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ABSTRACT. Protein engineering holds immense promise in shaping the future of biomedicine 

and biotechnology. This review focuses on our ongoing development of Mutexa, a computational 

ecosystem designed to enable "intelligent protein engineering". In this vision, researchers can 

seamlessly acquire sequences of protein variants with desired functions as biocatalysts, therapeutic 
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peptides, and diagnostic proteins by interacting with a computational machine, similar to how we 

use Amazon Alexa in these days. The technical foundation of Mutexa has been established through 

the development of database that integrates enzyme structures with their respective functions (e.g., 

IntEnzyDB), workflow software packages that enable high-throughput protein modeling (e.g., 

EnzyHTP and LassoHTP), and scoring functions that map the sequence-structure-function 

relationship of proteins (e.g., EnzyKR and DeepLasso). We will showcase the applications of these 

tools in benchmarking the convergence conditions of enzyme functional descriptors across mutants, 

investigating protein electrostatics and cavity distributions in SAM-dependent methyltransferases, 

and understanding the role of non-electrostatic dynamic effects in enzyme catalysis. Finally, we 

will conclude by addressing the future steps and challenges in our endeavor to develop new Mutexa 

applications that facilitate the selection of beneficial mutants in enzyme engineering. 
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1. Introduction 

Protein engineering refers to the process of optimizing protein sequences for enhanced 

physical (e.g., thermal stability, solubility, and complex stoichiometry), chemical (e.g., reactivity, 

substrate specificity, selectivity, and substrate scope), biological, and pharmaceutical functions. 

Typical strategies in protein engineering include directed evolution,1-4 gene 

shuffling/recombination,5, 6 site-directed mutagenesis,7, 8 and protein truncation and fusion.9, 10 

Enabled by protein engineering, researchers can create enzymes to transform difficult11-14 or even 
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new-to-nature reactions15, 16, develop peptides with targeted therapeutic effects,17, 18 innovate 

diagnostic tools for early-stage cancer detection,19-21 and advance our understanding of 

fundamental life processes.22, 23 

A “holy grail” challenge in protein engineering is the effective identification of desired 

protein variants within a mutation landscape.24, 25 This difficulty results from the combinatorial 

explosion associated with sequence mutation. Sampling mutations across only a dozen amino acid 

sites creates an astronomical number of variants. Despite the advances of screening strategies for 

protein engineering, the success rate for identifying beneficial mutants is around 1% or lower.26-33 

De novo design of new functional proteins provides a promising alternative, but the hit rate to 

identify successful designs among all design candidates is similar to the chance of experimental 

discovery.34-37 The time-consuming, labor-intensive, and expensive process of experimental 

screening is largely unavoidable.  

To reduce the size of mutant libraries for functional sreening, computational approaches 

have been augmented with protein engineering.25, 38-40 These methods, such as bioinformatics,24, 41 

classical molecular simulations,42, 43 quantum chemistry,44-47 and data-driven modeling,22, 48-52 span 

over a wide breath of computational sub-fields.Each type of the modeling strategy has a specific 

strength. Bioinformatics reveals the evolutionary coupling and pattern behind the function-

encoding sequence spots; classical molecular simulation elucidates the dynamics and 

conformational ensembles that constitute effective protein-protein/ligand interactions or enzyme 

catalysis; quantum chemistry informs the variation of electronic structure that underlies enzymatic 

reactions or covalent inhibition; and data-driven modeling predicts the formal, non-linear 

relationships between sequence, structure, and function. Each type of these computational methods 

may fall short in accuracy, effieicny, resolution, or reproducibility. The combination of these 
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computational approaches shows a great promise to establish an integrative strategy that we call 

“intelligent protein engineering”. Intelligent protein engineering aims to guide experimental 

discovery of desired protein mutants by effectively shrinking the sheer number of mutations that 

have to be screened. Intelligent protein engineering has the potential to save extensive amount of 

experimental efforts for identification of functional protein variants.   

With a long-term goal to create a platform that enables intelligent protein engineering, our 

lab has been building a computational ecosystem called Mutexa. Mutexa is short for “Alexa for 

mutants”, and we believe that how people engineer proteins in the future should be similar to the 

way we use Amazon Alexa in these days – if researchers intend to obtain the sequences of protein 

variants with desired functions, they just need to ask for help from a computational machine. 

Mutexa integrates high-throughput computation, bioinformatics, quantum chemistry, multiscale 

simulation, and data-driven modeling to identify protein mutants that can enhance functions 

including enzyme catalysis, peptide therapeutics, and disease biomarker detection.23 Over the past 

three years, my lab has been establishing the technical foundation of Mutexa by developing 1) a 

database that integrates enzyme structure and function data (IntEnzyDB53, 54), 2) software tools for 

high-throughput construction and modeling of enzymes (EnzyHTP55, 56) and lasso peptides 

(LassoHTP55), and 3) scoring functions to predict the impact of mutations on substrate-positioning 

dynamics,23, 57 enzymatic kinetic resolution (EnzyKR58), and peptide antimicrobial activity 

(DeepLasso59). The database, workflow software, and scoring functions will be discussed in detail 

in Sections 2, 3, and 4, respectively. In addition, we will briefly introduce the applications of these 

tools to investigate the convergence in determining enzyme functional descriptors across enzyme 

mutants,60 distribution of protein electrostatics and cavity for SAM-dependent 

methyltransferases,61 and understanding of non-electrostatic dynamic effects in mediating enzyme 
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catalysis.62 Finally, we will conclude by addressing the next steps and challenges in building new 

Mutexa applications for biocatalyst development.  

 

 

Scheme 1. Overview of Mutexa, a computational ecosystem for protein engineering. Mutexa 
consists of three components, including a database that integrates structure and function 
information of proteins, a workflow software that allows automatic, high-throughput modeling for 
proteins, and a scoring function that describes sequence-structure-function relationship of proteins. 
Combining the three basic components, new applications for predictive modeling are being 
developed into Mutexa, including tools that enable enzyme engineering for non-native substrates 
or new-to-nature reactions, peptide engineering for antimicrobial uses, and binder protein 
engineering for disease biomarker recognition.  

2. IntEnzyDB: an Integrated Structure-Function Enzymology Database 

Building an integrated database that merges related enzyme sequence, structure, and 

function data in one place is essential for developing accurate physical methods and holistic data-

driven models for enzyme engineering. However, data collection, cleaning, and joining present as 
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three major challenges. Data collection is often impeded by different design (e.g., relational, 

object-oriented, or hybrid), storage hierarchy, query mechanism, and API protocols of various 

types of existing databases. Data cleaning is tricky because existing data entries involve missing 

or inaccurate mutational spot labels and experimental conditions, as well as manual typos and 

rounding errors. Data joining between enzyme structure and function data is challenging due to 

inconsistent keys – enzyme kinetics databases typically store data entries by EC number and often 

lack PDB IDs, causing barriers for one-to-one mapping to structural databases.  

