synthesis is compatible to a range of electrolyte environments, agreeing with experimental 305 

reports which have shown that counterion choice significantly alters crystal nucleation and growth 306 

rates.64,65 Despite the utility of these other salts, the overwhelming popularity of nitrate counterions 307 

found during our analysis indicates that other factors e.g. cost may have been prohibitive to their 308 

widespread adoption.  309 

In addition to reagent identity, our text mining method provides information about the quantity of 310 

each reagent used, enabling analysis of synthesis protocol scale and reaction stoichiometry (Figure 311 

3). The scale of ZIF-8 synthesis follows approximately a log-normal distribution, with 95% of 312 



9 
 

synthesis using 0.18-46 millimoles of metal ions and 0.73-330 millimoles of 2-methylimidazole 313 

(Figure 3A and B, respectively), demonstrating the flexibility of ZIF-8 synthesis with respect to scale. 314 

In terms of reaction stoichiometry, most synthesis protocols use an excess of linkers compared to 315 

the stoichiometric ratio of 2:1 (Figure 3C). This excess has been shown to control particle sizes by 316 

slowing the rate of crystal growth,38,66–68 although few synthesis protocols use a higher ratio than 317 

8:1. Interestingly, despite clear evidence that excess concentration of metal ions forms undesired by-318 

products such as Zn(OH)(NO3)(H2O),43,68–70 6% of the synthesis protocols analysed used a molar ratio 319 

of 1:1 or lower.  320 

321 

 322 

Figure 3 - Histograms of reagent quantities used. (A) metals, (B) linkers, and (C) metal/linker ratios broken down by 323 
synthesis metal. Where multiple variables are plotted in A and C, data bars are stacked on top of one another. 324 

After considering reagents, the next most import aspect of a synthesis protocol lies in the choice of 325 

solvent environment for the reaction. Solvent choice has ramifications on the reaction mixture 326 

dielectric constant, in turn dictating factors such as reagent solubility and reaction kinetics. Further, 327 

the choice between protic and aprotic solvents, can accelerate reaction mechanisms relying on 328 

proton transfer, such as the linker deprotonation present during ZIF-8 synthesis.66 Finally, overall 329 

reaction concentration is critical for determining whether the reaction mixture will act as an ideal 330 

solution, and in terms of the relative mass efficiency of the synthesis, both of which have 331 

consequences in terms of synthesis protocol viability in terms of scaleup to process-level 332 

manufacture. 333 

The vast majority of synthesis protocols studied here contain one of methanol, ethanol, water, and 334 

DMF. Methanol was by far the most frequently mentioned solvent, present in 66% of synthesis 335 

protocols (Figure 4A), followed by water (40% of synthesis protocols), ethanol (27%), and finally DMF 336 

(12%). Less frequently used solvents included chloroform (1.4%), toluene (1.0%), and ethylene glycol 337 

(0.88%). To analyse the usage of each solvent present, we separated them by “synthesis” and 338 

“workup” procedure steps, as well as incorporating binary solvent mixtures (Figure 4B). This analysis 339 

revealed that, while ethanol was the third most prevalent solvent overall, it was the second most 340 
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common solvent used for washing and purification (and the fifth most common reaction solvent). 341 

Mixed solvent systems, primarily methanol-water, were present in 8% of syntheses presumably to 342 

tune the reaction dielectric and proton transfer catalysis rate.71  343 

The distribution of solvent quantities used within the syntheses studied (Figure 4C) showed that 344 

each solvent followed approximately lognormal distributions. Both DMF and ethanol were used in 345 

smaller quantities than methanol or water (means of 0.4, 0.6, 1.4, and 1.6 moles per synthesis, 346 

respectively), indicating that the latter two solvents were more appropriate for scaling up the 347 

synthesis. Finally, we analysed the total solids concentration of synthesis protocols by dividing total 348 

reagent amounts by the solvent amounts used (Figure 4D). As with individual reagent 349 

concentrations, the total solids concentration followed an approximately log-normal distribution 350 

between 0.1-10 %mol. Separately, 7.7% of synthesis protocols had a solids loading of approximately 351 

