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Abstract 

In this paper, we introduce a novel approach for force field (FF) parameterization, called structure 

differentiation and matching (SDM), which leverages direct matching of crystal structures and 

atomic charges optimization in an end-to-end differentiable manner. Traditional FF 

parameterization methods have been accelerated by differentiable programming and automatic 

differentiation (AD), enabling energy and force matching through force differentiation and 

matching (FDM). However, crystal structure matching with AD remains challenging due to the 

difficulty of differentiation of converged structures optimized by iterative algorithms with respect 

to FF parameters. To address this limitation, we propose SDM, which incorporates reference data 

such as stable monomer structures, crystal structures, lattice energies, and potential energy surfaces 

(PESs) of dihedral angles. SDM utilizes implicit function differentiation (IFD) and differentiable 

Ewald techniques to optimize FF parameters and atomic charges simultaneously. We demonstrate 

the effectiveness of SDM through a case study involving eight exemplified molecules, showing 

significant improvements over conventional FDM with error factors reduced to less than one-

quarter when using the SDM (q-opt) charge optimization method. SDM achieves high precision 

in reproducing lattice constants, atomic configurations, lattice energies, and PESs. Molecular 

dynamics simulations further confirm the stability of the generated crystal structures. SDM can be 

extended to other FF categories, such as polarized FFs and those with explicit hydrogen bonding 

interactions. We anticipate that SDM (q-opt) will emerge as a standard method for FF 

parameterization using crystal structures, offering a promising avenue for advancing the field of 

molecular simulations. 
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1. Introduction 

Molecular dynamics (MD) is a pivotal tool in the field of atomic and molecular modeling, 

particularly for small organic molecules.1–3 It plays a crucial role in structure-based drug design, 

where characterization of intermolecular interactions is essential for predicting ligand activity.4–7 

Additionally, MD provides invaluable insights into the fundamental mechanisms governing the 

condensed matter properties of a wide range of materials.8–10 Moreover, MD is also indispensable 

in studies involving quantum mechanics/molecular mechanics (QM/MM), where it is used to 

create a realistic MM region for accurate simulations.11–19 

The accuracy of MD simulations relies on three key factors: the type of force fields (FFs) 

employed, the reference data used, and the FF optimization algorithms employed. FFs can be 

categorized into classical FFs, such as the generalized Amber force field (GAFF)20–22 and neural 

network potentials (NNPs)23–39, which have gained attention in recent years. While NNPs have 

shown promise, classical FFs remain interpretable and advantageous due to their simple 

equations and fewer parameters.20–22 Therefore, this study specifically focuses on classical FFs. 

The reference data for generating FFs can be obtained from either QM calculations or 

experimental data.36 In the case of experimental data, there is active research in FF optimization 

techniques aimed at reproducing measurable physical properties.36,40,41 One of the critical 

experimental datasets used for this purpose is the crystal structure obtained from single-crystal X-

ray diffraction, particularly for small organic molecules as it contains intermolecular structure data. 

Crystal structure reproducibility has been widely used to validate FFs,42–44 and cohesive properties 

such as lattice energy have been employed to assess the stability or strength of intermolecular 

interactions.45–47 These crystal structures are typically compiled in the Cambridge Structural 

Database (CSD), and data on sublimation enthalpies, which can be converted to lattice energies, 
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are also readily accessible.48 It is important not only to reproduce crystal structures and cohesive 

energy, but also to reproduce other material properties relevant to their intended use. However, 

reproducing these two factors is often a prerequisite for reproducing subsequent material properties. 

Therefore, our focus is on the development of FF generation techniques that can accurately 

reproduce crystal structures and lattice energies. 

The optimization algorithms for FFs can be classified into two categories: non-differentiating 

and differentiating methods. Well-known MD software packages such as Assisted Model Building 

with Energy Refinement (AMBER)1 and Chemistry at Harvard Macromolecular Mechanics 

(CHARMM)3 groups have developed original FFs, but further optimizations have been performed. 

Non-differentiating algorithms include Bayesian optimization methods,49–53 evolutionary 

algorithms,54 and particle swarm optimization55,56, while differentiating methods involve 

optimization algorithms that contain derivative coefficients to differentiate a function evaluating 

the FFs. These coefficients enable efficient optimization for numerous variables, such as gradient 

descent methods or quasi-Newton methods. For example, a software package called ForceBalance 

has been developed to generate FFs using numerical differentiation.22,40,41,57–60 More recently, 

several methods based on automatic differentiation (AD) have been proposed to mitigate 

approximation errors and improve the efficiency of derivative calculations.61–65 Therefore, in this 

study, we focused on AD-based FF generation techniques. 

However, generating FFs with reference to crystal structures poses challenges because crystal 

structures do not provide information on the energies and forces acting on atoms. The only 

information obtainable from crystal structures is whether the structure is stable compared to its 

surrounding structures. In contrast, the energy and force information of various structures, which 

are required as training data in NNPs and conventional differentiable FF parameterizations, cannot 
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be solely obtained from crystal structures.23–39,45,65 Although the energy and force of structures 

near the crystal structure can be evaluated using quantum mechanical calculations, the 

comprehensive calculation of forces in unstable structures becomes computationally expensive 

due to the requirement of highly accurate intermolecular interactions. Moreover, FF optimization 

with AD has certain limitations when using crystal structures as the reference data. The crystal 

structures were evaluated using an iterative structure-optimization algorithm to converge the forces 

to zero. However, the convergence structures cannot be automatically differentiated with the FF 

parameters due to the chain rule of differentiation in AD, which continuously connects all the 

iterations to each other. This forms an immensely deep network structure that requires extensive 

memory and renders the optimization unstable.36,63,66 

The available information from crystal structures is limited to the fact that the forces acting on 

each atom are balanced to zero. The calculation of forces using FFs follows a deterministic 

algorithm, which allows for the computation of derivative coefficients of forces on the atoms with 

respect to FF parameters. In this paper, this method is denoted as force differentiation and matching 

(FDM). However, the optimization goal of achieving zero forces at the experimental crystal 

structures may not necessarily align with the true objective of accurately reproducing the 

experimental structures. Unlike NNPs, the optimization of classical FFs is an overdetermined 

problem, where there are fewer parameters than equations for reproducing the reference data. 

Therefore, as achieving zero forces at the reference structures is generally impossible, FFs 

generated with FDM may not ensure that the optimized crystal structures or monomer structures 

with the FFs are close to the reference structures. 

