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Abstract

The optimization, intensification, and scaling up of chemical processes are essential and time-
consuming aspects of contemporary chemical manufacturing, necessitating expertise and precision
due to their intricate and sensitive nature. However, these process development problems are often
carried out independently and consecutively, which can exacerbate the already significant
consumption of time and resources involved in the process. In this work, we present a versatile, all-
in-one robotic platform for the autonomous optimization, intensification, and scaling up of
photocatalytic reactions in flow. This platform overcomes associated challenges through the
integration of readily available hardware and custom software, offering a hands-off solution. Our open
source platform combines a liquid-handler, syringe pumps, a tunable high-powered photoreactor,
cheap loT devices and an in-line NMR to enable automated, data-rich optimization using a Closed-
Loop Bayesian Optimization strategy. The use of a high-power continuous-flow capillary photoreactor
enables highly reproducible data to be obtained, as it mitigates issues related to mass, heat, and
photon transport that are often the main sources of irreproducibility in photocatalytic
transformations. A user-friendly graphical interface allows chemists without programming or machine
learning expertise to easily optimize, monitor, and analyze photocatalytic reactions for chemical
spaces of both continuous and discrete variables. The system's effectiveness was demonstrated by
testing it on challenging photocatalytic transformations, which resulted in increased overall reaction
yields and an impressive up to 550-fold improvement in space-time yields compared to batch
processes. Additional tests on literature-reported reactions previously optimized in flow yielded
substantial increases in both yield and space-time yield. Overall, our studies demonstrate that
combining flow-based reactor technology with Bayesian optimization yields superior and unbiased
results compared to human effort and intuition in terms of pace, precision, and outcomes for the
optimization of photocatalytic reactions. Finally, due to its ability to autonomously generate datasets
that include both optimal and suboptimal conditions, our RoboChem platform also contributes to
advancing the field towards a digitally-driven era in synthetic chemistry.



Introduction

Over the past century, organic chemists have made significant advancements in developing a
multitude of synthetic methods, empowering researchers to efficiently prepare increasingly intricate
organic molecules. The progress achieved in this field has broadened our access to a vast chemical
space and facilitated the creation of molecules endowed with distinctive properties, which are crucial
for the development of future pharmaceuticals, agrochemicals, and materials.2 However, streamlining
and optimizing a compound trace into a widely applicable synthetic method is both demanding and
time-intensive, requiring meticulous attention to detail and significant investment of time and
resources.

A typical strategy for the development of synthetic methodologies consists of several stages (Figure
1A). Initially, chemists employ random screening based on existing literature to identify potential
reaction hits, which serve as starting points. Once an initial hit is discovered, the focus shifts towards
optimizing the reaction conditions for a single substrate using a method known as "one-factor-at-a-
time" (OFAT) .2 In this approach, various reaction variables, such as ligands, bases, solvents, and
temperature, are systematically screened one by one. The best result is retained, and the next variable
is subsequently optimized. However, it is crucial to recognize that OFAT optimization fails to capture
potential synergistic interactions between multiple variables,*> which can lead to suboptimal
outcomes. Furthermore, it is crucial to acknowledge that following this approach can result in over-
optimization for a specific substrate, necessitating subsequent re-optimization of the reaction
conditions to discover more general conditions that can be applied across the entire reaction scope.
As a result, when these more "general" reaction conditions are uniformly applied to all members of
the reaction scope, it may lead to less than optimal reaction yields for a significant portion of the
scope.