To address these challenges, my lab developed an integrated structure-kinetics enzymology 

database, IntEnzyDB, for facile data-driven modeling and machine learning.53, 54 The database 

merges related enzyme sequence, structure, and function data in one place to address the challenges 

associated with the collection, cleaning, and joining of enzymology data. In contrast to object-

oriented databases that store enzyme records in separate data files,63 IntEnzyDB employs a 

relational database architecture with a flattened data structure. This approach enhances scalability 

and enables the integration of additional enzyme function data, such as folding stability and 

solubility, into the database. Noticeably, Fleischmann et al. has employed relational architecture 

to build IntEnz, which is an integrated enzymology database for nomenclature and classification 

of enzyme‐catalyzed reactions.64  

To store enzyme kinetics and structure information, IntEnzyDB implements five data 

tables (Figure 1a). We curated three tables to store cleaned enzyme structure data derived from 

RCSB PDB,63 including a chain table that contains general protein structure information (e.g., 

nomenclature, organism, resolution, etc.), an amino acid table that contains amino acid attributes, 

properties, and physiochemical parameters, and an atomic structure table that contains the atom 

types and Cartesian coordinates. We curated one table for kinetics data derived from BRENDA,65 
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Sabio-RK,66 ProtaBank,67 and Design2Data.68 The table contains information of enzyme kinetic 

assays such as EC number, substrate, mutation, temperature, turnover number, Michaelis constant, 

and so on. Finally, we curated one reference table to achieve one-to-one mapping between enzyme 

kinetics and PDB based on foreign keys PDB ID, Chain ID, and UniProtKB. Using IntEnzyDB, 

we created a data table comprising 4243 kcat/KM values for enzymes with single amino acid 

substitutions. The dataset includes 691 wild-type (WT) enzymes, 2592 enzyme mutants, and 943 

substrates. Of the stored kcat/KM values, 29.2% pertain to oxidoreductases (EC 1), 19.4% to 

transferases (EC 2), 32.6% to hydrolases (EC 3), 9.1% to ligases (EC 4), 4.9% to isomerases (EC 

5), and 4.9% to lyases (EC 6) (Figure 1b). 

To assess the efficiency of retrieving enzyme structure data using IntEnzyDB, we 

compared it against a manual curation strategy (Figure 1c). Unlike the manual approach, 

IntEnzyDB allows the user to filter and download pre-cleaned and tabulated structural data directly 

using SQL queries. Our results indicate that for processing 200 enzymes, IntEnzyDB is 

approximately two times faster than the manual curation approach (80 s vs 173 s), and for 1000 

enzymes, it is around six times faster (151 s vs 905 s). The results indicate that the operating time 

using IntEnzyDB is nearly independent of the data size, which is particularly beneficial when 

handling a large amount of structural data (i.e., thousands or more). The flattened data structure of 

IntEnzyDB likely accounts for its high data processing efficiency. By loading all data entries at 

once, IntEnzyDB outperforms the traditional approach, where data tables and files are accessed 

serially in CPU. While processing smaller amounts of data (e.g., for one enzyme structure), 

IntEnzyDB may take longer (86 s vs 1.9 s) than the manual approach. However, IntEnzyDB can 

save a substantial amount of time when handling large amounts of structural data by avoiding 

repeatedly opening and reading files.  
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Although only ~10 mins are saved when operating on the 1000 structures in the benchmark 

(Figure 1), time savings are expected to proportionally increase with the number of data entries. 

We expect that more quality data of enzyme structure and function will be collected and stored in 

coming years. As such, IntEnzyDB provides an efficient solution for extracting enzyme structural 

features for statistical analysis or machine learning. The quality structure and function data stored 

in IntEnzyDB also provide benchmark sets for systematic assessment and development of new 

molecular modeling methods used in enzyme engineering. As the next steps for developing 

IntEnzyDB, we will further expand the mapped structure-kinetics data table by using predicted 

structures and active site annotation. Text mining strategies will be implemented to enable more 

comprehensive data validation and expansion. We will incorporate new types of enzymology data 

to IntEnzyDB, including stability, solubility, expressibility, and even molecular modeling data 

derived from high-throughput simulations.56 The incorporation of a diverse range of quality data 

from molecular level to macroscopic scale has the potential to enhance the learning efficiency, 

predictive accuracy, and generalizability of the models. 
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Figure 1. The architecture, kinetics data statistics, and performance benchmark for IntEnzyDB. (a) 
The database architecture is based on five tables, including three tables for enzyme structure 
information (chain-level, amino acid-level, and atom-level), one table for enzyme kinetics, and a 
reference table that includes foreign keys from the structure and kinetics tables. The mapping of 
the tables is established using the PDB ID, Chain ID, and UniProtKB keys. (b) The distribution of 
kinetics data for six enzyme commission classes. (c) The comparison of operation time between 
IntEnzyDB and manual curation methods. The operation time for downloading, reading, and 
cleaning data is measured for processing 1, 100, 200, 400, 600, 800, and 1000 PDB IDs, with data 
downloading and reading/cleaning indicated by dotted and dashed lines, respectively. The total 
operation time for the manual curation method is shown by the red solid line. All operation times 
are reported in seconds. 

3. Software Tools that Enable High-throughput Molecular Simulations of Proteins 

3.1 EnzyHTP: a High-Throughput Computational Platform for Enzyme Modeling 
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Different types of computational theories and methods, including quantum mechanics 

(QM), molecular mechanics (MM), and multiscale QM/MM modeling, have been extensively 

employed in protein engineering to guide the selection of function-enhancing enzyme mutants for 

late-stage functionalization69, polymer upcycling70, 71, degradation of environmental pollutants72, 

73, and treatment of food allergies74 46. To maximize the potential of molecular simulations in 

biocatalyst development,75-78 it is essential to perform enzyme modeling in an automatic and high-

throughput fashion. To address this challenge, my lab developed a computational platform, 

EnzyHTP, to automate the entire life cycle of enzyme modeling in a high-throughput manner. 