100 %mol - signifying mechanochemical synthesis protocols. Although mechanochemistry is a 352 

promising synthesis route due to its high yields72 and low environmental impact73 compared to 353 

conventional solvent synthesis methods, the relatively low popularity may be explained due to 354 

practical difficulties of mechanochemical synthesis e.g. prevention of hot-spot formation in the 355 

reaction vessel.74 356 

357 

 358 

Figure 4 - histograms of solvent usage in ZIF-8 synthesis. (A) frequency of solvent mentions in all synthesis procedures, (B) 359 
frequency of solvent usage broken down by stage of the procedure, (C) quantity of solvent used, broken down by solvent 360 
type, and (D) total solids loading. Where multiple variables are plotted in C, data bars are stacked on top of one another. 361 

In addition to reagents and solvents, ancillary chemicals such as surfactants, pH modifiers, and 362 

modulators are often key to ensure the success of MOF syntheses as well as dictating secondary 363 

particle characteristics such as size and crystal form. Three chemical types were prevalent within the 364 

synthesis protocols studied: acids, bases, and surfactant compounds. Unlike solvents and reagents, 365 

no individual ancillary chemical was identified in more than 3.5% of synthesis protocols (Figure 5). 366 

However, bases were present in 18% of all the synthesis protocols analysed, carrying out the 367 

important role of deprotonating the linker molecule in the reaction mixture. From the variety of 368 
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distinct molecules used for this role, it appears that no molecular recognition occurs, simply pH 369 

control. Despite the requirement for methylimidazole deprotonation for the reaction to progress, 370 

acids were detected in 6.3% of syntheses, however from inspection of the individual synthesis 371 

protocols acids only appeared during post-synthetic modification of the ZIF-8 materials e.g. after 372 

carbonisation75 or impregnation into silicas.76 Finally, surfactants like cetyltrimethylammonium 373 

bromide (CTAB) or sodium dodecylsulfate (SDS) were present in 4.6% of synthesis protocols, being 374 

used to slow the growth of individual ZIF-8 crystals and therefore control the particle shape.59,77  375 

376 

 377 

Figure 5 -Histograms of ancillary chemical prevalence in ZIF-8 synthesis. (A) acids, (B) bases, and (C) surfactants. 378 

While it is possible to identify broad differences in synthesis strategy from feedstock compounds 379 

alone, it is impossible to understand why one chemical is chosen over another without further detail 380 

about the synthesis protocol being described. For example, the modulator sodium formate has been 381 

shown to perform different roles in room-temperature syntheses compared to hydrothermal 382 

alternatives.44,78 In the first instance, we also consider the conditions (i.e. time and temperature) 383 

during the process. These are shown in Figure 6, demonstrating that the majority of protocols have 384 

synthesis times under six hours. Even after disregarding protocols with a reported synthesis time of 385 

0 minutes as being spurious, it is clear that synthesis can be completed very quickly. In terms of 386 

synthesis temperature, the majority of the extracted temperatures were found to be room 387 

temperature indicating that thermal driving forces were not necessary for the formation of ZIF-8. 388 

This is further corroborated by the relative lack of procedures mentioning heated reaction 389 

conditions compared to heated drying conditions (Figure 6B). 390 
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 391 

Figure 6 – Histograms of conditions during ZIF-8 synthesis processes. (A) total time elapsed and (B) temperatures used 392 
during synthesis. Annotational on (B) indicate the boiling points of the four most common solvents identified. Data are 393 

broken down by reaction step type as defined in Table 2. Where multiple variables are plotted, data bars are stacked on top 394 
of one another. 395 