Laboratory automation is increasingly being utilized by both academia and industry as a driver to
increase expediency of chemical reaction discovery and optimization.® This movement has been a
boon to the area of high-throughput experimentation (HTE) over the last few years,” and has
fundamentally changed the way that chemists approach optimization and discovery.®'? However,
there are drawbacks to the systems currently being utilized. Traditional, batch-based approaches have
excelled at screening discrete variables (e.g. solvent, base, catalyst) however they are less effective at
screening continuous variables (e.g. temperature, reaction time, photon equivalents®® concentration)
(Figure 1B).}* On the flip-side automated continuous-flow reactor platforms, traditionally, are
effective at changing continuous variables, but struggle to screen discrete parameters (Figure 1C).%*
While much work has been done in the development of automated flow reactors for reaction
screening and optimization they nevertheless tend to be material inefficient and limited in the
screening of discrete chemical parameters, or need to be transferred to another reactor system in
order to perform scale up and intensification operations adding redundancies to the process.!s%

In response to the challenge of rapidly optimizing reaction conditions, we sought to develop an all-in-
one multipurpose robotic platform, called RoboChem, that enables the self-optimization,
intensification and scale up of photocatalytic transformations (Figure 1D). This innovative platform
overcomes associated challenges by integrating off-the-shelf hardware and customized software,
providing a hands-off solution. Our open-source platform combines a liquid handler, syringe pumps,
a high-powered photoreactor, inexpensive Internet of Things (loT) devices, and an in-line nuclear
magnetic resonance (NMR) system to enable automated and data-rich optimization. By utilizing a
high-power continuous-flow capillary photoreactor, our platform ensures highly reproducible data,
effectively mitigating issues related to mass, heat, and photon transport that often contribute to



irreproducibility in photocatalytic transformations.??> To account for complex intercorrelations
between reaction variables, optimization algorithms such as design of experiments (DoE) and
statistical modeling can be integrated into the platform. However, for complex non-linear
relationships, such as those encountered in photocatalytic reactions, machine learning proves to be
an even more effective approach.? lIts ability to rapidly and efficiently analyze vast amounts of data
enables the identification of underlying patterns and the extraction of meaningful conclusions.?* Thus,
combining machine learning with reaction automation is advantageous.?®> Given that our platform
operates as a linear system (i.e., not parallelized), minimizing the number of experiments required to
reach optimal conditions was crucial. For this reason, we turned to Bayesian Optimization, which has
gained popularity in the chemistry community due to its ability to optimize black-box functions.?¢*:?’
As an automated flow chemistry setup, our platform is capable of exploring large regions of the
experimental and chemical space within a relatively short period, making it well-suited for addressing
complex optimization problems encountered in photocatalysis. The Robochem platform distinguishes
itself from current reporting methods by optimizing every substrate, thereby enabling a clear
evaluation of the applicability and limitations of the reported transformations, resulting in increased
value for industrial implementation. We demonstrate the general applicability of RoboChem to the
optimization of a diverse set of photocatalytic transformations, including Hydrogen Atom Transfer
(HAT) photocatalysis and photoredox catalysis, which are relevant to medicinal and crop protection
chemistry.
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Figure 1 (A) Classical approach to develop a new synthetic method with subsequent scope
elaboration. (B) Batch High-throughput experimentation platform for the rapid optimization of
continuous flow systems using batch technology?® (C) General representation of some popular flow
chemistry optimization platforms which use pumps and algorithmic control (D) RoboChem — a
benchtop platform for the optimization of photochemical systems which accommodates the ability
to optimize both discrete and continuous variables, perform in a closed-loop optimization workflow
while remaining material efficient.

RoboChem platform

The RoboChem platform can be divided into three distinct workflows: the controller, the planner and
the receptionist (Figure 2A). The hardware controller oversees the management of the physical
platform, encompassing tasks such as preparing the reaction mixture, executing the experiment, and
conducting subsequent in-line analysis. The planner, which is a machine learning model, is responsible
for determining the optimal experiments to run. It selects the experiment parameters and
communicates them to the controller. The results are then fed back to the machine learning model,



which subsequently decides on the next experiment. Lastly, the receptionist functions as the Graphical
User Interface (GUI), providing users with the interface to input the necessary parameters, launch the
optimization campaign, and initiate the process.

