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ABSTRACT 

The Lewis acidity of primary, secondary, and tertiary boranes with phenyl, pentafluorophenyl, and 

all three isomers of icosahedral carboranes (ortho, meta, and para) were investigated by computing 

their fluoride, hydride, and ammonia affinities as well as global electrophilicity indices and LUMO 

energies. From these calculations, the substituent effects on the Lewis acidity follow the trend of 

ortho-carborane > meta-carborane > para-carborane > C6F5 > C6H5. 
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INTRODUCTION  

Boranes are classical Lewis acids that are widely used due to their electron deficiency and desire 

to fill the vacant p-orbital to satisfy its octet.1-6 The substituents bound to the boron center greatly 

influence the accessibility and energy of the empty p-orbital providing a handle to tune the Lewis 

acidity and steric profile.7 The application of trihalo- and trialkyl- boranes in catalysis is limited 

in comparison to triaryl- species.8, 9 While trihaloboranes are generally the most Lewis acidic,7 the 

B–X bonds are reactive with many functional groups and difficult to manipulate due to moisture-

sensitivity and volatility, thus not useful for many applications. The trialkylboranes are the least 

Lewis acidic and modifying the groups on the alkyl chain only results in small permutations in the 

acid strength, making them challenging to tune, and only weak Lewis acids. Triarylboranes have 

garnered the greatest interest owing to their exceptional stability as well as the ability to fine-tune 

their Lewis acidity by modification of the substituents on the aryl group.8, 9 Electron-withdrawing 

groups such as –F, –Cl, and –CF3 can be installed to increase the Lewis acidity at the boron 

center.10-20 The perfluorinated triarylborane, tris(pentafluorophenyl)borane [B(C6F5)3],20 has found 

the most extensive applications in Lewis acid mediated chemistry, notably in catalysis, olefin 

polymerization, and as the Lewis acid component in frustrated Lewis pairs.9, 21-29 

Fluoroarylboranes with a para-fluorine atom can be susceptible to deleterious reactivity via 

nucleophilic substitution at that position that limits their use.30, 31 Beyond fluorinated arene 

substituted boranes, little research has been directed to find new Lewis acids with similar, or better, 

catalytic activity. Exotic means have emerged that include cationic substituents and functional 

groups that chelate metals to serve as electron-withdrawing groups.32-41,42-45 The cationic 

substituents and metals can be reactive themselves rather than behave as spectator ligands. 
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Berionni and coworkers have been leveraging constrained geometry at the boron center to generate 

extremely Lewis acidic boranes in situ, but the free Lewis acids have yet to be isolated.46-48 

Dicarbadodecaboranes, or carboranes, are C2B10H12 icosahedral clusters composed of boron, 

carbon, and hydrogen atoms that are bonded non-classically.49 The three isomers of neutral 

C2B10H12 are named based on the relative positions of the two carbon atoms in the icosahedron: 

ortho (carbon atoms adjacent, 1- and 2-positions), meta (carbon atoms separated by a boron atom, 

1- and 7-positions), and para (carbon atoms separated by two boron atoms on opposite sides of 

the cage, 1- and 12-positions).49 The molecular orbital diagrams of the C2B10 cages in all isomers 

have all 13 cluster bonding orbitals fully occupied and the antibonding orbitals unoccupied leading 

to high kinetic stability. Icosahedral carboranes are often termed as three-dimensional aromatics 

due to the high delocalization of the electron density throughout the cluster. Since their disclosure 

in the 1960s, carboranes have been explored in many fields of chemistry including medicine, 

catalysis, polymers, optoelectronic applications, and the metal-ion extraction of nuclear waste.50-

53  

 

Figure 1: closo-C2B10H12 Carborane isomers. 

The research groups of Lee and Park prepared aryl boranes that featured ortho-carboran-1-yl 

groups on the para- and meta- positions of the aryl groups.54-58 Fluoride binding was enhanced by 

three orders of magnitude with one carborane-substituted arene on boron and four orders of 

magnitude when three carborane-substituted arenes were on boron in comparison to species 

H
C

CH

oCb
1,2- or ortho-

CH

H
C

mCb
1,7- or meta-

C
H

H
C

pCb
1,12- or para-

BH



 4 

lacking carboranes. The o-carborane-functionalized aryl boranes demonstrate C-bound o-

carborane serves as effective electron-withdrawing group, but it is more effective to directly bind 

it to boron rather than having an arene spacer.59-62 Fox and coworkers prepared C-dimesitylboryl-

o-carboranes (1 and 2) and calculated their fluoride ion affinities to be 132.9 and 127.3 kcal/mol, 

respectively, which exceed that of the arene bridged species (123.9 and 122.6 kcal/mol, 

respectively).63 Welch and co-workers prepared a derivative of 1 and 2 with a methyl group on the 

other carbon (3) that exhibited similar Lewis acidity.64 Marder and co-workers synthesized a bis(o-

carboranyl)-(p-tolyl)-borane 4, that could be reduced and isolated as the corresponding radical 

anion attributed to its low energy LUMO.65 

 

Figure 2: Known carborane substituted boranes with measured Lewis acidity. 