EnzyHTP has four levels of operation arranged in a top-down hierarchy (Figure 2a). The four 

levels are protein preparation, mutant generation, geometry variation, and energy engine. Each 

level was implemented as an independent Python module. The protein preparation module 

emphasizes constructing computational models for enzyme structures obtained from X-ray 

crystallography experimental data or computational predictions. The mutant generation module is 

responsible for generating novel enzyme variants based on a common enzyme sequence and 

scaffold by altering an existing amino acid’s sidechain type and conformation. The geometry 

variation module samples enzyme conformation and substrate reaction coordinates using external 

molecular dynamics or Monte Carlo software packages. The energy engine makes use of QM, MM, 

or multiscale QM/MM calculations using quantum chemistry toolboxes. In particular, the QM 

treatment of enzyme active sites and reacting species is critical to elucidating the catalytic 

mechanisms of enzymes and predicting the impact of mutations on enzyme catalysis. 

To demonstrate the high-throughput capability of EnzyHTP, we employed the software to 

investigate the impact of single mutations on the interior enzyme electrostatics for 100 

fluoroacetate dehalogenase (FAcD) mutants (Figure 2b). The model enzyme, Rhodopseudomonas 
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palustris FAcD, hydrolyzes the C–F bond of fluoroacetate (FAc) via an SN2 mechanism (Figure 

2c).79-83 The cleavage of the C–F bond contributes to the rate-determining step, and enzyme electric 

field accelerates the reaction by stabilizing the dipole moment along the breaking C–F bond.84 The 

electrostatic effect is quantified using electrostatic stabilization energy (i.e., ∆Gelec), which is 

computed by the dot product between the electric field and the C–F bond dipole (Figure 2c). Using 

EnzyHTP, we created a Python workflow to compute ∆Gelec values for 100 FAcD variants with 

random single amino acid substitution. The workflow first generates 100 variants using the mutant 

generation module based on a curated FAcD crystal structure (Figure 2b). The mutation spots are 

distributed over the entire FAcD enzyme scaffold (Figure 2d), with a spatial proximity to the active 

site ranging from 7 Å to 32 Å. The workflow performs an MD simulation for each variant and 

samples 100 conformers from a 1 ns MD production run. The structure involves a restrained pre-

reaction complex in which the residue Asp110 is aligned with the substrate C–F bond for a potential 

SN2 attack. A short propagation time is used for the MD simulations to ensure that the sampled 

enzyme conformers resemble the crystal structure. Third, the workflow computes the ensemble 

average of ∆Gelec values (denoted by <∆Gelec>) using 100 conformational snapshots extracted from 

a 1 ns MD trajectory. The bond dipole is computed using a single-point QM calculation (HF/6-

31G(d)) that consists of the substrate and Asp110, followed by the wavefunction-based localized 

molecular orbital (LMO) analysis using Multiwfn. The electronic field strength of a mutant is 

computed based on the RESP charges of enzyme atoms using Coulomb’s law. Solvent molecules 

and counterions are excluded. Using the workflow, we completed the computation of <∆Gelec> 

values for 100 FAcD variants in 7 hours with 10 GPUs (NVIDIA V100 SMX2) and 160 CPUs 

(Xeon Gold 6248). In contrast, performing this process manually for 100 enzyme variants would 
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take several weeks due to tedious processes of mutant structure curation and file preparation, in 

addition to the computational runtime.   

Figure 2e displays the distribution of <∆Gelec> values for 100 FAcD variants. The 

computed <∆Gelec> values exhibit a range of -1.1 kcal/mol to 8.2 kcal/mol. Comparing to the 

reference <∆Gelec> value of the WT FAcD (i.e., 0.5 kcal/mol), a small proportion of mutations 

(~10%) cause a reduction in the <∆Gelec> value, indicating the formation of a more favorable 

electrostatic environment that can between stabilize the developing C–F dipole in the FAcD mutant 

compared to the WT FAcD. However, the majority of mutations (~90%) have the opposite effect, 

which are likely to reduce or even abolish the catalytic effect. Despite an enhanced enzyme electric 

field strength for breaking the C–F bond, the 10% mutations are not necessarily the actual 

beneficial mutations due to the impact of mutation on other untested aspects, such as stability, 

solubility, expressibility, and so on. Our work on developing EnzyHTP software sets the basis for 

in silico high-throughput enzyme screening that identifies beneficial enzyme variants, which can 

accelerate the development cycle of new biocatalysts that catalyze non-native substrates or new-

to-nature reactions. EnzyHTP will facilitate the comprehension of enzyme catalytic mechanisms 

across numerous enzymes within a protein family. EnzyHTP can also help generate computational 

data for our database IntEnzyDB that guides future statistical understanding and machine learning. 

Inspired by the code base and architecture of EnzyHTP, we are developing more high-throughput 

software suites to address specific challenges of automatic molecular modeling in protein 

engineering. For one, we developed a tool for automatic construction and modeling of lasso 

peptides. This will be discussed in Section 3.2.    
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Figure 2. The design framework and application of EnzyHTP. (a) The workflow of high-
throughput enzyme modeling. The workflow comprises four levels of operation, namely protein 
preparation, mutant generation, geometry variation, and energy engine. The input to this 
framework is the enzyme structure, and the output is computational modeling data. (b) Application 
of EnzyHTP to compute the electrostatic stabilization energy values (i.e., <∆Gelec>) for 100 
fluoroacetate dehalogenase (FAcD) mutants. For each mutant, the workflow automatically 
conducts 1 ns molecular dynamics simulations, 100 single point quantum mechanics calculations, 
dipole moment analysis, and output an averaged <∆Gelec> value. (c) Definition of electrostatic 
stabilization energy, which is computed is by the dot product between the enzyme interior electric 
field and the dipole moment of the breaking C–F bond. (d) Spatial distribution of 100 single 
mutation spots on FAcD. (e) The distribution of ∆Gelec values for 100 FAcD mutants, where the 
red dashed line indicates the ∆Gelec value for the WT FAcD.  



 14 

3.2 LassoHTP: a High-Throughput Tool for Lasso Peptide Structure Construction and 

Modeling 

Lasso peptides are a class of ribosomally synthesized and post-translationally modified 

natural products. They were first discovered in 1991,85 and have been increasingly reported as 

candidates for new antibiotics,86-89 enzyme inhibitors,87, 90 and receptor antagonists,85 (e.g., 

microcin J2590, 91). Lasso peptides involve a 1-rotaxane topology92, 93 with a macrolactam ring held 

in position by sterically bulky residues above and below the ring. The ring in the lasso peptide is 

formed by an isopeptide bond between the N-terminal α-amino group and the carboxylate group 

of an aspartate or glutamate. Bioinformatic analyses estimate that the lasso peptides with a known 

structure and function occupy ~10% of all possible lasso peptides that exist in nature. To accelerate 

the discovery of functional lasso peptides, computational tools that allow the prediction of 

structures and functions of uncharacterized lasso peptides will help to prioritize pharmaceutically 

valuable lasso peptides for experimental assessments. However, due to the distinct topology of 

lasso peptides, computational tools that were designed for structural prediction of globular proteins 

(e.g., AlphaFold294) or cyclic peptides95 fail to inform the structure of lasso peptides with high 

fidelity.  