Platform — Controller

RoboChem is controlled by custom Python code and uses open-source libraries (Figure 2A) with off-
the-shelf instruments and devices. By coupling a liquid handler, syringe pumps, switching valves, a
high power photoreactor as well as simple Internet of Things (IoT) devices such as phase sensors and
ultrasonic detectors with an in-line 60 MHz NMR for data-rich optimization, we have come up with a
workflow to easily and efficiently optimize and intensify photochemical processes (Figure 2B). Each
generated ‘reaction slug’ (650 uL) represents a discrete set of reaction conditions, and the reactions
are executed sequentially: sample preparation, followed by reaction under the specified conditions,
and finally, automated analysis and processing. The use of NMR for data analysis allowed for the
accurate gathering of yields without the need to first calibrate the analytics with a pure product, and
allowed us to run most reactions with no internal standard. While a 60 MHz benchtop NMR was
selected as the analytical technique, the platform is easily adaptable to accommodate other analytical
techniques such as IR spectroscopy, HPLC-UV-Vis, HPLC-MS, or GC-MS. As the volume of the reaction
slug is determined by the analytical method, it could be significantly reduced by an order of magnitude
if an alternative technique like HPLC were utilized.®

The RoboChem platform operates in a closed-loop manner, driven by the Bayesian Optimization (BO)
algorithm. This iterative process involves the BO algorithm proposing experiments, which are
automatically executed and analyzed. The obtained results are then fed back into the BO algorithm,
which generates a new set of conditions for further optimization.3>3! By harnessing the capabilities of
a photo-microreactor equipped with high-intensity LEDs, known for scaling up photochemistry to
productivities exceeding 2 kg/day,?? and its ability to make instantaneous computer-controlled power
output adjustments, we can minimize reaction times and significantly enhance the throughput of the
platform. This increased efficiency reduces the time required for a comprehensive optimization run.

By employing a series of phase sensors and a dedicated algorithm to detect the passage of a reaction
slug, the reactor can efficiently track the position of the reaction slug within the platform (Figure 3C).
This cost-effective approach enables precise control over the reaction as it traverses the system. The
ability to accurately monitor the reaction's location throughout eliminates the need to hardcode pump
volumes, allowing for seamless compatibility with reactors of varying sizes without requiring any code
modifications. Moreover, this tracking capability facilitates precise "parking" of the reaction slug in
the NMR for analysis, optimizing reagent usage by minimizing the required quantity for each reaction
condition.

The entire system is conveniently located on a standard laboratory benchtop and is enclosed within a
custom-designed, closed suction box, eliminating the need for placement within a fume hood during
reaction runs. The system's design facilitates three distinct operating modes:
(i) Single experiment: Conducting a reaction under specific conditions, whether for the purpose of
yield/productivity discovery or as part of a scope entry.
(ii) Self-optimization: Automating the optimization process for a single reaction or multiple reactions
consecutively.

(iii) Scale-up: Exploiting the optimized conditions obtained through self-optimization for efficient
scaling up of the reaction.
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Figure 2. All-in-one multipurpose robotic platform for the self-optimization, intensification and
scale-up of photochemistry in flow. (A) High-level view of platform architecture (B) Simplified-view
of physical platform layout combining an operation module, reaction module and analysis module
(C) Reaction tracking on the platform carried out by phase sensors to allow for triggering of events.
Control by tracking a reaction slug as it passes over phase sensor and investigated by an algorithm
to form a trigger for a next phase of the optimization cycle.

Bayesian Optimization — Planner

The platform leverages Bayesian Optimization (BO), a machine learning-based approach, to optimize
chemical reactions. BO is a probabilistic model-based method designed to efficiently identify the
maximum (or minimum) of an unknown black-box function.®® It constructs a probability model of the
function using carefully selected samples, which guides the search process by suggesting the next
point to evaluate. The BO model incorporates both exploitation and exploration strategies.
Exploitation involves investigating areas predicted to have the highest value, while exploration focuses



on exploring points where the model has limited knowledge. This dual approach prevents the model
from becoming trapped in local maxima or minima. The iterative process continues with the model
being updated after each new evaluation of the function until a predetermined threshold is reached
or a specific number of experiments have been conducted.