To address this limitation, we propose a method based on implicit function differentiation (IFD) 

to differentiate the converged crystal structures of the iterative algorithms with respect to FF 
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parameters.66 This approach, called structure differentiation and matching (SDM), uses the 

derivative coefficients to optimize FF parameters, ensuring correspondence between experimental 

and converged structures using FFs. SDM develops an automatic FF generation program that 

utilizes reference data such as stable single-molecule structures, crystal structures, crystallization 

energy, and potential energy surfaces (PESs) of free rotating dihedral angles. By leveraging IFD, 

SDM offers a more robust and accurate approach to FF optimization compared to FDM, allowing 

for improved alignment between FF-optimized structures and experimental reference data. 

In addition, considering long-range Coulombic interactions is crucial when creating FFs using 

crystal structures as a reference. Therefore, it is desirable to implement the Ewald method in a 

differentiable form, allowing for atomic charge optimization as one of the FF parameters. 67 

In our case study, we compare four methods: FDM and SDM, each with and without atomic 

charge optimization using the differentiable Ewald method. We evaluate the performance of these 

methods on eight different materials, including anthracene, biphenyl, and benzoic acid. The 

optimized FF parameters can be output in Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) form,2 demonstrating consistency between the proposed program and 

LAMMPS, with errors below 1.0 × 10−3 kcal/mol. As a result, the FFs generated by our proposed 

program are readily applicable for large-scale MD simulations using LAMMPS, offering improved 

accuracy and reliability in simulating the behavior of materials at the atomic level. 
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2. Methodology 

2.1. Force Field 

We used AMBER-type FFs to ensure compatibility with the existing MD software,1,2 The FFs 

are expressed as 

 𝐸total = 𝐸bond + 𝐸angle + 𝐸dihed + 𝐸vdw + 𝐸coul (1) 

 𝐸bond = ∑ 𝐾𝑟(𝑟 − 𝑟eq)
2

bond 𝑟

, (2) 

 𝐸angle = ∑ 𝐾𝜃(𝜃 − 𝜃eq)
2

angle 𝜃

 , (3) 

 𝐸dihed = ∑ ∑
𝑉𝑛
2

4

𝑛=1

[1 + cos(𝑛𝜙 − 𝛾𝑛)]

dihed 𝜙

 , (4) 

 𝐸vdW =∑4𝜖 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑖<𝑗

 , (5) 

 𝐸coulomb =∑
𝑞𝑖𝑞𝑗

𝜖𝑝𝑟𝑖𝑗
𝑖<𝑗

 . (6) 

The total energy of the system, denoted as 𝐸total, is composed of several components, including 

bond energy (𝐸bond), angular energy (𝐸angle), dihedral angular energy (𝐸dihed), van der Waals 

(vdW) force potential (𝐸vdW) in the Lenard-Jones (LJ) form, and Coulomb potential (𝐸coul). The 

optimization of FFs involves optimizing a set of variables shown in Table 1, denoted as vector 𝐩. 

The dihedral angle parameter, 𝛾𝑛, is set to either 0 or π, as the same conformational space can be 

explored by optimizing the Vn parameter. We used the coefficients from Open Force Field v 1.0.022 

for consistency, and the charge coefficient, q, was set to 0.1 e (elementary charge) to ensure 
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comparability with other variables. Additionally, a constraint condition was imposed to ensure that 

the sum of charges was zero for each molecule. 

To improve optimization accuracy through differentiation methods, we included as many types 

of vdW parameters and atomic charges as possible, considering molecular symmetry.49–56 This is 

based on the concept of equivariance, which accounts for translational and rotational symmetry, 

and extends to equivalent atoms on molecular graphs. As an example, benzoic acid (BENZAC) is 

presented in Figure 1. In total, we selected 11 types of atoms, denoted as C1 to C5, H1 to H4, O1, 

and O2, and generated 22 vdW parameters and 11 atomic charges, providing a higher degree of 

freedom to the FFs. The LJ parameters for different atom types were generated using arithmetic 

mixing, following established methods.1,2,21 

In MD simulations of crystal structures using a periodic system, it is crucial to account for the 

long-range interactions arising from the Coulomb potential. Atomic charges are also important 

parameters that characterize both intra- and intermolecular interactions. To optimize these FF 

parameters, including atomic charges, we implemented a differentiable Ewald method. While the 

particle mesh Ewald (PME) method is commonly used due to its lower computational cost 

compared to the Ewald method 68, our objective was to introduce a new approach for FF 

construction that accurately reproduces small molecule crystal structures. The FFs were primarily 

evaluated for a unit lattice, without exploring larger systems, which limits the advantages of the 

PME method to small-sized molecules. Therefore, we employed the theoretically simpler Ewald 

method 67, which is expressed as: 

𝐸coulomb = 𝐸
𝑆 + 𝐸𝐿 − 𝐸self , (7) 

𝐸𝑆 =
1

2𝜖𝑝
∑∑ ∑

𝑞𝑖𝑞𝑗

|𝑟𝑖𝑗 + 𝒏 ⋅ 𝑳|

𝑁

𝑗=1,𝑗≠𝑖

𝑁

𝑖=1𝒏

 erfc (
|𝑟𝑖𝑗 + 𝒏 ⋅ 𝑳|

√2𝜎
) , 

(8) 
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𝐸𝐿 =
2𝜋

𝑉𝜖𝑝
∑

e-𝜎
2k2/2

𝑘2
𝑘≠0

|𝑆(𝒌)|2 , 
(9) 

𝐸self =
1

ϵ𝑝

1

√2πσ
∑𝑞𝑖

2

𝑁

𝑖=1

 , 
(10) 

where 𝑛, L, k, and S(k) represent a natural number vector, lattice vector, reciprocal lattice vector, 

and structure factor of the lattice, respectively, and the constant 𝜎 balances the short- and long-

range terms. The appropriate coefficient must be multiplied to match the other energy terms. 

To ensure seamless integration with LAMMPS, we have implemented neighbor lists and special 

bonds in our program. Additionally, we applied a CHARMM-style energy-switching function to 

𝐸vdW
3,69, using the LAMMPS keyword "lj/charmm/coul/long" for non-bonding interactions. The 

remaining parameters, such as the dielectric constant (𝜖𝑝) and the distance threshold for accounting 

Coulomb and LJ potentials for atoms within three topological distances (special bonds), were kept 

constant. We set the dielectric permittivity (𝜖𝑝) to 3.0 and used DREIDING type for special bonds, 

while the parameters for the improper type of dihedral angles were set to the same values as 

GAFF.20,21 Notably, the energies calculated by our program for all tested molecules were in 

excellent agreement with those obtained from LAMMPS, with errors below 1.0×10−3. Moreover, 

our program is capable of outputting FFs in the LAMMPS format, providing added convenience.2 
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Table 1. Regularization factors in FF optimization. The factors were used in evaluation functions 

minimized with the differentiation-based optimization algorithms SDM and FDM. 