Overall, the tools developed in this study provide wide-ranging descriptive statistics of various ZIF-8 396 

synthesis routes. The data generated are an excellent addition to existing literature review methods, 397 

facilitating the interpretation of different synthesis aspects e.g. reagent choices, stoichiometric 398 

ratios and reaction conditions. From these data we are able to identify gaps in the existing literature 399 

or synthesis conditions most likely to succeed, as well as providing useful input data for later 400 

technoeconomic analysis.  401 

Harnessing synthesis information for accelerated methodology development 402 

While the analysis performed is useful as a means of understanding the ZIF-8 reaction system, a key 403 

aim of this study was to systematize the collective synthesis knowledge for the material, thereby 404 

connecting synthesis protocols to some key performance indicators either of the synthesis (e.g. 405 

yield) or material (e.g. crystal form, surface area). One crucial barrier to this goal was the correlation 406 

of material performance data with synthesis protocol information: research papers are inconsistent 407 

in reporting of material properties (primarily as different quality metrics are used depending on the 408 

motivation of the original research), and the sample naming conventions used within research 409 

articles prevent unambiguous linking between the described protocols and materials produced. For 410 

example, while a synthesis paragraph might detail the synthesis of “nano-sized ZIF-8,” later mentions 411 

in the text may be labelled differently e.g. “ZIF-8nano,”79 confounding attempts for automated 412 

identification of reaction products using regular expressions.33 While this issue will undoubtably be 413 

resolved by the adoption of transformer-based language models such as BERT80 and GPT-4,81 such 414 

models became available only recently and the scientific community, including our group, is in the 415 

process of probing their extension to scientific data mining. In fact, the current study highlighted a 416 

number of issues with the current structure and completeness of reported synthetic protocols, 417 

understanding of which will be very helpful in engineering and fine-tuning GPT-based models. 418 

As a result, the analysis performed in this study can only provide insight into how the MOF material 419 

is made rather than linking different synthesis features to specific outcomes like yield or quality. In 420 

the absence of such synthesis outcome information, we instead focus on how best to prepare the 421 

information gathered in this study for the generation of predictive models for ZIF-8 materials quality. 422 

A key challenge when attempting to optimise synthesis protocols either through systematic 423 

experimentation5 or by training machine learning models6 is the high dimensionality of the 424 

information contained in each synthesis. For example, 8 unique reagent chemicals were discussed in 425 

the previous section – 3 metal sources, 1 linker, and 4 solvents – meaning that to fully explore the 8-426 

dimensional chemical space alone, N8 experiments would be required (where N is the number of 427 
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quantity values tested for each variable). Even when limits on the complexity of each individual 428 

reaction are used – i.e. to contain a maximum of two metal salts and solvents – the dimensionality is 429 

only reduced to 12(𝑁5) experiments. While theoretically this dimensionality would scale with the 430 

number of synthesis steps used, we were unable to identify meaningfully distinct groups of synthesis 431 

actions (data not shown here, for brevity) and hence did not consider the sequence as impacting the 432 

synthesis outcome.  433 

To enable faster and more efficient searching of the synthesis phase space, we used clustering to 434 

identify lower-dimensional sub-regions of the synthesis phase space which have been widely 435 

researched in experimental papers – essentially using a chemical combination’s popularity as a proxy 436 

for its importance. The chemical identities used were encoded using TF-IDF vectorisation, then 437 

similar synthesis protocols were grouped by their density in the encoded space.  The outcome of this 438 

clustering analysis is visualised using a 2-d projection in Figure 7 and summarised in Table 4, where 439 

the distance between points is indicative of each protocol’s similarity to its neighbours. Eight clusters 440 

of reagent combinations were identified each containing 2-4 chemicals of a total of 6 reagents. We 441 

posit that these clusters represent well defined strategies to synthesize ZIF-8, which can be explored 442 

separately, therefore reducing the total amount of information required to explore these regions of 443 

the synthesis space.  444 

 445 

Figure 7 – 2-dimensional representation of the chemical combination space for ZIF-8 synthesis, generated using the t-SNE 446 
algorithm. Major synthesis pathways are identified using the DBSCAN clustering method and colour coded, while noise data 447 

is shown in light grey. Clusters are circled and described in Table 4.  448 

Table 4 - Cluster labels and common features from Figure 7. N.B. all synthesis protocols included 2-methylimidazole, which 449 
was omitted for brevity. 450 