The BO model is implemented using the open-source Python package Dragonfly, developed by
Kandasamy et al.3%3*3> The initial runs are decided using Latin-hypercube sampling.3®*” The
researchers define the input variables (parameters to be changed) and the objective to be optimized.
The platform supports both single-objective and multi-objective optimization, targeting yield and/or
throughput. In single-objective optimization, the model identifies the global maximum of the reaction.
In multi-objective optimization, the model finds a set of non-dominated solutions known as the Pareto
front.38 To assess the progress of the optimization problem, the platform tracks the hypervolume after
each run.® In cases of interrupted runs or the desire to build upon previously executed experiments,
the platform allows for further optimization from that point (For further details, see Supplementary
Information).

The platform's integration of machine learning effectively reduces the reliance on human
resources.***! Once the experiments are set up and the optimization process is initiated, the platform
operates independently. The machine learning model autonomously determines the next set of
experiments to run, and the corresponding commands are automatically transmitted to the platform.
As a result, the platform can run continuously, including overnight, freeing up the chemist to focus on
other tasks.

GUI — Receptionist

A key aspect of the platform's design is the development of an intuitive Graphical User Interface (GUI)
that enables chemists without programming or machine learning expertise to easily navigate the
system. The GUI provides functionality for creating new experiments, which store all the settings and
results for an optimization run. It also allows users to generate the required positional and sample
data utilized by the platform and liquid handler to prepare reactions (Figure 3A).

The liquid handler can accommodate multiple stock solutions of the same type. As the platform
consumes stock solutions, it automatically tracks the quantity utilized. When one stock solution is
depleted, the platform seamlessly transitions to the next vial containing a remaining stock solution.
The GUI defines the entire chemical space to be explored under the Machine Learning Settings page.

In the Run Platform tab (Figure 3B), a button initiates the platform, and the GUI continuously tracks
the results. For single-objective optimizations, the GUI presents a chart displaying the objective
function (yield or throughput) against the number of runs. In multi-objective optimizations, it provides
a plot of yield versus throughput and includes a graph tracking the hypervolume.

The GUI performs validations to ensure all necessary files and chemical spaces are properly defined
before allowing the platform to run. If multiple reagents are added to a subcategory, the GUI
automatically treats them as discrete variables for the optimization process.

After each run, the data consisting of both the input parameters and the output values, are
automatically stored in a JSON file. These JSONs have been converted to .CSV files for easier data
manipulation and are available in the supplementary information as both .CSV and in table format.
They have been stored like this in guidance with the FAIR guiding principles for scientific data.*? These
datasets have the potential to be used in future projects; the data is of high quality due to the absence



of mass, heat and photon transport issues. Since they all are run on the same platform, the error
between them is reduced. Another advantage is the presence of negative data which is commonly not
published and thus hard to get, but nevertheless important for the development of machine learning
models.*®
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Figure 3. Graphical User Interface (A) Automated generation of sample vial positions for tracking of
stock solutions (B) Plot generation for a multi-objective optimization tracking the pareto front and
dominated points and the associated Hypervolume over time.

Performance Benchmarking

The primary focus of the RoboChem platform is to identify optimal reaction conditions for
photocatalytic transformations. Our versatile platform caters to both single- and multi-objective
optimization problems, offering synthetic chemists the ability to maximize yield, productivity, and
other relevant objective functions. To accomplish this, we selected four distinct photocatalytic
reactions, covering a total of 16 substrates, for optimization. For each case, we compared the yield
and productivity reported in the literature with the conditions determined by the Al-assisted
RoboChem platform. The reaction conditions discovered by the Al were subsequently employed to
scale up the transformations.