Marder, Braunschweig, and coworkers reported the mono- and bis-borafluorene o-carboranyl 

species 5 and 6,66, 67 that are both susceptible to endocyclic B–C bond cleavage or insertion to 

access heterocycles,68 in many cases similar to 9-borafluorenes with B-aryl or B-halo 

substitution.69-82 Carboranes are considered 3D analogues of benzene and accordingly, carborane 

containing analogues of fluorene and anthracene have been targeted. Ye,83 Dobrovetsky,84 and our 
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group85 reported bis-ortho-carboranyl-borane analogues of a 9-borafluorene with various 

substitution on boron (7). The diisopropylamino species and mesityl were not Lewis superacids 

due to  p-donation and bulk, respectively but Br, Cl, Ph were all classified as Lewis superacids 

(LSAs). A LSA is a species with a theoretically calculated fluoride ion affinity (FIA) exceeding 

SbF5.86, 87 Ye and coworkers have prepared analogues of anthracene in which the two phenyl 

groups are replaced by o-carboranes (8).88, 89 Both the calculated hydride and fluoride ion affinities 

(HIA and FIA) follow the Lewis acidity trend of Br > Cl > Ph > N3 > CH3 with all five species 

exceeding the HIA of B(C6F5)3 and the FIA of SbF5. The boracyclic analogues of the 

cyclopropenium cation were also prepared featuring the two carbon atoms of o-carborane (9).90, 91 

Amino substituents as p-donors or bulky mesityl groups were required to isolate these species due 

to the reactivity of the strained three-membered ring. 

Our team recently prepared tris(o-carboranyl)borane (10) that is a Lewis superacid that promotes 

catalytic C–F bond functionalization reactions.92 The aforementioned studies clearly indicate the 

ability of the o-carboranes to act as an electron-withdrawing moiety, but the relative Lewis acidic 

properties are not clearly evaluated nor do any examples with the other carborane isomers exist. 

In this work, we examine the electron-withdrawing effect of all three carborane isomers on the 

Lewis acidity of boranes. 

 

RESULTS AND DISCUSSION 

To analyze the carborane substituent effects on Lewis acidity, three sets of compounds will be 

investigated, H2BR, HBR2, and BR3 complexes where R is an ortho-, para-, or meta-carborane (o-

C2B10H11, p-C2B10H11, and m-C2B10H11, respectively). The only known compounds in these are the 
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homoleptic tris(ortho-carboranyl)borane 10 and a secondary borane HB(o-CH3-C2B10H10)2, where 

for the latter the ortho-carbon bears C–CH3 rather than C–H.92,93 The results will be compared to 

the phenyl and pentafluorophenyl substituted variants. The computational methods used to assess 

Lewis acidity are Hydride, fluoride, and ammonia affinity calculations, the global electrophilicity 

index (GEI), and LUMO energy levels. Fluoride and hydride ions exhibit high basicity and are 

small in size, and thus, steric effects are minimized. Stephan and coworkers recently developed 

the GEI that calculates the ability of a Lewis acid to accept a single electron which is advantageous 

in some aspects, as it reduces the structural reorganization in comparison to the coordination of an 

atom or ion and is not influenced by the hardness of the base.94 

For H2BR molecules, there is a substantial effect on the hydride and fluoride affinities for changing 

the position of the relatively electron withdrawing C–H carborane cage substituent from the ortho- 

to the meta- position with a drop of nearly 30 kJ/mol. There is a smaller decrease in the ammonia 

affinity as well. The same effect is seen as the C–H is moved to the para- position, albeit with less 

magnitude with a further drop in 10 kJ/mol for fluoride and hydride affinities and a slight decrease 

in the ammonia affinity. Substituting the C–H for a C–CH3 group on the carborane cage has a 

minimal effect, slightly reducing the Lewis acidity which is in line with the inductive effect of –

