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Abstract

1



We apply a scientific machine learning framework to aid the prediction and under-

standing of nanomaterial formation processes via a joint spectral-kinetic model. We

apply this framework to study nucleation and growth of 2D perovskite nanosheets.

Colloidal nanomaterials have size-dependent optical properties, and can be observed

in situ, all of which make them a good model for understanding the complex processes

of nucleation, growth and phase transformation of 2D perovskites. Our results demon-

strate that this model nanomaterial can form through two processes at the nanoscale:

either via a layer-by-layer chemical exfoliation process from lead bromide nanocrys-

tals or via direct nucleation from precursors. We utilize a phenomenological kinetic

analysis to study the exfoliation process and scientific machine learning to study the

direct nucleation and growth, and discuss the circumstances under which it is more

appropriate to use phenomenological or more complex machine learning models. Data

for both analysis techniques are collected through in-situ spectroscopy in a stopped

flow chamber, incorporating over 500,000 spectra taken under more than 100 different

conditions. More broadly, our research shows that the ability to utilize and integrate

traditional kinetics and machine learning methods will greatly assist the understanding

of complex chemical systems.

Keywords: kinetics, nanoparticles, perovskite, 2D materials, nanosheets, stopped flow,

in-situ, scientific machine learning

Introduction

Machine learning (ML) methods hold the promise to predict outcomes in complex chemical

systems,1–3 including nanocrystal synthesis.4,5 Much recent work has focused on learning

reaction outcomes directly from the experimental parameters, essentially treating the syn-

thesis process as a black box, but it is difficult to convert this correlative prediction into

physical or mechanistic insight. Since chemical kinetics provides an existing framework for

phenomenological modeling of the time dependence of chemical reaction networks, it is rea-
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sonable to expect that incorporating this information into an ML method will simplify the

learning problem and improve the interpretability of the final model.

Since most complex syntheses, especially of nanoparticles, occur outside the high-temperature

thermodynamically-controlled limit, they depend heavily on kinetic processes.6,7 The time

dependence of concentrations for reagents and products is therefore of crucial importance

for understanding the progress and dynamics of the reaction. Coupling ML methods to a

kinetic model of this time dependence is apromising approach for understanding the syn-

thetic pathway. Physically modeling the kinetics of reactions has long had a distinct place

in synthesis science. Linear, or at least analytic,8 models of reaction kinetics as a function

of temperature, concentrations or chemical substituents are part of the standard repertoire

that chemists use to investigate how reactions happen. However, many reactions cannot be

described by analytically solvable models.8–10 In particular, connections between different

reactions result in coupled differential equations that must be solved numerically. This task

can be especially difficult for nanoparticle synthesis, where non-linear processes lead to stiff

differential equations.11,12

Ideally, complex numerical models of a synthesis reaction network should be parame-

terised against experimental concentration time series data in order to determine physical

parameters, such as rate constants, and explore mechanisms. Techniques utilized in ML

offer alternative approaches of efficiently exploring fits to concentration over time, as well as

reducing the risk of overfitting through regularization or cross-validation. Improved fitting

efficiency may in turn allow the use of more complex models. This approach, sometimes

termed scientific machine learning,13 has been used for a variety of chemical systems,14,15

and has great potential for application in nanoscale materials chemistry.

We choose to examine the formation of two dimensional perovskite nanosheets of OLA2PbBr4,

where OLA denotes an oleylammonium ion. This chemical system provides an intriguing

model with low dimensionality that is computationally tractable and is of interest both in

the 2D materials community16–18 as well as in the halide perovskite nanocrystal commu-
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nity.19,20 Two-dimensional halide van-der-Waals structures have been studied extensively21

and exhibit strong quantum confinement that affects dielectric confinement,22 exciton bind-

ing energies, and electron transport,23 as is the case for other 2D materials.24 To design

these properties at the nanoscale, we need to control the size and shape of the materials.

To achieve that control, we need a functional understanding of the formation mechanisms of

these structures, which remains a challenge. While there has been some work to understand

growth in a thin-film environment,16–18 the growth in colloidal environments has not been

well studied. By utilizing colloidal synthesis techniques, we can achieve high concentrations

of early stage nuclei that can be observed through optical absorption spectroscopy, and thus

obtain high quality measurements of time-dependent concentrations across the entire reac-

tion sequence. In addition, the 2D exciton peaks in these absorption spectra exhibit a blue

shift due to lateral quantum confinement in the smallest nanosheets, which allows us to es-

timate particle size during early growth. Combining time and concentration information is

crucial to creating a useful model for the growth of these OLA2PbBr4 nanosheets, providing

a suitable test case for our methodology.