Case Study 1: Single Objective Optimization for the photocatalytic HAT alkylation

We began our testing and validation of the platform with a Giese-type reaction via photocatalytic HAT
activation of hydrocarbons.** The reaction was conducted in the Signify Eagle flow photo-
microreactor, utilizing tunable 0-144 W, 365 nm light LEDs. This choice allowed us to evaluate a robust
and well-established chemistry in our laboratory (Figure 4). Four optimization variables were selected
for the reaction (Benzalmalononitrile concentration, THF loading, catalyst (TBADT) loading, and
residence time). A total of nineteen experiments were conducted in a closed-loop fashion
continuously for four hours. The initial phase involved six experiments, serving as a preliminary scan
of the reaction space. Subsequently, the BO algorithm recommended one new experimental condition
at a time, aiming to maximize the objective function (yield (%)). Within nine experiments, the platform
achieved a yield of over 90% and began converging on the optimal conditions for the chemistry,
resulting in a yield exceeding 95% for the desired product. Notably, the reaction demonstrated a
detrimental effect of high light intensity, with the optimal range found to be between 20-50% of full
power (28-72 W optical input power). These optimal conditions were then utilized for scaling up the
transformation, confirming the Al-determined yield with an isolated yield of 99% (3.7 mmol scale).
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Figure 4. Single-objective optimization of the photocatalytic HAT-alkylation of benzalmalonitrile and
THF.

Case Study 2: Single and Multi-Objective Optimization of C-H Trifluoromethylthiolation of
C(sp®)-H and C(sp?)-H bonds via decatungstate-enabled hydrogen atom transfer (HAT)

Having validated the automated Al-driven photochemical platform in a single objective optimization
problem, we aimed next to investigate its capability for optimizing various photocatalytic processes in
multi-objective fashion, seeking to simultaneously optimize yield and throughput. Consequently, the
reaction conditions that are found by the Al model are readily suitable for subsequent scale-up. As an
initial benchmark, we selected the decatungstate-mediated trifluoromethylthiolation of C(sp®)-H and
C(sp?)—H bonds via hydrogen atom transfer (HAT), as reported by Koenig et al.** The incorporation of
the SCF; group in drug-like molecules holds significant value in medicinal chemistry. It offers high
lipophilicity (as indicated by the Hansch parameter of g = 1.44) and notable electronegativity, which
enhances the pharmacokinetic properties and optimizes the interaction between the active
compound and its target.

In the trifluoromethylthiolation campaign (Figure 5), five reaction parameters and two objective
functions were optimized simultaneously. The photochemistry was conducted in the Signify Eagle
Reactor, which utilizes PFA tubing with a 0.8 mm I.D. and a total volume of 2.85 mL. To provide the
necessary light source, a chip-on-board (COB) UV LED system with a tunable light intensity ranging
from 0 to 144 W of optical power was employed. The screening chemical space encompassed five
continuous parameters: Phth-SCF3 concentration, H-donor equivalents, TBADT photocatalyst loading,
residence time and light intensity. The objective functions chosen for optimization were either yield
[%] or simultaneously the yield [%] and throughput [mmol h™!] of the SCFs-bearing molecules. To
ensure fair comparisons between different reactor systems, we chose to convert the productivities
into space-time yield (STY) (g-L'*-h). This normalization factorizes the reactor volume, allowing for a
more equitable assessment of performance across varying reactor sizes.

For each substrate, a total of 18-36 experiments were conducted within an 8-16-hour timeframe. This
comprised 8 initialization experiments followed by refinement experiments for each optimization
campaign until a sufficient yield/hypervolume was achieved. Notably, substantial yield improvements
were observed compared to their respective model counterparts in batch reactions. The platform
demonstrated also a remarkable increase in productivities, ranging from 70 to 100 times higher. Next,



the reaction conditions selected by the Al model were successfully employed for scale-up to a 5 mmol
scale. In all cases, the isolated yields obtained during the scale-up process closely matched the NMR
yields observed with the Al-found reaction conditions.