Cluster number 
(colour) 

Common chemicals Protocols 
in cluster 

1 (blue) zinc, nitrate, methanol 225 

2 (red) cobalt, nitrate, 
methanol 

147 

3 (brown) zinc, nitrate, water 50 

4 (orange) Zinc, nitrate 39 

5 (green) Zinc, cobalt, nitrate, 
methanol 

31 

6 (pink) cobalt, nitrate, water 25 

7 (purple) Zinc, acetate, water 22 

8 (olive) Zinc, nitrate, methanol, 
water 

20 

9 (grey) Zinc, nitrate, DMF 17 
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 451 

The well-defined synthesis strategies clustered in Figure 7 are notably different from the analysis 452 

performed in the previous section. In the first instance, ethanol was fully absent signifying its 453 

insignificance as a reaction solvent and matching the earlier analyses. Separately, acetate salts are 454 

only identified in one cluster and only associated with water. This association is due to the lack of 455 

solubility of zinc acetate in methanol (ca. 15 g/L cf. 430 g/L in water), information which can only 456 

otherwise be gained by specific knowledge of the chemistry of zinc acetate. While obvious to those 457 

who already are aware of the system, this information may otherwise be overlooked by chemists 458 

naive to the intricacies of ZIF-8 synthesis – an example of chemical intuition.6 Therefore, clustering of 459 

similar synthesis protocols together can help users to avoid some common pitfalls when planning 460 

experiments for the first time. 461 

Finally, to demonstrate the benefit of this approach towards synthesis optimisation, we consider the 462 

reduction in experiments that would be required to explore the identified popular sub-regions of the 463 

synthesis space. From the clustering analysis, we identified 6 sub-regions with only 3 chemicals of 464 

interest – clusters 1, 2, 3, 6, 7, and 8 in Table 4, containing only a single metal salt, 2-465 

methylimidazole, and a single solvent – and a further 2 sub-regions with 4 chemicals of interest: 466 

clusters 5 and 8 containing either mixed salts or solvents. Accordingly, rather than requiring N8 or 467 

12(𝑁5) experiments, full exploration would only require 6(𝑁3) + 2(𝑁4) ≈ 𝑁4.4 experiments. To 468 

illustrate the extent of dimensionality reduction in real terms, the number of experiments required 469 

to explore the synthesis space are shown in Table 5 for various values of N. In combination with the 470 

quantity distributions shown in Figure 3 and Figure 4, text mining and data reduction tools 471 

demonstrated in this paper will provide excellent initial values for efficient searching of chemical 472 

synthesis space, thereby accelerating methodology refinement for a range of nanomaterials. 473 

Table 5 – Approximate number of experiments required to fully characterise the synthesis space, for various values of N. 474 

 Full exploration 
(𝑁8) 

Limited experimental 

complexity (12(𝑁5)) 

Identified clusters only 
(6(𝑁3) + 2(𝑁4)) 

N = 3 6,500 2,900 320 

N = 5 390,000 37,500 2,000 

N = 10 1x108 1.2x106 2.6x104 

 475 

 476 

Conclusions  477 

In this study, we applied text mining to the problem of synthesis methodology optimisation, 478 

exploring to what extent the previously accumulated collective knowledge of a particular 479 

nanomaterial can accelerate the development of reliable and scalable synthesis protocols. As the 480 

first step toward this objective, in this study, we posed three research questions: first, is it possible 481 

to use text mining tools to provide deep insight into a single synthetic target, rather than a 482 

comprehensive overview of a family of materials? Second, is it possible to standardise the synthesis 483 

details extracted as a means of performing like-for-like comparison between different studies? 484 