Type Regularization factor 

bond force constant Kr 100 kcal/mol/Å2 

equilibrium bond length req 0.1 Å 

angle force constant Kθ 100 kcal/mol−1 rad2 

equilibrium angle θeq 20 degrees 

dihedral force constant Vn 1 kcal/mol 

vdW well depth ϵ 0.1 kcal/mol 

vdW length σ 1 Å 

charge q 0.1 e 
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Figure 1: Symmetry-based atom type assignment. In GAFF, the original atom type 

assignment treats H2, H3, and H4, as well as C3, C3, C4, and C5, as equal types. The 

number of atom types is increased based on the graph symmetry, which considers equivalent 

atoms. 
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2.2. Evaluation Function 

In this study, our FF optimization approach involved multiple evaluation functions: (i) an 

evaluation function (𝐿𝑀) for the monomer structure, (ii) a crystal structure evaluation function (𝐿𝐶), 

(iii) an evaluation function for the lattice energy (𝐿𝐸), and (iv) PES evaluation functions (𝐿𝑙
𝑃) for 

dihedral angle l of freely rotating bonds. Since a molecule may have multiple dihedral angles, the 

evaluation function for PESs can be expressed as the summation of the corresponding terms. The 

definition of the evaluation function is as follows: 

𝐿𝑎𝑙𝑙 = 𝑤𝑀𝐿𝑀 +𝑤𝐶𝐿𝐶  +𝑤𝐸𝐿𝐸 + ∑ 𝑤𝑙
𝑃𝐿𝑙
𝑃

𝑙  , (11) 

where 𝑤M, 𝑤C, 𝑤E, and 𝑤𝑙
P denote the weights balancing the corresponding terms. To enhance 

the accuracy of a specific evaluation item, we can adjust the weights based on the research 

objective. The values and reasons for these weights in our study are detailed in Table S1. 

Additionally, we imposed a constraint that ensures the sum of charges of atoms in a molecule 

equals the total charge Q, which was set to zero as all selected molecules were neutral. To 

confine the search ranges within physically reasonable values, we employed constraints defined 

by inequalities, as described in Table S2. To optimize the FF parameters with these constraints, 

inequality relations, and gradients, we utilized the sequential least-squares programming 

(SLSQP) optimization method with SciPy 70. The four terms in Eq. (11) are explained below. 

 

2.2.1. Evaluation function for single molecule structures 

The evaluation function 𝐿M  quantifies the deviation between the reference single molecule 

structure and the converged structure optimized with a FF. The optimization was performed using 

the gradient descent method in JAXOPT.71 To compare the structures, we utilized internal 

https://doi.org/10.26434/chemrxiv-2023-r4rxp-v2 ORCID: https://orcid.org/0000-0003-2745-9340 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r4rxp-v2
https://orcid.org/0000-0003-2745-9340
https://creativecommons.org/licenses/by-nc/4.0/


 13 

coordinates 𝐮𝑀 = (𝒓, 𝜽, 𝝓) instead of cartesian coordinates 𝐮, where 𝒓 denotes the bond length, 𝜽 

indicates the bond angle, and 𝝓 represents the dihedral angle. The regularization coefficients for 

req in Table 1 were multiplied by the value of 𝒓, and the coefficients of 𝜽𝑒𝑞 were also multiplied 

by both 𝜽 and 𝝓, to adjust the units and ensure they are defined as belonging to a vector 𝐮M. This 

approach allows for equivalent impact on the evaluation function 𝐿𝑀 for a bond length variation 

of 0.1 Å and an angular difference of 20°.22 The internal coordinates are symmetric for translational 

and rotational operations, and the AMBER-type FF is expressed in a form that assumes internal 

coordinates as arguments, making them suitable for evaluating the structural similarity of 

individual molecules. The reference structure is denoted as 𝐮M
′ , and the structure optimized with 

FF is denoted as 𝐮̃M. In the following sentences, the prime symbol indicates reference data and the 

tilde indicates a structure calculated with an FF. The evaluation function for single molecule 

structures can be expressed as 

𝐿M = (𝐮̃M(𝐩) − 𝐮M
′ )2. (12) 

  

2.2.2. Evaluation function for crystal structures 

For crystal structure matching, lattice vector matching as well as the atomic coordinates are 

required. The evaluation function is defined as 

𝐿C = (𝐮̃ − 𝐮′)2 + 𝑐L(𝑻̃𝑣 − 𝑻𝑣
′ )
2
 , (13) 

where 𝑻̃𝑣 denotes three lattice vectors in the converged structures and 𝑇′𝑣 is that in the reference 

structures. The coefficient 𝑐L, which defines the importance of lattice vectors compared to 

internal atomic coordinates, was set to 10 to account for the fact that variations in the lattice 

vector 𝑻𝒗 can influence all atoms in the crystal and should be considered more essential than a 
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coordinate of an individual atom. In crystal structure matching, the equivalency for rotation and 

translational symmetries is not necessary, as crystal lattices induce a loss of symmetries. 

Therefore, the similarity of crystal structures was compared in terms of cartesian coordinates. To 

represent the extended coordinates, we used 𝐮̃C = (𝐮̃
𝑇 , 𝑇̃𝑣

𝑇)
𝑇
, where T denotes transpose, to 

incorporate both the internal coordinates and lattice vectors. 

2.2.3. Evaluation function for lattice energy 

The lattice energy 𝑈lat
′  was computed from the experimental accessible values of the 

sublimation enthalpy 𝐻subl that is correlated with the lattice energy as 

𝐻subl = −𝑈lat
′ − 2𝑅𝑇 , (14) 

where R denotes the gas constant and T indicates the temperature.48 Based on the crystal 

structure energy per unit cell 𝐸C and the single molecule energy 𝐸M, the lattice energy 𝑈̃lat can 

also be defined as follows: 

 𝑈̃lat = 𝐸
M −

𝐸C

𝑁mol
 . (15) 

The evaluation function for the lattice energy matching 𝐿E can be evaluated as follows: 

𝐿𝐸 = (𝑈̃𝑙𝑎𝑡(𝐮̃𝐶 , 𝐩) − 𝑈lat
′ )

2
. (16) 

An FF reproducing both the crystal structure and the lattice energy 𝑈lat, enables the simulation of 

MD with the FF to reflect the stability of the crystal. 48 

2.2.4. Evaluation function of PESs 

The total evaluation function should include the evaluation functions for matching PES of 

freely rotatable dihedral angles. The reference data were acquired with the QM calculation of a 
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single molecule. The evaluation functions of the energy surface PES along with the rotation of 

the dihedral angles l can be defined as: 

𝐿𝑙
P = ∑ exp

𝒖∈PESl

(−min(𝐸(𝐮, 𝐩), 𝐸′(𝒖))/2𝑘𝐵𝑇PES)(𝐸(𝐮, 𝐩) − 𝐸
′(𝐮))

2
, (17) 

where the term exp(−min(𝐸(𝐮, 𝐩), 𝐸′(𝐮))/2𝑘𝐵𝑇PES) includes the coefficients for prioritizing 

the points near the lowest points in the PES. 𝑘𝐵 denotes the Boltzmann constant, and 𝑇PES 

represents the virtual temperature for prioritization, which was set to 2000 K according to ref. 22. 