Upon further analysis of the Al-discovered reaction conditions, several interesting observations arise.
The Al algorithm refines the reaction conditions to achieve optimal reactivity and selectivity for each
specific substrate. Notably, the Bayesian Optimization algorithm identifies experimental conditions
that deviate significantly from the standard conditions reported by Koenig et al. One remarkable
finding is the substantial differences in reaction/residence time and light intensity, which are
parameters that experienced chemists often overlook initially. To illustrate this, we can compare the
results obtained for trifluoromethylthiolated Sclareolide (5) and Ambroxide (6). It becomes evident
that the catalyst loading and light intensity are notably lower for Ambroxide. This can be rationalized
by the fact that Ambroxide can undergo an additional reaction with another equivalent of Phth-SCF;,
resulting in a double functionalized final product. However, such a reaction is not possible with
Sclareolide, as the a-to-O carbon position is blocked by the carbonyl group. By reducing the catalyst
loading and light intensity, the Al algorithm successfully enhances the yield and selectivity of the
mono-functionalized product (6).
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Case Study 3: Multi-Objective Optimization of Oxytrifluoromethylation of Alkenes using
photocatalytic single electron transfer (SET)

Next, we directed our focus to the oxytrifluoromethylation of alkenes through a three-component
process using photocatalytic single electron transfer (SET) with Ru(bpy)s(PFe)2, as reported by Koike,
Akita et al.* In the oxytrifluoromethylation campaign (Figure 6), we simultaneously optimized five
reaction parameters: styrene concentration, CF3; source loading, photocatalyst loading, residence
time, and light intensity. Two objective functions (yield [%] and throughput [mmol h]) were targeted
for optimization. Similarly, for each substrate, a total of 14-25 experiments were conducted within a
3-10-hour timeframe. The optimization process utilized fast °F NMR analysis (2-minute per
measurement) for molecules 7, 8, 9, and 11. However, molecule 10 required a longer optimization
time of 19 hours due to the use of 'H NMR for quantification. To ensure high accuracy, a 16-minute
analysis window was allocated per reaction. As previously described, our experimental procedure
involved 6 initialization experiments, followed by refinement experiments for each optimization
campaign.

Similar to previous experiments, the photochemistry was conducted in the Signify Eagle Reactor,
utilizing PFA tubing with a 0.8 mm I.D. However, for this campaign, chip-on-board blue LEDs with a
tunable light intensity ranging from 0 to 188 W were employed to match the absorption maximum of
the Ru(bpy)s; photocatalyst. It is important to note that due to the short residence times, as low as 10
s, the internal volume of the photoreactor had to be reduced to 0.26 mL. This adjustment was
necessary as the syringe pumps were unable to handle the high flow rates required with a larger
internal volume.

The RoboChem platform successfully performed reaction optimization, resulting in conditions that
produced outcomes closely aligned with the model batch reactions. Notably, a significant increase in
space-time-yield, up to 565-fold, was achieved, demonstrating substantial potential for scale-up in the
flow reactor. During the scale-up process, a slight improvement in yield was observed compared to
the optimization carried out on the platform. This can be attributed to the fact that, for scale-up, the
internal volume of the reactor was multiplied by a factor of 6, while the residence time remained the
same. Consequently, an associated 6-fold increase in flow rate was necessary to maintain the desired
residence time, leading to improved mass transfer facilitated by a higher Reynolds number. This
phenomenon accounts for the observed increase in yield compared to the platform conditions.

The results indicate a significant dependence of this chemistry on the sustained power applied during
the reaction, with higher wattage or longer residence time conditions resulting in noticeably lower
yields. Remarkably, one reaction condition exhibited optimal performance at the lowest "turned on"
power output, specifically molecule 9 at 2 W optical output. This outcome, which defies conventional
expert intuition, further highlights the challenging nature of prediction in this context. Additionally,
during the optimization of molecule 9, various CF; sources were screened, including trifluoromethyl
thianthrenium triflate’” and Umemoto's reagent, serving as a test case to evaluate discrete variables.
Notably, the algorithm determined that Umemoto's reagent was the optimal choice for this
transformation.
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Figure 6. Substrate scope and associated summary for the three-component
oxytrifluoromethylation of alkenes of enabled by Robochem. ® Outer bounds of the chemical space
explored for all experiments given, for more experimental details and exact chemical spaces
explored for each experiment, see supplementary information part $6.2). ° Batch conditions
compared to those from literature: Styrene conc. (0.05M), fac-Ir(ppy): loading (0.5 mol%),
‘Umemoto’ loading (1.05 equiv), CHCl,:MeOH (9:1), 425 nm Blue LED (3 W), 2.5 h. “Batch conditions
compared to those from literature: Styrene conc. (0.05M), fac-Ir(ppy)s loading (0.5 mol%),
‘Umemoto’ loading (1.1 equiv), Acetone:H,0 (9:1), 425 nm Blue LED (3 W), 2-4 h. ?Yield >95% by
QNMR.