To address this challenge, my lab developed LassoHTP as a tool for high-throughput lasso 

peptide structure prediction and conformational sampling. LassoHTP converts a user-defined lasso 

peptide sequence (with annotation of ring, loop, and tail) into a three-dimensional structure and a 

conformational ensemble using three software modules, including a scaffold constructor, a mutant 

generator, and an MD simulator (Figure 3a). The scaffold constructor is responsible for generating 

a poly-alanine lasso peptide scaffold based on a structural library and tail extender function, while 

the mutant generator module mutates this scaffold to produce a lasso peptide structure that 



 15 

corresponds to the user-defined sequence or sequences resulting from mutagenesis (Figure 3b). 

Finally, the MD simulator uses the AMBER software package96 to parameterize the resulting lasso 

peptide structure and conduct MD simulations to output a conformational ensemble. The modular 

architecture of LassoHTP ensures its flexibility and versatility, similar to that of EnzyHTP.56 Each 

module can be independently operated for building, modifying, or modeling a lasso peptide, and 

the three modules can be sequentially executed as part of an automatic workflow to convert user-

defined lasso peptide sequences into conformational ensembles. 

To test LassoHTP, we employed the software to predict conformational ensembles for 

different types of lasso peptides (called LHTP-initiated MD) and then benchmarked their 

consistency against the MD ensembles initiated from the corresponding crystal- or NMR-

structures (called PDB-initiated MD, Figure 3c and 3d). The first test case is the WT caulosegnin-

II97 (PDB ID: 5D9E), as a crystal structure (resolution: 0.86 Å) exists for this peptide. For both 

LHTP-initiated and PDB-initiated MD ensembles, trajectories were simulated using identical force 

field parameters and the ensembles were constructed by evenly taking 1000 snapshots from a 100 

ns MD trajectory. The RMSD value calculated from the LHTP-initiated ensemble (1.48 Å) closely 

align with that from the PDB-initiated ensemble (1.55 Å).  

Furthermore, we tested LassoHTP using seven lasso peptides whose structures have been 

determined by NMR, including benenodin-1 conformer 1,98 benenodin-1 conformer 2,98 citrocin,99 

the RGD variant of microcin J25,100 streptomonomicin,101 ubonodin,102, 103 and xanthomonin-II104 

(Figure 3d). They involve a wide range of structural constructs. The first structural model of each 

peptide’s NMR-resolved structural ensemble was used to initiate the MD simulation and as a 

reference structure for RMSD calculations in both LHTP- and PDB-initiated MD ensembles. The 

two ensembles are reasonably consistent: the difference of the RMSD values between the two 
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ensembles ranges from ~0.0 Å for benenodin-1 conformer 1 and citrocin to ~1.2 Å for 

streptomonomicin and benenodin-1 conformer 2, with the average being 0.48 Å. The consistency 

between the two ensembles were also validated using principal component analysis (PCA). The 

benchmark shows that LassoHTP can generate reasonable lasso peptide structures and 

conformational ensembles from sequence. As such, LassoHTP provides a platform to build 

modules for high-throughput functional predictions including binding affinity to drug target, 

thermostability against harsh conditions, and permeability across membrane transport proteins.  

Nonetheless, we should note some technical limitations that we would like to address in 

LassoHTP. For one, the isopeptide bonds with a cis-configuration, which populate with high 

abundance in benenodin-1,105 have not been constructed in the scaffold library. Additionally, 

enhanced sampling methods have yet to be used for navigating the conformational space of lasso 

peptides. Both aspects are expected to be addressed in the next version of LassoHTP.  
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Figure 3. The design framework and application of LassoHTP. (a) A schematic of LassoHTP's 
workflow, which involves three modules: scaffold constructor, peptide mutant generator, and MD 
simulator, to transform a user-input sequence into a conformational ensemble. (b) Application of 
the mutant generator module to convert the poly-alanine lasso peptide scaffold into the lasso 
peptide that is consistent with the user-input sequence. Sequence shown is for xanthomonin-II104 
(PDB ID: 2MFV). (c) Distribution of root mean square deviation (RMSD) for LassoHTP-initiated 
and PDB-initiated MD conformational ensemble for caulosegnin-II97. (d) Average RMSD values 
of LassoHTP (LHTP)-initiated (colored in blue) and PDB-initiated (colored in orange) MD 
ensembles for eight lasso peptides involved in the benchmark. The structures of the lasso peptides 
were determined mostly by NMR except for caulosegnin-II by X-ray crystallography (PDB ID: 
5D9E). For (c) and (d), the RMSD was calculated using backbone atoms (i.e., Cα, N, C, and O) 
with reference to the reference crystal and NMR structure. 

3.3 ARMer: A Python Library for Adaptive Resource Allocation of Molecular Modeling 

Workflows on High Performance Computing Clusters 

High-throughput computation emerges as a new paradigm to facilitate mechanistic 

study,106 catalyst screening,107 functional material design,108, 109 drug discovery,110, 111 and enzyme 
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modeling.56 Our lab has developed EnzyHTP56 and LassoHTP55 as open-access software packages 

to enable the high-throughput modeling of enzymes and lasso peptides, respectively. High-

throughput computation needs to allocate different types of computing resources (e.g., CPU, GPU, 

etc.) for multiple sub-tasks in high-performance computing (HPC) clusters. Resource allocation in 

the workflow to minimize resource and time waste remains a technical challenge in the 

computational community. To address this challenge, we developed a new Python library, adaptive 

resource manager (ARMer), to dynamically request computing resources based on the need of a 

specific modeling sub-task in the workflow. Using commands implemented in the ARMer library, 

a Python “workflow script” is prepared that runs on a single-CPU thread to configure, submit, and 

monitor molecular simulation jobs for a high-throughput workflow in HPC clusters. This is in 

sharp contrast to the traditional resource allocation scheme where a fixed amount of computing 

resources is requested for all types of molecular modeling tasks.  