Additionally, to prevent overflow and instability of the 𝐿𝑙
P value during the initial stage of the 

optimization process, we implement a log-damp function. In this function, 𝐿𝑙
P is changed to 

𝑙𝑜𝑔(𝐿𝑙
P) + 1.0 when its value exceeds 1.0. 
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2.3. FF optimization methods 

2.3.1. Stable structure Differentiation (SDM) 

SDM calculates the derivative coefficients of the evaluation function (Eq. (11)) by directly 

differentiating the stable structures obtained through an iterative optimization algorithm. Figure 2 

depicts the block diagrams of SDM for computing and differentiating 𝐿𝐶 , 𝐿𝑀, and 𝐿𝐸 . The energy 

of the systems evaluated using an Amber-type energy function formula (Eq. (1)) with substituted 

𝐮̃ and 𝐩 is shown in Figure 2(a). The block diagram for differentiating the stable structures with 

respect to p is illustrated in Figure 2(b). In the top block, the iterative process was performed to 

obtain 𝐮̃  using the block defined in Figure 2(a). In conventional implementations, AD was 

repeated with the same number of iterations for convergence (typically a hundred times) and each 

iteration included the large number of derivatives of short-range Coulomb potentials 𝐸𝑆  (typically 

more than 10,000) registered in the neighborhood list and other terms in Eq. (1). Therefore, the 

conventional AD implementations with one hundred layers are computationally intractable. 36  In 

contrast, the proposed SDM allows for efficient computation of the derivatives. First, the 

converged structure 𝐮̃ satisfies 

𝑭(𝐮̃(𝐩), 𝐩) ≡
𝜕𝐸(𝐮̃(𝐩), 𝐩)

𝜕𝐮
= 0 . 

(18) 

Subsequently, both sides of Eq. (18) were differentiated with respect to 𝐩 to obtain the following 

expression: 

𝜕𝑭(𝐮̃, 𝐩)

𝜕𝐩
=
𝜕𝑭(𝐮̃, 𝐩)

𝜕𝐮

𝜕𝐮

𝜕𝐩
+
𝜕𝑭(𝐮̃, 𝐩)

𝜕𝐩
= 0 . 

 

(19) 

Replacing F with E yields 
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𝜕2𝐸(𝐮̃, 𝐩)

𝜕𝐮𝟐
𝜕𝐮

𝜕𝐩
+
𝜕2𝐸(𝐮̃, 𝐩)

𝜕𝒖𝜕𝐩
= 0 , 

 

(20) 

where 𝜕2𝐸(𝐮̃, 𝐩)/𝜕𝐮𝟐 represents the Hessian defined as the second-order differentiation based 

on the atomic coordinates 𝐮. The multiplication of the inverse matrix to both sides of Eq. (20) 

yields 

𝜕𝐮̃

𝜕𝐩
= −

𝜕2𝐸(𝐮̃, 𝐩)

𝜕𝐮𝟐

−1
𝜕2𝐸(𝐮̃, 𝐩)

𝜕𝐮𝜕𝐩
. (21) 

While 𝐮̃ can be calculated using an iterative process, the differentiation of 𝐮̃ with SDM does not 

have to be iterative, as expressed in Eq. (21), and can be computed using a deterministic process. 

The top block labeled 𝐮̃(𝑝) in Figure 2(b) performs the iterative structure optimization process to 

obtain 𝐮̃, based on the block diagram shown in Figure 2(a). The bottom block then performs the 

non-iterative differentiation with respect to 𝐮̃ . In Eq. (21), the second term represents the 

differentiation of F with respect to p at 𝐮 = 𝐮̃, and the first term replaces the derivative variable 

from p to u. Since the dimension of p is smaller or comparable to that of u, the first term does not 

significantly impact the computation costs. The inverse matrix calculation also does not pose a 

significant impact. Overall, the IFD method facilitates the computation of 𝜕𝐮̃/𝜕𝐩 with a similar 

computational cost as a single Hessian 𝜕2𝐸(𝐮̃, 𝐩)/𝜕𝐮𝟐 calculation. As depicted in Figure 2(c) and 

Figure 2(d), 𝜕𝐮̃/𝜕𝐩 is embedded in the calculation and differentiation of 𝐿X (X = M, C), and 𝐿E. 
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Figure 2: (a) Block diagram illustrating the energy calculation and its differentiation, (b) Block 

diagram showing the structure optimization and its derivatives with IFD in SDM. E(u,p) in (a) is 

included in the diagram (b). 𝜖𝐶 represents the convergence criterion, and ∆u indicates the updates 

of 𝐮. In the bottom block with bold lines, the derivative coefficient 𝜕𝐮̃/𝜕𝐩 can be computed using 

the converged structure 𝐮̃ optimized in the top block with IFT. (c) Block diagram illustrating the 

partial evaluation functions of 𝐿𝑋 (X = M,C). (d) Block diagram illustrating the partial evaluation 

function of 𝐿𝐸 . Differentiation of the function requires two derivative coefficients of 𝐮̃𝑀(𝐩) and 

𝐮̃𝐶(𝐩). 
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2.3.2. Force Differentiation and Matching (FDM) 

FDM optimizes FF by differentiating the forces on the atoms with respect to p. In NNP, it is 

common to use the method of matching energies and forces obtained from QM calculation.23–

39,45,65  

However, in this study, due to the prerequisite of using only stable structures as reference data, 

previous studies considering energies and forces for non-stable structures61–65 are not used. Instead, 

FDM utilizes only the condition 𝑭(𝐮′, 𝐩) = 0 at the reference structure 𝐮′, which replaces 𝐿M, 𝐿C, 

and 𝐿E in the following derivation. 