CH3 on carbon. In all cases the Lewis acidity is significantly higher than the corresponding –C6H5 

or –C6F5 substituted systems. The LUMO energies and GEIs follow the same trend with the 

LUMO increasing in energy as the C–H becomes more distant from the central boron. The LUMO 

of the –C6F5 substituted H2BR is lower in energy than the carborane substituted species, however, 

it is more delocalized with contribution on the –C6F5 ring, whereas the carborane substituted 

species have the LUMO entirely localized on B as previously determined for the isolated 

tris(ortho-carboranyl)borane (10).  
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Table 1: Calculated values of H2BR model complexes. HIA = hydride ion affinity, FIA = fluoride 
ion affinity, all affinities are in kJ/mol; GEI = global electrophilicity index; %VBur = Lewis acid 
buried volume (%).  
 

R HIA FIA NH3 Affinity LUMO (eV) GEI %VBur 
o-C2B10H11 482  464 119 –2.81 2.82  41.1 

o-CH3-C2B10H10 482 465 117 –2.77 2.77 44.8 
m-C2B10H11 451 437 112 –2.53 2.56 41.9 

m-CH3-C2B10H10 448 434 111 –2.48 2.51 41.9 
p-C2B10H11 441 427  110  –2.44 2.49 41.7 

p-CH3-C2B10H10 434 421 104 –2.37 2.43 41.7 
C6H5 354 326 61 –2.24 2.24 34.2 
C6F5 415 383 90 –3.02 3.07 37.5 

 

The steric implications of changing a –H to –CH3 at the carbon atoms of each isomer were 

considered using the method of determining Lewis acid buried volume developed by Radius and 

co-workers using the SambVca 2.1 tool on the respective fluoride adducts. The C–H and C–CH3 

carborane substituted boranes are more sterically protected at boron than –C6F5 and –C6H5 in all 

cases. The steric effect at boron for C–CH3 rather than C–H is only impactful on the ortho- 

substituted carborane species with no change found if methyl substitution is at the meta- or para- 

positions. 

We recently reported HB(o-CH3-C2B10H10)2, the carborane analogue of Piers’ borane [HB(C6F5)2],95-

97 with C–CH3 substituents on the ortho-carbon positions of the carborane cages. Here, the other 

possible isomers/analogues are considered. In all cases a substantial increase in Lewis acidity 

towards hydride and fluoride is calculated in the secondary borane over the primary boranes. The 

ammonia affinities are less affected and even decrease slightly. There is a lowering of the LUMO 

energies and corresponding increase in the GEIs as compared with the H2BR species. With two 

carboranes the effect on the hydride and fluoride affinities changing from ortho- to meta- to para- 

positioning of the C–H has an increased effect, dropping affinities by approximately 50 kJ/mol 
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from ortho- to meta-, as compared with approximately 30 kJ/mol for the same change with H2BR. 

As with H2BR there is a lessened effect changing meta- to para-, albeit still increased with a drop 

of around 20 kJ/mol in this case. In line with H2BR species, all carborane substituted analogues 

have greater Lewis acidity than –C6H5 or –C6F5 substitution. 

Table 2: Calculated values of HBR2 model complexes. All affinities are in kJ/mol. %VBur = Lewis 
acid buried volume (%). 
 

R HIA FIA NH3 Affinity LUMO (eV) GEI %VBur 
o-C2B10H11 549 542 118 –3.33 3.24 57.1 

o-CH3-C2B10H10 540 527 120 –3.10 3.10 64.7 
m-C2B10H11 498 489 109 –2.75 2.76 58.0 

m-CH3-C2B10H10 494 485 113 –2.66 2.68 58.0 
p-C2B10H11 482 469 106 –2.59 2.61 58.0 

p-CH3-C2B10H10 479 465 101 -2.43 2.47 57.9 
C6H5 358 351 44 –2.19 2.20 44.3 
C6F5 457 429 100 –3.26 3.40 47.0 

 

With two carboranes on boron, changing C–H to C–CH3 at the ortho- position has a significant 

impact on the Lewis acid buried volume at the central boron with an increase from 57.1% to 64.7%. 

If the C–H is at the meta- or para-position, as with H2BR changing to C–CH3, there is no impact 

on the Lewis acid buried volume at the central boron, with Lewis acid buried volume at 58% in all 

cases.  
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Figure 3. Lewis acid % buried volume plots for HB(o-CH3-C2B10H10)2, HB(m-CH3-C2B10H10)2, HB(p-

CH3-C2B10H10)2 (left to right, respectively). 