The ARMer Python library contains a Job class that defines variables and functions 

associated with job configuration, submission, and dynamic monitoring of job completion (Figure 

4a). ARMer also contains an HPC class that supports the Job class with variables and functions to 

mediate external input/output in a local HPC cluster where ARMer is deployed. In the Job class, a 

job object is instantiated based on information provided by the user through the arguments: 

commands, cluster, env_settings, and res_keywords. With the Job object created, a script for the 

required tasks can be generated and then submitted by the submit() method (Figure 4a). A job ID 

is added to the object by the function. By tracing the job ID, the “workflow script” can monitor 

the status of a job object in the queue, and mediate the status by killing, holding, or releasing the 

job. The “workflow script” will dynamically detect the timing of the job completion by retrieving 

error or completion messages from the output file. Notably, dynamic monitoring of job completion 
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status is critical to a high-throughput modeling workflow because multiple types of simulation 

sub-tasks must be sequentially operated in the process. In the case of high-throughput enzyme 

modeling, after submitting an MD sampling task, the “workflow script” must put the rest of the 

sub-tasks on hold and wait for the conformational ensemble to generate before submission of the 

subsequent QM calculations.  

We tested the resource and time consumption of the high-throughput molecular modeling 

workflow enabled by adaptive resource allocation on our local HPC at Vanderbilt’s advanced 

computing center for research and education (ACCRE). A single-CPU job was submitted to 

execute a “workflow script” that employs built-in commands from the ARMer library to manage 

computing resources for molecular simulation tasks involved in the high-throughput modeling of 

FAcD mutants (Figure 4b). Compared to traditional allocation strategy that directly execute sub-

tasks using a fixed amount of allocated CPU or GPU nodes, this Python script configures resource-

demanding sub-tasks (i.e., needing >1 CPU or ≥1 GPU) in a new job script and then submits the 

job to the queue (i.e., setting ifcluster = ‘True’ in the code). This job was set with a 96-hour wall-

clock running time so that it can oversee the entire workflow. 

For the MD simulation task, the workflow script configures shell commands in a job script 

to request GPU resource, set environment variables, and conduct MD modeling using AMBER. 

The workflow script then submits the job and regularly monitors the completion status of the job. 

After receiving the signal of completion, the workflow script will continue operating the QM 

calculation sub-tasks in the workflow. Due to the independence of individual QM tasks, the 

workflow script can submit multiple QM jobs (8 CPU for each QM job) simultaneously to the job 

array so that they can run in parallel up to the size limit of job array (i.e., 25 jobs) in local HPC 

cluster (Figure 4b). New jobs will be submitted once the “workflow script” detects open slots on 
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the array. With an array size of 25 jobs, one would expect an approximate time acceleration by a 

factor of 25 if no major time is spent on job queueing. As such, the ARMer library makes it possible 

to adaptively allocate computing resources to effectively accomplish a high-throughput molecular 

modeling workflow. This is different from the traditional resource allocation strategy in which one 

relies on the initially requested/assigned GPU or CPU nodes for the entire computational 

workflow. 

 

Figure 4. The framework and application of adaptive resource manager (i.e., ARMer), a Python 
library used for adaptive computing resource allocation on high-performance computing cluster. 
(a) Variables and functions used by ARMer for configuration, submission, and dynamic 
monitoring of computational tasks. The variables and functions are encapsulated in a Job class. 
They can be called by a user to prepare a Python script that enables the construction of a high-
throughput molecular modeling workflow with effective allocation of computing resources (e.g., 
CPU and GPU). (b) An exemplary application of ARMer to construct a workflow for high-
throughput modeling of fluoroacetate dehalogenase (FAcD) mutants. In the workflow, a Python 
script that runs on a single-CPU thread leverages function and variables from the Job class to 
manage the modeling sub-tasks (i.e., mutation, molecular dynamics, and quantum mechanics 
simulations) by configuring, submitting, and monitoring new job scripts. The MD job requests 1 
GPU (in orange) and each QM job requests 8 CPUs (in blue). To submit and run individual QM 
calculations in parallel, a job array with a size of 25 is employed. The type of modeling sub-tasks, 
time usage, and resource cost are noted on the Figure. 

4. Scoring Functions that Describes Sequence-Structure-Function Relationships for Protein 

Engineering  
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4.1 A Molecular Dynamics-Derived Descriptor for Enzyme Catalysis 

 To guide predictive protein engineering, physical descriptors have been identified that 

correlate with enzyme catalytic efficiency, including enzyme electrostatics in ketosteroid 

isomerase,112 Kemp eliminase,113, 114 methyltransferase,115 and P450 enzymes;116 and binding 

affinity in endoglucanases and cellobiohydrolases117-119. Protein dynamics have been proposed as 

a critical factor to favor substrate positioning120-127, control reaction dynamics,128-133 regulate 

dynamic network for thermal activation,134 and tune protein thermal capacity.135 However, the 

descriptors that represent the impact of protein dynamics on catalysis remain largely unexplored. 

Here, we employed a statistical modeling with PCA to identify molecular dynamics-derived 

descriptors that guide the search of enzyme variants that accommodate non-native substrates with 

optimal substrate positioning dynamics. 

We used lactonase SsoPox as a model system (Figure 5a), which catalyzes the hydrolysis 

of 3-oxo-CX acyl-homoserine lactone (X=10 or 12).136-141 The WT SsoPox is most reactive for the 

C10 substrate, while the W263T mutant for the C12 substrate (Figure 5b).137 This enzyme system 

was chosen primarily because kinetic turnover numbers have been characterized for both C10 and 

C12 substrates combined with the same set of SsoPox variants (i.e., WT, W263F, W263T, W263I, 

and W263V). This allows us to identify physical descriptors that inform distinct substrate-

positioning behaviors of the same enzyme scaffold towards different substrates.  

Using molecular dynamics trajectories of each substrate-enzyme variant complex, we 

calculated fifteen molecular features that are associated with the structural and dynamics 

characteristics. The descriptors are classified into four groups: 1) solvent accessible surface area; 

2) electric field; 3) root-mean-square deviation; and 4) functionally important substrate-residue, 

residue-residue, and loop-loop distances. We utilized a PCA loading plot to rank the importance 
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of these descriptors – a higher importance rank indicates that the descriptor contains more 

information to predict the change of experimental activation free energies (Figure 5c). The PCA 

analysis detects the SASA ratio of substrate to active-site pocket (i.e., SASAsub/SASApkt) as the 

top predictor for the mutation effect on activation free energy. Notably, this descriptor was defined 

to be the substrate-positioning index in our later study.62  

We further investigated the distribution of ∆G‡ values versus SASAsub/SASApkt for C10 

and C12 substrates combined with different enzyme variants. The distribution conforms to a two-

segment, piecewise linear correlation plot with a volcano shape (Figure 5d). This quantitative 

relationship is very similar to the Sabatier principle observed for cellobiohydrolases by Jeppe et 

al.117-119 The value of SASAsub/SASApkt ranges from 1.67 to 1.96, and the activation free energy 

reaches the minimum (~16.5 kcal·mol-1) under an optimal SASA ratio. For the C10 substrate, WT 