𝐿M,FDM = |𝑭M(𝐮′, 𝐩)|2 , (22) 

𝐿C,FDM = |𝑭C(𝐮′, 𝐩)|
2
 , (23) 

𝐿𝐸,𝐹𝐷𝑀 = (𝑈̃𝑙𝑎𝑡(𝐮
′𝐶 , 𝐩) − 𝑈lat

′ )
2
. (24) 

𝐿M, FDM and 𝐿C, FDM reduce the forces on an atom at the reference structures as zero. The crystal 

structure 𝐮′
𝐶

 is used in Eq. (24) because FDM cannot differentiate functions involving the 

converged structures 𝐮̃C. In summary, the evaluation function of FDM is defined as 

𝐿𝐹𝐷𝑀
𝑎𝑙𝑙 = 𝑤𝑀,𝐹𝐷𝑀𝐿𝑀,𝐹𝐷𝑀 + 𝑤𝐶,𝐹𝐷𝑀𝐿𝐶,𝐹𝐷𝑀 + 𝑤𝐸𝐿𝐸,𝐹𝐷𝑀 +∑𝑤𝑙

𝑃𝐿𝑙
𝑃

𝑙

. (25) 

 

2.4. Details on Comparative Study of Optimization Methods 

The objectives of this study are to compare the accuracy of FFs optimized using FDM and SDM, 

and to evaluate the accuracy of FFs when combined with a differentiable Ewald method for charge 

optimization. We assess FFs for each of FDM and SDM under two conditions: keeping charges 
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fixed at their initial values without optimization (q-fix) and optimizing charges along with other 

parameters (q-opt). We refer to the four optimization methods as FDM (q-fix), FDM (q-opt), SDM 

(q-fix), and SDM (q-opt). 

The organic molecules considered in this study are depicted in Figure 3. The crystal structures 

of these molecules are retrieved from the CSD, and the 𝐻subl data are reported in Ref. 48. The 

selection of the eight molecules was based on their molecular weights and diversity of the 

substituents. They include molecules composed of π-conjugated systems, such as ANTCEN and 

PENCEN, those with rotatable bonds, such as BIPHEN and TPHBEN, as well as other molecules 

possessing hydroxyl, carbonyl, and amino groups. 

The reference structures of single molecules and PESs were calculated using density functional 

theory on Gaussian 16 with the basis set 6-311++g(d,p) and the ωB97XD density functional.72 

PESs of dihedral angles were created for all freely rotatable single bonds by evaluating the energies 

of rotations in 5-degree increments. Methyl groups were excluded from this study as their impact 

on the quality of FFs is minimal. The initial FF parameters were sourced from GAFF (version 

1.8.121). Parameters required for the Ewald method were determined with LAMMPS by setting 

“kspace style ewald” to 1 × 10−4. The data generation software Antechamber and Moltemplate 

were used to generate the initial GAFF parameters, which were calculated with atomic charges 

from electrostatic potentials using the grid-based method (CHELG).2,21,73,74 The maximum number 

of iterations for SLSQP optimization in FDM and SDM was set to 100, with each iteration 

involving approximately five evaluation function calculations. All methods were implemented in 

Python 3.8.13 and JAX 0.3.13.62 The FF parameter optimizations were performed using the 

SLSQP algorithm from SciPy v1.8.1,70 and the structure optimizations within the SDM algorithm 

were executed using JAXOPT0.5.71 For example, on a computer with an Intel Xeon Gold 6230 
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2.10 GHz CPU and an NVIDIA GeForce 2080 Ti GPU, the total optimization duration for 

ACANIL with FDM and SDM was 15 and 23 mins, respectively. 
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Figure 3: Eight molecules used for evaluation. The six-letter symbols represent CSD compound 

IDs. The generic names and complete ID specifying the crystal structure record of the database 

are shown in parentheses. (a) ACANIL (acetanilide, ACANIL01), (b) ANTCEN (anthracene, 

ANTCEN), (c) BENZAC (benzoic acid, BENZAC01), (d) BIPHEN (biphenyl, BIPHEN), (e) 

BPHENO (benzophenone, BIPHENO12), (f) NAPHOL (1-naphthol, NAPHOL01) (g) PENCEN 

(pentacene, PENCEN), and (h)TPHBEN (1,3,5-triphenyl benzene, TPHBEN01) 
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3. Results and Discussion 

3.1. Optimized Evaluation Functions 

Initially, we compared four optimization techniques by evaluating the optimized values of the 

evaluation functions (Eq. 11). The outcomes of the evaluation function 𝐿all after optimization are 

illustrated in Figure 4. The first value for each molecule represents the initial value obtained from 

GAFF, which serves as the starting point for the following four optimization methods. The second 

and third values were obtained using FDM, with the second value not involving charge 

optimization and the atomic charges fixed, while the third value included atomic charge 

optimization, denoted by "q-fix" and "q-opt" in parentheses, respectively. The fourth and fifth 

values were obtained using SDM, with the fourth value not involving charge optimization and the 

fifth value including it. 

The reduction ratios from GAFF are tabulated in Table 2. These values represent the mean of 

ten iterations of FF optimization, as the iterative optimization approach of SLSQP accumulates 

numerical discrepancies, leading to minor variations in the optimized outcomes, as depicted in 

Figure S1. The observed deviations are significantly small and allow the order of the four 

optimization techniques to be maintained. Upon comparing the reduction rates of the evaluation 

function derived from GAFF, FDM(q-fix) decreased to 86.0%, while FDM (q-opt) decreased to 

77.4%. In contrast, SDM (q-fix) reduced to 31.3%, and SDM (q-opt) decreased to 19.5%. SDM 

(q-opt) showed approximately a fourfold enhancement in the improvement proportion compared 

to FDM (q-fix). Comparing SDM (q-fix) and FDM (q-fix), or SDM (q-opt) and FDM (q-opt), we 

confirmed that SDM outperforms FDM. Moreover, comparing FDM (q-opt) and FDM (q-fix), or 

SDM (q-opt) and FDM (q-opt), the impact of replacing q-fix with q-opt is also significant. 

https://doi.org/10.26434/chemrxiv-2023-r4rxp-v2 ORCID: https://orcid.org/0000-0003-2745-9340 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r4rxp-v2
https://orcid.org/0000-0003-2745-9340
https://creativecommons.org/licenses/by-nc/4.0/


 24 

The significant difference between FDM and SDM can be attributed to the evaluation function 

used during optimization, specifically 𝐿𝐹𝐷𝑀
𝑎𝑙𝑙 , which deviates from the function 𝐿all. When 𝐿𝐹𝐷𝑀

𝑎𝑙𝑙  is 

exactly zero, force F is zero for the single-molecule and crystal structure 𝐮′, making them stable 

structures. However, it is generally unlikely for 𝐿𝐹𝐷𝑀
𝑎𝑙𝑙  to be exactly zero because the evaluation 

function of FDM is overdetermined. In other words, it has fewer variables than independent 

equations in Eq. (25), as listed in Table 3. Consequently, FDM was unable to achieve a solution 

with 𝐿𝑎𝑙𝑙 = 0, resulting in the optimized FFs maintaining non-zero residual forces at the reference 

structure 𝐮′. This prevented the optimized structures 𝐮̃ from matching 𝐮′ and the non-zero forces 

from ensuring that 𝐮̃ is close to 𝐮′. Conversely, SDM directly makes 𝐮̃ as close to 𝐮′ as possible, 

by directly seeking the parameter space of p with the gradient information of 𝐿𝑎𝑙𝑙 with respect to 

the FF parameter p. 