Case Study 4: Multi-Objective Optimization of Aryl Trifluoromethylation

To provide a final example, our objective was to optimize the visible-light photocatalytic
trifluoromethylation of highly functionalized heteroarenes developed by our group and researchers
from Janssen pharmaceuticals (Figure 7).*® In our original report, the reaction was carried out in a
commercially-available Vapourtec UV-150 flow reactor. In the Signify Eagle Reactor equipped with
blue LEDs, we scanned a search space consisting of 5 reaction parameters (Heteroarene
concentration, CF3SO;Na loading, oxidant loading, residence time, and light intensity), targeting two
objective functions (yield [%] and throughput [mmolh®]) for optimization. Notably, during the
optimization of caffeine trifluoromethylation, we also incorporated a categorical variable to screen
for the appropriate photocatalyst. This highlights the unique capability of the RoboChem platform to
evaluate and optimize both discrete and continuous variables. For each substrate, a total of 17-35
experiments (including 6 initialization steps) were conducted within an 11-24-hour timeframe.

In this specific example, the RoboChem platform focused on optimizing a diverse range of densely-
functionalized substrates that hold significant interest in drug discovery programs (Figure 7). Despite
the original work being conducted in a flow system, we observed a substantial enhancement in both
yield and productivity. This improvement can be attributed to the platform's ability to optimize each
substrate individually, coupled with the utilization of a more potent light source in the Signify Eagle
reactor.
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Figure 7. Substrate scope and associated summary for aryl trifluoromethylation via Single Electron
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Photoreactor (456 nm, 60 W), Yields determined by QNMR (See Supplementary Information Part

$7.2).




Conclusion and outlook

In conclusion, we have successfully developed a versatile and comprehensive robotic
platform for the self-optimization, intensification, and scale-up of photochemistry in flow.
Through the automated optimization and subsequent scale-up of 16 different photocatalytic
reactions, our platform has showcased its capabilities.

We observed notable improvements in yield across all reactions, surpassing the performance
under reported model reaction conditions. Additionally, we achieved remarkable increases in
productivity, with a more than 500-fold enhancement compared to batch reactions and a 5-
fold improvement over flow reactions.

RoboChem has proven to be a catalyst in expediting the optimization process in our
laboratory. Its hands-off approach enhances safety while freeing our researchers to dedicate
more time to the creative aspects of chemistry, rather than being burdened with the tedium
of reaction optimization and intensification.

We are particularly excited about the modularity of the system and foresee its integration
with different types of flow reactors and process analytical technologies in the future.
Furthermore, we are eager to conduct further investigations into how different machine-
learning settings and models impact the rate of reaction optimization.

Based on our observations throughout this study, we are confident that our RoboChem
platform has immense potential for automating the evaluation of complete reaction scopes.
This capability alone offers tremendous value in developing conditions for scalable compound
libraries, such as expanding the size of building block catalogues.

Moreover, by individually optimizing reaction parameters and generating datasets that
include both optimal and suboptimal conditions, we have uncovered intricate relationships
between the targeted reaction parameters, the substrate structures, and the objective
functions. The ability to automatically generate rich datasets, obtained within a highly
reproducible reactor environment, paves the way for the future digitization of synthetic
chemistry.
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