SsoPox is most favorable with an SASA ratio of 1.85. In contrast, for C12 substrate, the SASA 

ratio for WT drifts to 1.96. The ∆G‡ reaches the minimum value of 16.4 kcal·mol-1 in W263T, 

where the reaction turnover number for C12 is comparable to the native reaction for C10 in the 

WT enzyme (16.6 kcal·mol-1). The shift of the SASA ratio upon mutation is dominated by the size 

variation of the active-site pocket. As such, the optimal SASA ratio of substrate to active-site 

pocket shown in Figure 5a likely reflects the desired enzyme cavity that best accommodates a 

substrate to achieve efficient catalysis. Replacing the native substrate C10 by C12 leads to an 

increase of substrate size, which is beyond the accommodation capacity of the WT enzyme but 

presents a good fit in the W263T variant that has a larger active-site pocket. The results show that 

the SASA ratio can be employed as a predictive descriptor to guide the search for optimal enzyme 

mutants for catalyzing non-native substrate. To achieve efficient hydrolysis, a non-native 
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substrate-bound enzyme variant needs to involve a similar range of SASA ratio to the native 

substrate-bound WT enzyme. 

  

 

Figure 5. A molecular dynamics-derived descriptor for representing the impact of mutation on 
enzyme catalysis. (a) The crystal structure for the model enzyme used in the study: lactonase 
SsoPox (PDB ID: 2VC7). Flexible loops are colored in pink. Substrate binding pocket is indicated 
by an orange oval. W263 is the spot in which mutations have been performed to investigate the 
role of mutation on enzyme kinetics. (b) The reaction activation free energies (∆G‡) for 3-oxo-CX 
acyl-homoserine lactone substrates (X = 10 or 12, colored in black and blue, respectively) 
combined with different enzyme variants (WT, W263F, W263T, W263I, and W263V). ∆G‡ value 
is converted from the turnover rate using Eyring’s equation. (c) The PCA loading plot for the 
descriptors tested in the study. The descriptor is ranked based on its contribution in principal 
components (from major to minor): 1. SASAsub/SASApkt; 2. SASApkt; 3. RMSDpro; 4. dloop1-3; 5. 
RMSDpkt_sub; 6. RMSDsub; 7. RMSDpkt; 8. d99-229; 9. d258-sub; 10. EFall; 11. SASAsub; 12. d97-sub; 13. 
EFnoion; 14. d223-256; 15. dtail-loop8. The percentage in each axis label indicates the contribution of the 
principal component to the total variation. (d) Distribution of ∆G‡ values versus SASA ratio (i.e., 
SASAsub/SASApkt) in enzyme variants across C10 and C12 substrates. The red dashed lines 
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indicate the optimal point of ∆G‡ and the black dashed lines are the linear fitting of data points on 
each side of the optimal point. 

4.2 Deep Learning Models for Protein Function Prediction 

In this section, we will introduce two deep learning models that our group recently 

developed for engineering of enantioselective biocatalysts (i.e., EnzyKR58) and antimicrobial 

peptides (i.e., DeepLasso142). EnzyKR was developed to predict the enantiomeric outcome of 

hydrolase-catalyzed kinetic resolution reactions. DeepLasso was built to predict the antimicrobial 

activity for ubonodin variants.  

Hydrolases, such as lipases, esterases, and dehalogenases, have been widely employed for 

kinetic resolution in synthetic reactions in the chemical and pharmaceutical industries.143-146 

Despite the development of empirical,147 statistical,148 machine learning,149 and deep learning 

models,150, 151 the “generalist” models that can predict enantioselectivity across a broad spectrum 

of hydrolase scaffolds, mechanisms, and substrate types remain undeveloped.152 To address the 

challenge, our group developed a deep learning model, EnzyKR, to predict the activation free 

energy of a hydrolase-substrate enantiomer complex. The training and test data include a total of 

224 hydrolase-substrate complexes curated from 13 enzyme commission subclasses under the 

category of hydrolases, which are curated from our integrated enzyme structure-kinetic database 

IntEnzyDB53.  

The model consists of a classifier that distinguishes reactive hydrolase-enantiomer 

complexes from unreactive binding poses, while the regressor predicts the hydrolytic activation 

free energy (i.e., ∆G‡) for the reactive complex. The classifier employs convolutional and graph 

neural networks to separately encode three types of input: enzyme sequences, substrate SMILES 

strings, and the distance maps for the hydrolase-substrate complex (Figure 6a). The regressor of 

EnzyKR takes input from both the classifier embedding and substrate-enzyme interaction maps (a 
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stacked form of atomic distance map). Notably, the atomic distance map and interaction map  

differentiate substrate chirality, allowing the model to effectively learn the enantiomeric 

preference of hydrolases. EnzyKR exhibits a decent prediction accuracy with a Pearson R of 0.91, 

Spearman R of 0.86, and a mean absolute error (MAE) of 0.8 kcal/mol on the training set (204 

data points). EnzyKR also achieves a Pearson R of 0.66, Spearman R of 0.70, and MAE of 1.5 

kcal/mol on the test set (20 data points). For both training and test sets, the value of Spearman R 

resembles that of Pearson R. This indicates that EnzyKR balances the regression of target values 

or ranking without overfitting. 

We further tested EnzyKR for its ability to differentiate enantiomeric reactions using 18 

separately-curated hydrolytic reactions catalyzed by FAcD RPA1163153 and halohydrin HheC154 

(Figure 6b). The performance of EnzyKR was compared against DLKcat, a deep learning kcat 

predictor.151 Figure 6c shows that compared to the experimental results (black), EnzyKR (red) 

correctly predicts the favored enantiomer and outperforms DLKcat (grey) in 13 out of 18 reactions 