The enhancements in q-fix and q-opt methodologies can be attributed to the increase in degrees 

of freedom, allowing for proper exploration within broader search spaces. The relatively small 

improvement in PECEN can be attributed to the initially high reproducibility of PECEN's crystal 

structure by GAFF, as confirmed repeatedly in previous studies on organic semiconductor films 

using PECEN in MD simulations.75–77 

In the following sections, we will examine the replicability of crystal structures and lattice 

energies by comparing the initial GAFF parameters with FDM- and SDM-optimized FFs, 

incorporating both q-fix and q-opt methodologies. We will analyze the errors corresponding to 

each term of the evaluation function using the best values of the evaluation functions obtained 

from the ten FF optimization runs for the four methods. As the evaluation functions of PESs do 

not include convergence algorithms, which are the subject of this study, the comparative analysis 

of PES reproducibility is reported in Figure S3 to Figure S9. 
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Table 2. The reduction ratios of evaluation function values in Eq. (11) from the initial value 

GAFF after FF parameters optimization with FDM (q-fix), FDM (q-opt), SDM (q-fix), and 

SDM (q-opt). Each ratio is an average of ten optimization trials for each method. The bottom 

row shows further averaged values over the eight molecules. Bold values represent the 

minimum or those within 10% of the minimum values among the four methods. 

CSD ID FDM (q-fix) FDM (q-opt) SDM (q-fix) SDM (q-opt) 

ACANIL 0.736 0.920 0.230 0.097 

ANTCEN 0.237 0.238 0.199 0.197 

BENZAC 0.375 0.334 0.177 0.110 

BIPHEN 0.489 0.490 0.057 0.061 

BPHENO 2.378 1.645 0.094 0.096 

NAPHOL 1.041 1.041 0.237 0.140 

PENCEN 1.280 1.186 0.953 0.717 

TPHBEN 0.341 0.336 0.557 0.143 

average 0.860 0.774 0.313 0.195 
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Table 3. Comparison of the number of FF parameters and the total dimension of FM and FC, 

with the number of equations needed to ensure the evaluation function 𝐿𝐹𝐷𝑀
𝑎𝑙𝑙  is zero 

(excluding PES and lattice energy).  

CSD ID 
Number of FF 

parameters 

Total dimension of 

FM and FC 

ACANIL 101 519 

ANTCEN 33 366 

BENZAC 72 411 

BIPHEN 53 204 

BPHENO 65 366 

NAPHOL 81 291 

PENCEN 42 546 

TPHBEN 62 636 
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Figure 4. The bar chart displays the evaluation function values for GAFF (initial values) and 

after optimization using FDM (q-fix), FDM (q-opt), SDM (q-fix), and SDM (q-opt). The values 

for each method are averaged over ten optimization trials. 
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3.2. Structure Matching 

Figure 5 presents histograms illustrating the errors in lattice constants optimized using initial 

GAFF and FFs optimized by FDM (q-fix), FDM (q-opt), SDM (q-fix), and SDM (q-opt). Figure 

5(a) examines the reproducibility of unit cell edge lengths a, b, and c. Comparing the number of 

edges with errors below 1%, we observe a progression from GAFF to FDM to SDM, with SDM 

(q-opt) displaying particularly high performance. The reproducibility of SDM(q-opt) is the highest, 

with 18 out of 24 cases showing errors below 1.0%. Even the worst case of SDM (q-opt) remains 

within a 4% error margin. Figure 5(b) represents the reproducibility of unit cell angles α, β, and 

γ. The reproducibility of the angles with SDM (q-opt) is also remarkably high, with 22 out of 24 

cases showing errors below 0.25%, and the worst case remaining within a 1.25% error margin. In 

contrast, other methods exhibit errors exceeding 1.25%. Based on these results, we can conclude 

that the combined use of SDM and q-opt allows for the creation of an FF with the highest 

reproducibility of lattice constants. Figure S10 provides further details on the errors for all 

molecules and their six respective lattice constants. 

It is important to note that crystal structures experimentally derived from the CSD using single-

crystal X-ray diffraction may differ from the true stable structure, as the experimental 

measurements are typically conducted at finite temperatures rather than at absolute zero. In this 

study, we assume that any differences between the experimental and stable structures are 

negligible. Addressing this discrepancy would require a large amount of crystal structure 

information at various finite temperatures along with their corresponding energies. However, as 

mentioned in the introduction, this study focuses on utilizing experimentally obtained crystal 

structures, and thus, this issue falls outside the scope of this paper as it would require additional 
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QM calculations for finite-temperature crystal structures and consideration of all these structures 

as reference structures. 

 

 

Figure 5. Histograms of optimized lattice constants. (a) Histogram of errors in lengths of axes a, 

b, and c, optimized with GAFF, FDM, and SDM. The x-axis represents the percentage of errors, 

with the smallest area corresponding to 0–1% and the largest area representing >5%. (b) 

Histograms of errors in angles between axes b–c, c–a, and a–b, represented as α, β, and γ 

respectively, optimized with GAFF, FDM, and SDM. The x-axis represents the percentage of 

errors, with the smallest area corresponding to 0-0.25% and the largest area representing >1.5%. 
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To assess the accuracy of molecular orientations and internal lattice structures, we calculated the 

root mean squared error (RMSE) of internal atomic coordinates in a unit cell, as displayed in 

Figure 6. Table 4 presents the RMSE values obtained. The average RMSE for all molecules was 

0.254 Å with GAFF, 0.244 Å with FDM (q-fix), 0.216 Å with FDM (q-opt), 0.193 Å with SDM 

(q-fix), and 0.150 Å with SDM. In three out of the eight molecules, both FDM (q-fix) and FDM 

(q-opt) failed to enhance the accuracy of internal coordinates compared to GAFF. These results 

suggest that employing both SDM and q-opt enables the development of an FF with the highest 

reproducibility in terms of internal lattice structures. 
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Figure 6. Bar chart of RMSE of internal atomic coordinates obtained using the reference crystal 

structures. 
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Table 4. RMSE of internal atomic coordinates in crystal structures (Å). 