Finally, is it possible to use this analysis to suggest optimal synthesis conditions, thereby accelerating 485 

methodology development? 486 

To this end, we developed software to systematically analyse nanomaterials synthesis methods 487 

based on established text mining protocols. We extracted structured data to describe the details of 488 
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each synthesis protocol, enabling large-scale statistical analysis of the synthesis parameter space and 489 

clustering of similar methods together to identify well-explored regions of the synthesis space. We 490 

believe that this progress represents the first step in creating a closed feedback loop for the 491 

automated optimisation of experimental nanomaterials synthesis, visualised in Figure 8. In this 492 

feedback loop text mined information can identify common limits to parameters as well as low-493 

dimensional sub-regions of interest in the synthesis space. By using this information as initial 494 

conditions for iterative high-throughput experimentation, the search for synthesis protocols 495 

optimised against any target material quality metric can be greatly accelerated. 496 

 497 

Figure 8 - Scheme of a synthesis protocol optimisation feedback loop. Work carried out in this study is shaded in grey. 498 

As a case study to demonstrate the utility of this approach, we performed a quantitative meta-499 

analysis of 1600 synthesis methods for the common MOF ZIF-8. Using this framework, we identified 500 

key aspects of the synthesis including the range of chemicals used as reagents, solvents, and 501 

ancillary modulators/pH modifiers. We extracted information about the quantity of each reagent 502 

used during the synthesis, enabling us to identify the distribution of synthesis scales, reagent ratios, 503 

and reaction mixture solids concentration, as well as reaction times and temperatures. Further 504 

insight was gathered by cross-referencing chemicals mentioned against the stage they were 505 

introduced into the synthesis protocol – for example identifying that ethanol is primarily used as a 506 

washing solvent rather than in the reaction medium. We demonstrated how the quantitative meta-507 

analysis performed here can assist in systematic searches of the synthesis phase space by identifying 508 

both low-dimensional regions of interest and the distribution of synthesis parameters. As a result, 509 

we were able to reduce the number of hypothetical experiments required to optimise ZIF-8 510 

significantly. Notably, while we considered MOF materials as a case study in this work, the methods 511 

developed here are general to any synthesis type. Particularly, we envisage they will be useful the 512 

systematising understanding of other emerging nanomaterial systems such as mesoporous 513 

(organo)silicas, covalent organic frameworks, and polymers of intrinsic microporosity. 514 

Despite the deep insight we were able to gain into the synthesis system of ZIF-8, the current study 515 

also identified significant challenges associated with developing a true “synthetic oracle” for 516 

predicting the ideal synthesis parameters for any given material. While we were able to identify and 517 

extract information about the synthesis, we were unable to reliably connect the quality of the 518 
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material produced to the methods themselves (e.g. by identifying specific yield or surface area). A 519 

crucial next step is therefore to adopt state of the art transformer-based methods e.g. BERT or GPT-520 

4 to better interpret the entire research article as a single unit and therefore identify implicitly 521 

described synthesis protocols (e.g. tabulated changes to individual synthesis parameters). A second 522 

challenge lies in the estimating the viability of synthesis parameters extracted during text mining or 523 

proposed by generative models, preventing automated reproduction of a synthesis protocol without 524 

human oversight and validation. Finally, as has been discussed elsewhere, the synthesis protocol 525 

extraction methods developed here can only build from published information, which is biased 526 

towards the most successful synthesis methods only. More comprehensive reporting of synthesis 527 

information using structured formats akin to the crystallographic information file format would 528 

enable far more wide-reaching analysis to be performed. 529 

In summary, the methods developed in this study acts as a preliminary approach for the large-scale 530 

standardisation and analysis of experimental synthesis data, representing the first step in creating a 531 

closed feedback loop for the automated optimisation of experimental nanomaterials synthesis. By 532 

interfacing with automated and high throughput reactionware e.g. through integration of the XDL 533 

chemical programming language, methodology development will be significantly accelerated 534 

thereby easing the adoption of nanomaterials at larger scales and in new settings.  535 
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