(i.e., 1a-e, 1g-i, 4j, 4m-n, 4p, and 4r). In more than half of the test cases, DLKcat predicts an ee% 

value lower than 50%. Due to the lack of chirality encoding in the model, the overall predictive 

performance of DLKcat appears to be similar to a random guess. Despite a decent performance, 

we should note that the limitation of EnzyKR lies in the small size of dataset and potentially 

inadequate representation of chirality. We plan to address these issues in our ongoing works.  
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Figure 6. Design and application of EnzyKR, a deep learning model for predicting the 
enantiomeric outcome of hydrolase-catalyzed kinetic resolution. (a) EnzyKR consists of a 
classifier and a regressor. Three types of input data for the classifier involve the complex structure, 
enzyme sequence, and simplified molecular-input line-entry system (SMILES) string. The 
distance map derived from the complex structure is encoded using a 2D convolutional neural 
network (CNN). The multiple sequence alignments (MSA) of the enzyme sequences are also 
encoded by a 2D CNN model. The substrate SMILES strings are encoded by a graph neural 
network (GNN) model. The embeddings from the classifier and the interaction maps are used as 
input for the regressor. The regressor involves one module of cross-attention, followed by residual 
blocks consisting of three 2D dilated convolution layers, one 2D batch norm layer, and one ReLU 
layer. Two layers a of fully connected neural network (i.e., multiple-layer perceptron) are 
employed to conduct regression between the extracted feature and the activation free energy. (b) 
The test reactions used to assess the ability of EnzyKR to predict the outcomes of kinetic resolution. 
The test set involves 18 enantioselective hydrolytic reactions catalyzed by two hydrolases. 
RPA1163 is a fluoroacetate dehalogenase that catalyzes the C–F bond hydrolysis in 9 fluoroacetic 
acid derivatives labeled using a to i. HheC is a halohydrin dehalogenase that catalyzes the 
stereoselective epoxide ring-opening in 9 spiro-epoxyoxindoles derivatives labeled using j to r. (c) 
The predicted enantiomeric excess (ee%) values of EnzyKR (red) and the baseline model DLKcat 
(grey) for 18 enantiomer pairs in hydrolase-catalyzed reactions. The experimental ee% value is 
shown in black. 

The second deep learning model we intend to introduce is DeepLasso. In recent decades, 

lasso peptides, such as microcin J25,155 ubonodin,156 cloacaenodin,157 and so on,18 have emerged 
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as promising candidates for stemming the tide of antimicrobial crisis. However, the development 

of computational models to facilitate the engineering of lasso peptide mutants with enhanced 

antimicrobial activities lag far behind the pace of lasso peptide discovery. To fill in the void, we 

collaborated with the Link lab and developed DeepLasso to predict the antibiotic activity (i.e., 

enrichment value) for ubonodin variants (Figure 7). The training and test data involve ~90,000 

mutants of lasso peptide ubonodin that were collected from experimental high-throughput 

screening and next-generation sequencing of single and double mutant library constructed by site-

saturation mutagenesis. The antimicrobial activity of a ubonodin mutant is represented by an 

enrichment value, which is the base-2 logarithm of the ratio of the mutant’s frequency at a specific 

step of the screen relative to the mutant’s frequency in the cloning transformation library.142 

Negative enrichment values indicate that the variant likely inhibits RNAP. Dropout mutants are 

those with a super strong RNAP inhibition activity and their the enrichment values are annotated 

as “not available”.  

Similar to EnzyKR, DeepLasso also adopts a classifier-regressor architecture (Figure 7a). 

With an input of an ubonodin variant sequence, the classifier first predicts whether the variant 

likely is a dropout variant. If determined as a non-dropout variant, the regressor is used to predict 

an enrichment value for the variant. DeepLasso employs a sequence encoder to learn the pattern 

of the ubonodin amino acid sequence as well as a topology encoder to represent the sequence 

regions for the ring, loop, and tail of the lasso peptide (Figure 7b). Different from existing deep 

learning models for prediction of antimicrobial peptides,158 the topology encoder we implemented 

in DeepLasso can potentially improve the learning efficiency because the topology of lasso 

peptides is known to be essential in the inhibition of RNAP.159-161 To evaluate the accuracy of 

DeepLasso, we performed confusion matrix analysis for the classifier (Figure 7c) and linear 
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regression analysis for the regressor (Figure 7d). The results show that DeepLasso achieves a 73% 

hit rate for the dropout variants and 63% for non-dropout variants (Figure 7c). The higher accuracy 

for predicting dropout variants is desired because these variants are the most likely to exhibit strong 

antibiotic activity. For non-dropout variants, the predicted enrichment values are correlated to the 

experimental value with a Pearson correlation R of 0.80, a Spearman rank correlation R of 0.77, 

and a MAE of 2.2. The regressor allows us to score the non-dropout variants for their RNAP 

inhibition activity.  

DeepLasso provides a computational tool to map out the fitness landscape of ubonodin 

variants as potential antibiotics. Though trained with mostly single and double mutants, DeepLasso 

is capable of identifying higher order ubonodin mutants with enhanced antimicrobial activity. One 

critical aspect that has yet to be considered here is the ability to predict permeability of ubonodin 

variants through the membrane of target bacteria. The permeability through cell membrane is 

independent from RNAP inhibition but should weigh in as an important factor for development of 

the next version of DeepLasso. Besides, the magnitude to which we can generalize DeepLasso for 

the antimicrobial prediction of other types of lasso peptides remains a valuable question for 

investigation.   
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Figure 7. Design architecture of DeepLasso, a deep learning model for predicting the antibiotic 
activity of lasso peptide ubonodin mutants. (a) The architecture of DeepLasso consists of an 
encoder, classifier, and regressor. The sequence encoder is constructed by three layers of a 
convolutional neural network (CNN), two layers of a bidirectional long-short term memory 
network, and one attention layer. The topology encoder is constructed by three layers of CNN with 
each layer used to learn a specific topological region of lasso peptide sequence (i.e., ring, loop, or 
tail). The classifier involves a sequential layout of two residual blocks, one attention layer, and 
one layer of multilayer perceptron (MLP). The regressor involves a sequential layout of one 
residual block and two layers of MLP. The tensors derived from the encoder are concatenated and 
fed into the classifier for prediction; the resulting tensor from the classifier is then used in the 
regressor for prediction. (b) Confusion matrix analysis for the classifier of DeepLasso. The matrix 
shows classification of sequence regions of ubonodin variants (ring, loop, and tail). The color scale 
is used to represent the magnitude of hit rate (i.e., high: yellow; low: dark blue). (c) Confusion 
matrix analysis for the classifier of DeepLasso. The matrix shows binary classification of dropout 
versus non-dropout variants. Grayscale is used to represent the magnitude of hit rate (i.e., high: 
black; low: white). (d) Regression analysis for the non-dropout variants with enrichment values. 
The linear correlation between experimental vs. predicted enrichment values is shown along with 
Pearson correlation coefficient, Spearman correlation coefficient, and mean absolute error. 