CSD ID GAFF FDM (q-fix) FDM (q-opt) SDM (q-fix) SDM (q-opt) 

ACANIL 0.424 0.529 0.475 0.353 0.267 

ANTCEN 0.113 0.068 0.069 0.091 0.080 

BENZAC 0.264 0.229 0.213 0.197 0.086 

BIPHEN 0.192 0.150 0.153 0.127 0.144 

BPHENO 0.206 0.364 0.218 0.122 0.106 

NAPHOL 0.274 0.305 0.305 0.193 0.191 

PENCEN 0.214 0.170 0.165 0.213 0.161 

TPHBEN 0.344 0.136 0.132 0.248 0.162 

average 0.254 0.244 0.216 0.193 0.150 
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As shown in Figure 7, both FDM (q-fix) and FDM (q-opt) exhibit distorted structures after 

optimizing the single BENZAC molecules' geometry. The red arrows highlight that the hydrogen 

atom bonded to an aromatic carbon in the benzene ring deviates from the plane of the ring, and 

the planar molecule containing the carboxyl group is oriented at an angle. This distortion is 

attributed to the overdetermined evaluation function, as discussed in section 3.1.  
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Figure 7. Optimized structures of a single BENZAC molecule by FF derived via (a) FDM 

(q-fix), (b) FDM (q-opt) (c) SDM (q-fix) and (d) SDM (q-opt). 
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3.3. Lattice Energy Matching 

Table 5 presents the lattice energies calculated with GAFF and the FFs optimized using the four 

methods. Among them, SDM (q-opt) demonstrated the highest accuracy in reproducing the lattice 

energies. As GAFF is not specifically designed to accurately predict 𝑈lat for single molecules, it 

resulted in large errors. While FDM (q-fix) and FDM (q-opt) showed high accuracy in lattice 

energy prediction for ANTCEN and TPHBEN, errors for ACANIL, NAPHOL, and BENZAC 

were significantly larger in the FDM methods compared to the SDM methods. This discrepancy 

could be attributed to the major intermolecular forces present in the crystal. ANTCEN and 

TPHBEN are known to be stabilized by π-stacking or vdW forces, whereas ACANIL, NAPHOL, 

and BENZAC form hydrogen bonds as discussed in detail in section 3.5. Despite BIPHEN and 

PENCEN not forming hydrogen bonds, it is likely that they could not achieve a balance between 

maintaining accurate energy matching and other objectives, such as monomer structures, crystal 

structures, and lattice energy. 

In contrast, SDM (q-fix) and SDM (q-opt) methods achieved high accuracy, with errors below 

0.3 kcal/mol, except for ANTCEN in SDM (q-fix). ACANIL, NAPHOL, and BENZAC, which 

form hydrogen bonds, also showed high accuracy with SDM (q-fix) and SDM (q-opt). Although 

we employed an Amber-type FF, expressed by Eq. (1), which does not explicitly include hydrogen 

bonds, these results suggest that the intermolecular interactions resulting from vdW and Coulomb 

forces, along with the indirect correlations between bond, bond angle, and dihedral angle, were 

able to practically reproduce the hydrogen bonds. 
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Table 5. Lattice energies and errors (shown in parentheses) obtained from experiments 

(kcal/mol) using the FFs optimized with GAFF (initial values), FDM (q-fix), FDM (q-opt), SDM 

(q-fix), and SDM (q-opt). The bottom line ‘RMSE’ expresses the root mean squared error over 

eight molecules. 

CSD ID Ref. GAFF FDM (q-fix) FDM (q-opt) SDM (q-fix) SDM (q-opt) 

ACANIL -25.04 -19.95 (5.09) -30.06 (-5.02) -31.65 (-6.61) -25.31 (-0.27) -24.87 (0.17) 

ANTCEN -25.13 -20.46 (4.68) -25.07 (0.07) -25.08 (0.05) -24.19 (0.94) -25.06 (0.07) 

BENZAC -22.50 -16.27 (6.23) -19.59 (2.91) -24.38 (-1.88) -22.41 (0.09) -22.46 (0.05) 

BIPHEN -21.07 -17.56 (3.51) -20.27 (0.80) -20.31 (0.77) -20.92 (0.15) -20.97 (0.11) 

BPHENO -22.48 -19.44 (3.04) -21.99 (0.49) -20.53 (1.95) -22.52 (-0.04) -22.46 (0.02) 

NAPHOL -22.98 -18.41 (4.57) -18.42 (4.56) -18.42 (4.56) -22.88 (0.10) -22.88 (0.10) 

PENCEN -30.11 -33.52 (-3.41) -32.03 (-1.91) -30.70 (-0.59) -30.06 (0.05) -30.35 (-0.23) 

TPHBEN -36.51 -33.33 (3.18) -36.51 (0.00) -36.51 (0.00) -36.46 (0.05) -36.53 (-0.02) 

RMSE   (4.34)  (2.72)  (3.04)  (0.36)  (0.12) 
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3.4.Crystal Structure Reproducibility on Supercells and at Finite Temperature 

MD simulations were performed on supercells containing more than 3000 molecules using a 

time step of 1 fs to ensure the preservation of all crystal structures. The FFs optimized with SDM 

(q-opt) were used for the simulations, which were conducted under NPT conditions at 300 K. 

The simulation process involved heating from 10 K to 300 K over 0.1 ns, maintaining at 300 K 

for 1 ns, and then cooling back to 10 K over 0.1 ns. The lattice constants of the eight crystal 

molecules after the MD simulations with supercells are summarized in Table 6, where the axis 

lengths were converted to those in unit cells. Despite the weak hydrogen bonding between the 

amino and carbonyl groups of ACANIL, the crystal structure was successfully reproduced, as 

shown in Figure 8. Additionally, the structures obtained from the MD simulations under the 

same conditions for the other seven molecules are presented in Figure S11 to Figure S17.  
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Table 6. Lattice constants of the supercell models obtained after MD simulations at 300 K and 

NPT conditions, with errors (in parentheses), compared to experimental crystal structures 

(kcal/mol). The lengths were divided by the multiples to facilitate effective comparison between 

the supercells and the lattice constants of the unit cells. 

CSD ID a (Å) b (Å) c (Å) α(degree) β(degree) γ(degree) 

ACANIL 19.48 (-0.03) 9.23 (-0.13) 8.00 (0.22) 89.82 (-0.19) 90.01 (0.01) 90.01 (0.01) 

ANTCEN 17.11 (-0.02) 6.10 (0.07) 11.23 (0.05) 90.25 (0.25) 123.95 (-0.75) 89.85 (-0.15) 

BENZAC 10.96 (-0.06) 5.27 (0.11) 22.04 (0.06) 90.10 (0.10) 98.30 (0.89) 90.16 (0.16) 

BIPHEN 8.18 (0.06) 5.62 (-0.02) 9.46 (-0.01) 89.88 (-0.12) 95.04 (-0.36) 90.03 (0.03) 

BPHENO 7.79 (0.05) 10.21 (-0.03) 12.03 (-0.01) 90.19 (0.19) 89.71 (-0.29) 89.99 (-0.01) 

NAPHOL 13.24 (0.06) 4.77 (-0.03) 13.25 (-0.03) 90.06 (0.06) 117.35 (0.23) 89.89 (-0.11) 

PENCEN 15.78 (-0.02) 6.05 (-0.01) 16.00 (-0.01) 100.57 (-1.33) 111.91 (-0.69) 85.95 (0.15) 