In the secondary boranes, the steric imposition of the carborane notably affects the C–B–C bond 

angles more so than the –C6F5 and –C6H5 substituents. For the BR3 and H2BR compounds, the 

bond angles are exactly or nearly 120°. For secondary boranes, the –C6F5 and –C6H5 substituted 

species have C–B–C bond angles of 125-126°, but for the carborane variants they are more obtus 

at 128-129°. Surprisingly, installing methyl groups, regardless of the isomer, has a negligible effect 

on the bond angle presumably due to the ability of the icosahedron to rotate with the small H 

substituent. 

For BR3 only C–H carboranes were evaluated as changing C–H to C–CH3 has only meager effects 

on the Lewis acidity in the primary and secondary borane systems. Hydride and fluoride ion 

affinities are higher for BR3 than the other HBR2 and H2BR sets of compounds considered, with a 

maximum at 10. This is exemplified in the graphs in figure 3. Hydride and fluoride affinities drop 

approximately 70 kJ/mol upon changing the isomer from ortho- to meta- and reduce by 24 kJ/mol 

from meta- to para- in the BR3 systems. Notably, the fluoride ion affinity for a Lewis superacid is 

set at the value for SbF5 at 493 kJ/mol, meaning all three carborane substituted BR3 species are 

Lewis superacids while the ortho-carboranyl substituted secondary borane is the only Lewis 
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superacid in that class. This data indicates that there is a general additive effect in increasing the 

number of carborane substituents on the fluoride and hydride affinities. The general trend for 

LUMO energy level also follows this. For the ammonia affinity, there is less of a trend with them 

being less variable in adding more substituents. Compound 10 is the bulkiest trisubstituted borane 

reported to date and moving the C–H position to meta- or para- increases the Lewis acid buried 

volume % at boron even more owing to the slightly longer B–H adjacent to the central boron as 

compared to C–H. If these derivatives could be synthesized it would represent a new limit for 

steric congestion at a boron Lewis acid. 

Table 3: Calculated values of BR3 complexes. All affinities are in kJ/mol. %VBur = Lewis acid 
buried volume (%). 
 

R HIA FIA NH3 Affinity LUMO (eV) GEI %VBur 
o-C2B10H11 622 605 149 –3.99 4.22 71.9 
m-C2B10H11 551 538 102 –3.28 3.32 73.4 
p-C2B10H11 527 514 96 –3.08 3.09 73.6 

C6H5 356 356 30 –2.09 2.11 53.1 
C6F5 484 452 97 –3.50 3.78 58.9 
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Figure 4: Fluoride ion affinity (FIA), hydride ion affinity (HIA), NH3 affinity, LUMO, GEI, and 

buried volume (%) graphs of compounds examined.  

 

CONCLUSIONS 

This study indicates that all three isomers of carboranes (ortho, meta, and para) are superior 

substituents for increasing the Lewis acidity of boranes than pentafluorphenyl or phenyl groups. 

The high fluoride ion affinities comfortably place all three of the homoleptic 

tris(carborane)boranes in the Lewis superacid regime. While the tris(ortho-carboranyl)borane is 

known, the para- and meta-variants are not and represent interesting targets. This report establishes 

carborane-substituted boranes as powerful Lewis acids and offers much needed diversification in 

the field of boron Lewis acids. Although fluorinated arene-substituents are effective, their planar 
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steric profile is very different than the three-dimensional profile of the boranes. In addition, the 

bulk in these carborane Lewis acids should make them effective as components in frustrated Lewis 

pair chemistry. 

 

COMPUTATIONAL METHODS 

Calculations were performed using Gaussian 16.98  Coordinates and electronic energies are given 

for BP86/SV(P) geometry optimizations and single point vibrational frequency calculations.99-102 

Fluoride and hydride affinities were calculated using Krossing’s method using an isodesmic 

comparison to the fluoride and hydride affinity of [CH3)3-Si]+.12 Ammonia affinities were 

calculated using B3LYP-D3/def2SVP.98,103-105 The molecular orbitals were calculated using 

B3LYP/def2TZVP and Global Electrophilicity Indices calculated based on the method from 

Stephan and co-workers.106, 107  Lewis acid % buried volume calculations were performed using 

the SambVca method on .xyz files from the fluoride adducts using BP86/SV(P) geometry 

optimizations as per the method from Radius and co-workers.108, 109 The F atom was selected as 

the centre of the sphere, Z defined by B, the xy plane defined by a carbon bound to boron and then 

the F atom omitted. 
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Cartesian coordinates of optimized geometries in .xyz format 
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