5. Applications  

The preceding sections present the core technical components underlying Mutexa, 

including an integrated structure-function database (Section 2), software packages for high-
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throughput modeling of protein mutants (Section 3), and scoring functions for predicting the 

sequence-structure-function relationships (Section 4). In this section, we will demonstrate three 

applications where these new computational tools are leveraged to investigate the conditions for 

computational convergence in enzyme modeling,60 to gain a statistical view across members of 

methyltransferase family,61 and to deepen the understanding of dynamic effects in enzyme 

catalysis.62 

The first case applies the high-throughput enzyme modeling workflow of Mutexa (i.e., 

EnzyHTP56) to investigate the boundary conditions that should be used in enzyme modeling for a 

reliable description of mutation effects. In computational protein engineering, functional 

descriptors have been calculated from molecular simulations to aid the search for beneficial 

enzyme variants.162-165 However, the optimal size of the active-site region for computing these 

descriptors across multiple enzyme variants has not yet been investigated. Using EnzyHTP, we 

conducted convergence tests on 18 Kemp eliminase variants,166, 167 evaluating functional 

descriptors in six active-site regions with varying distances from the substrate. The assessed 

descriptors include the dynamic fluctuation of the active-site (represented by root-mean-square 

deviation, or RMSD), the substrate positioning index (represented by the SASA ratio between the 

substrate and the active site), and the electric field index (represented by the projection of the 

electric field on the reacting C–H bond). Both molecular mechanics and multiscale quantum 

mechanics/molecular mechanics methods have been used to compute the descriptors. The 

descriptor values were determined for each of the eighteen Kemp eliminase variants. Spearman 

correlation matrices were employed to identify the condition for the region size beyond which 

further expansion of the boundary does not significantly alter the ranking of descriptor values. Our 

results show that dynamics-derived descriptors, specifically the dynamic fluctuation and substrate 
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positioning index, reached convergence at a distance cutoff of 5 Å from the substrate. The electric 

field descriptor exhibits convergence at 6 Å when employing molecular mechanics methods with 

truncated enzyme models, and at 4 Å when utilizing quantum mechanics/molecular mechanics 

methods with the entire enzyme model. This study serves as a reference for selecting descriptors 

in predictive modeling of enzyme engineering. 

 The second case combines our integrated structure-function database IntEnzyDB with the 

workflow software EnzyHTP to study the convergent catalytic behaviors of S-adenosyl methionine 

(SAM)-dependent methyl transferases (MTases). MTases are a ubiquitous class of enzymes 

catalyzing dozens of reactions in the life processes.168-171 Despite targeting a large variety of 

substrates with diverse intrinsic reactivity, MTases demonstrate similar catalytic efficiency.53, 54, 

172 To elucidate the evolutionary adaptation that allows MTases to accommodate the diverse 

chemical features of their respective substrates, we curated 91 SAM MTases from IntEnzyDB and 

conducted a comprehensive computational analysis using EnzyHTP to gain insights into how 

specific properties, such as electric field strength and active site volumes, contribute to achieving 

similar catalytic efficiency across substrates with different reactivity levels. When looking at O-, 

N- and even C-targeting MTases, we found that there was not a significant difference in cavity 

volumes but the electric field strengths have largely adjusted to enhance the target atom’s ability 

to accept a methyl group. For MTases targeting RNA/DNA and histone proteins, the electric field 

strength accommodates the formal hybridization state. Our study also shows that metal ions in 

MTases contribute negatively to electric field strength for methyl donation and enzyme scaffolds 

likely offset these contributions.  

 The last case integrates the workflow software EnzyHTP with a scoring function of Mutexa, 

substrate positioning index (SPI, discussed in the Section 4.1), to investigate the behavior of non-
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electrostatic dynamics in enzyme catalysis. The dynamic positioning of substrates within the active 

site, known as substrate positioning dynamics (SPD), plays a crucial role in facilitating enzyme 

catalysis by aligning the substrate in a reactive conformation.124, 163, 173-185 However, as 

conformational changes often coincide with alterations in the electrostatic environment inside the 

enzyme, it remains unclear whether SPD involves a non-electrostatic component that 

independently influences catalysis or primarily arises from perturbations in the enzyme's internal 

electrostatics. 183, 186, 187 To answer this question, we integrated computational and experimental 

approaches to investigate the non-electrostatic component of SPD using Kemp eliminase as a 

model enzyme. We employed substrate positioning index to quantify the impact of protein 

dynamics on substrate positioning. Using EnzyHTP, we selected seven variants for kinetic 

evaluation, which exhibited significantly different SPD while maintaining similar enzyme interior 

electrostatics. Our analysis revealed a valley-shaped, two-segment piecewise linear correlation 

between experimentally determined activation free energies and substrate positioning index values. 

This trend was further validated using previously reported kinetic data from the Head-Gordon 

group.188 Notably, an optimal SPI value, corresponding to the lowest activation free energy, was 

observed for the R154W variant, a surface mutation located distantly from the active site. 

Compared to the wild type, the R154W variant displayed favorable SPD, resulting in an increased 

proportion of reactive conformations for substrate deprotonation. These findings indicate the 

existence of a non-electrostatic component in SPD, serving as a factor that mediates catalysis by 

modulating the population of reactive conformations.  

6. Next Steps 

 In this review, we have discussed the construction and applications of Mutexa as a 

computational ecosystem to facilitate protein engineering. To further progress towards intelligent 
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protein engineering, we expect to continue developing Mutexa as tools to address real-life 

problems encountered in protein engineering. The immediate next step is to build a selector of 

beneficial mutants to enhance catalytic efficiency, mediate selectivity, and expand substrate scope 

in enzyme engineering. We expect the selector to contain three computational modules that 

separately evaluate the impact of mutations on 1) enzyme biophysics (i.e., thermal stability, 

solubility, etc.), 2) enzyme-substrate binding affinity, and 3) enzyme specificity and selectivity. 

For each of the modules, the proper computational readouts, either derived from data-driven 

modeling or physics-based simulations, remain a question of investigation. Besides being 

predictive about the functions, these readouts must be computed with a balanced accuracy and 

efficiency for better compatibility with a high-throughput computational workflow. How to design 

a computational protocol within these constrains present the first challenge.  

Another challenge faced in the community is how to achieve the modeling or prediction of 

complex mutants that go beyond single amino acid substitution. Complex mutants with multiple 

mutation, insertion mutation, or deletion mutation are commonly seen in protein engineering. 

However, the data-driven and molecular modeling approaches for describing and predicting 

complex mutants are significantly underdeveloped. With increasing joint efforts in computational 

and experimental protein engineering, we are hopeful that more and more solutions will be 

proposed to predict the mutation effects for complex mutations.   
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