TPHBEN 7.89 (0.28) 18.15 (-1.61) 10.66 (-0.59) 90.03 (0.03) 90.00 (0.00) 89.44 (-0.56) 
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Figure 8. A supercell structure of ACANIL Crystal Structure after 1 ns of 300 K MD using the 

FFs optimized with SDM (q-opt). 
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3.5. Charge Optimization with Differentiable Ewald Method 

We start by discussing the differences between q-fix and q-opt. Figure 9 displays the changes 

in atomic charges for each atom in SDM (q-fix) and SDM (q-opt). As explained in the 

Methodology section, SDM (q-fix) employs charge values calculated from single-molecule first-

principles calculations, while SDM (q-opt) optimizes the FFs using the charges from SDM (q-fix) 

as initial values, based on the evaluation function shown in Eq. (11). The changes in charges are 

depicted using colors, with molecules composed of π-conjugated systems, such as ANTCEN, 

BIPHEN, PENCEN, and TPHBEN, showing small charge changes. However, ACANIL, 

BENZAC, NAPHOL, and BPHENO exhibit more significant changes in charges. However, 

changes in the charge for BPHENO are less pronounced than those in the other three. 

In Figure 9(a), for instance, ACANIL, the hydrogen bond donor (H of the NH in the amide 

bond) releases electrons, resulting in a positive shift in charge, while the hydrogen bond acceptor 

(O of the carbonyl group) accepts electrons, leading to a negative shift in charge. This suggests 

that the hydrogen bonds were effectively incorporated by considering crystal structures. Figure 

10(a) further illustrates a section of the ACANIL crystal structure based on the FFs optimized with 

SDM (q-opt), showing how ACANIL molecules connect in a bead-like chain through hydrogen 

bonds between the carbonyl oxygen (O) of the amide bond and the hydrogen (H) of the NH group. 

The expansion of this hydrogen bond network results in relatively large charge changes. 

Additionally, the charge changes in ACANIL, where the methyl group becomes more positive and 

the benzene ring more negative, may be attributed to charge compensation due to charge transfer 

to the amide bond and the need to accurately reproduce PESs of the dihedral angles. 

In Figure 9(c) for BENZAC, the hydrogen bond donor (H of the OH in the carbonyl group) and 

the hydrogen bond acceptor (O of the carbonyl group) exchange electrons based on their respective 
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roles in hydrogen bonding. In the crystal, every two molecules form a dimer with double hydrogen 

bonds, as depicted in Figure 10(b). The charge change in the ortho-position H is believed to 

enhance the reproduction of the dihedral angle PES. 

Similarly, in Figure 9(f) for NAPHOL, the H of the OH group acts as a hydrogen bond donor 

and releases electrons. As illustrated in Figure 10(c), NAPHOL also forms hydrogen bond chains 

in the crystal, which promotes charge changes. Additionally, the neighboring H atoms are 

presumed to have changed to improve the accuracy of reproducing the dihedral angle PES. 

As evident from Figure 9 and Figure 10, significant charge changes occur in regions that form 

hydrogen bonds within crystals after optimization. The FF optimization in this study considers 

both monomer and crystal structures, with initial charges calculated in the monomer. Thus, charges 

are shifted during optimization to accommodate both aspects while preserving the crystal structure. 

However, it is worth noting that a limitation of non-polarizable FF optimization is its inability to 

accurately capture dynamic changes in actual charges between different states. The incorporation 

of SDM into polarizable FFs could potentially address these limitations. 
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Figure 9. Charge changes for all eight molecules used as motifs after FF optimization using 

SDM (q-opt). Blue color represents atoms that shifted positively (gained charge) after 

optimization, while red color indicates atoms that shifted negatively (lost charge).   
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Figure 10. Hydrogen bonds in (a) ACANIL, (b) BENZAC, and (c) NAPHOL of the 

optimized crystal structures with the FF generated by SDM (q-opt). 
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4. Conclusion 

We proposed the SDM as a novel approach for generating FFs of small organic molecules using 

multiple types of reference data, including (i) stable monomer structures, (ii) crystal structures, 

(iii) lattice energy of the crystal structure, and (iv) PESs of the dihedral angles. SDM incorporates 

an IFD scheme to differentiate the converged structures of iterative algorithms with respect to the 

FF parameters, allowing for reproducibility of experimental crystal structures. Furthermore, to 

accurately account for long-range interactions when optimizing atomic charges, we implemented 

the Ewald method in its differentiable form. 

Comparing the optimization results of FFs using FDM (q-fix), FDM (q-opt), SDM (q-fix), and 

SDM (q-opt) with evaluation functions representing the magnitude of errors, we observed 

respective error factors of 0.860, 0.774, 0.313, and 0.195, respectively. Switching from FDM to 

SDM resulted in a significant improvement, and further combining it with q-opt showed that SDM 

(q-opt) can reduce the error to less than 1/4 of FDM (q-fix). 

Consistently, the lattice constants, atomic arrangements within the crystal, and lattice energies 

exhibited higher reproducibility in SDM compared to FDM and q-opt to q-fix. The SDM (q-opt) 

method achieved accurate results for all eight molecules, with lattice constant errors less than 4% 

for edge lengths and less than 1.25% for angles. The errors in internal atomic coordinates averaged 

0.15 Å, and the lattice energy errors were 0.12 kcal/mol. Additionally, we performed MD 

simulations at 300 K under NPT conditions and confirmed the preservation of all crystal structures. 

The favorable characteristics of the SDM method stem from its unique ability to directly 

differentiate the errors between the calculated crystal structures obtained through the convergence 

algorithm and the experimentally obtained crystal structures (excluding errors due to finite 

temperature), with respect to each FF parameter. This allows for precise adjustment of FF 
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parameters, including charges, to ensure accurate reproduction of hydrogen bonding interactions, 

especially for molecules forming hydrogen bonds within the crystal. The q-opt method, which 

employs a differentiable Ewald method for charge optimization, enables the creation of FFs that 

can effectively capture the subtle nuances of hydrogen bonding in crystal structures. 

Importantly, the versatility of SDM extends beyond Amber-type FFs, and it can be readily 

applied to polarized FFs and special interactions explicitly described as an energy function, such 

as hydrogen bonding. This makes SDM a promising method for parameterizing FFs with crystal 

structures, and we believe that it will emerge as a new standard in the field. 
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Associated Content 

Supporting Information 

The supporting information includes energy comparisons between our program and LAMMPS, 

detailed parameters of the optimization algorithms, boxplots of the optimized evaluation functions 

from ten trials using four different methods, PES plots for all dihedral angles, and crystal structures 

resulting from MD simulations of supercells under NPT conditions. 

Code Availability 

The code and data are available at github.com/n-hiroshi/delff. 
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