Our research connects 2D materials synthesis science with the synthesis of nanocrystals,

and of perovskite nanocrystals in particular. Studies of perovskite nanocrystal formation

have so far been limited by the absence of kinetic data with sufficient time resolution to

resolve nucleation and growth processes.20 By cooling the reaction down close to room tem-

perature and using stopped flow spectroscopy with millisecond resolution to observe the

synthesis, we gather an abundance of absorption spectra resolving the appearance and re-

action dynamics of species early in the formation process, resolving open questions from

previous studies. Machine learning and automated analysis becomes crucial to interpreting

the quantity of data gathered in this way.

Our approach also allows us to test different models of nanocrystal reaction kinetics and

physical properties. We investigate the dynamics of the nanosheet formation mechanism

through stopped flow experiments of nanocrystal transformation processes and discuss im-
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plications for the formation of perovskite nanocrystals more generally. This research may

be crucial to understanding the formation of ternary perovskite nanocrystal species, which

rapidly form from the binary lead halides through chemical transformations at room tem-

perature .12,25–28 In particular, the formation route of ternary lead halides appears to be

controlled by an equilibrium between solution complexes, 2D perovskite nanosheets, and

lead bromide nanocrystals,12 which explains the success of previous synthesis control strate-

gies.29–31

In this article, we outline methods to probe the synthesis of colloidal, single layer 2D

perovskites using in-situ stopped flow absorption spectroscopy, which yields time series of

spectral information at millisecond resolution. After discussing the results qualitatively,

we employ traditional kinetic analysis to understand a lead bromide chemical exfoliation

mechanism through which nanosheets can form. Finally, we construct a model of the optical

absorption spectrum as a function of size, as well as a model of the kinetic behavior of

direct nanosheet nucleation and growth. Through combination of these two models, we

enable prediction of the entire stopped flow absorption time series. By fitting these models

to experimental data and evaluating extrapolative cross-validation prediction accuracy, we

can determine physical parameters of the system and hence shed light on the properties,

formation mechanism and synthesis of OLA2PbBr4 nanosheets.

Methods

Synthesis

Chemicals and Materials

Dodecane (>99.0%), lead acetate (PbCH3COO, >97.0%), oleylamine (OLA) ≥99.0%),

oleic acid (OA) ≥99.0%) and benzoyl bromide ≥99.0%) were purchased from Sigma Aldrich.

Hexane (mixed isomers, 98 %) was purchased from Fischer Scientific. All materials were

used as received.
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Synthesis and Transformation of PbBr2 nanocrystals

Lead Acetate was dissolved in oleic acid, and stock solutions of lead oleate solution were

prepared as in previous work.12 Lead bromide nanocrystals were synthesized by mixing 60

µL lead oleate solution with 60 µL oleic acid and 20 µL oleylamine in a 4 mL vial containing

2 mL of hexanes and a stirbar. At room temperature, 9 µL of benzoyl bromide were added

to the mixture, then the solution was stirred for 10 minutes. An equal amount of isopropanol

was added to the solution to induce precipitation, then the mixture was centrifuged at 5,000

rpm. The resulting pellet was redispersed in hexanes. A solution of PbBr2 nanocrystals can

be transformed to OLA2PbBr4 nanosheets by addition of 2 - 4 equivalents oleylammonium

bromide. Characterization of all products is detailed in the SI.

Stopped Flow Experiments

Stopped flow UV-VIS experiments were used to obtain a time series of chemical concen-

trations during nanoparticle formation under a range of different experimental conditions

(i.e. initial concentrations of reagents and temperature). All experiments were performed

on an Applied Photophysics SX 20 stopped flow spectrophotometer illuminated by a Xenon

lamp and detected with a silicon photodiode array with 256 measurement points spaced at

equal distance between 190 and 735 nm. The stopped flow chambers were stored under

ethanol, then filled with toluene and emptied three times, then filled with dodecane and

emptied three times before measurement. Spectral aquisition times (usually ∼ 25 ms) and

instrument gain were optimized with dodecane as a solvent to minimize aquisition times

while maximizing spectral sensitivity and avoiding detector overflow. A background of do-

decane was subtracted internally. Spectra were recorded over 1000 time points, usually for

60 seconds and for no longer than 3600 seconds. The syringes and stopped flow chamber

were periodically flushed with ethanol to remove any accidentally deposited material in the

measurement chamber, and the same setup procedure was repeated after flushing.

Stock solutions of Br, OLA, OA, Cs-OA and Pb-OA were prepared as in our previous
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work,12 but diluted to 8.5, 3.0, 3.2, 1.0 and 0.66 mM in dodecane, respectively. All stock

solutions were added to the syringes used for loading the stopped flow chambers with volumes

varying between 10 - 100 µL and mixed with 2 mL dodecane. For synthesis experiments,

OLA, OA, and Pb-OA solutions were placed in one syringe and Br solutions were placed in

the other syringe. (See Figure 3) For the transformation experiments, a stock solution of

lead bromide nanocrystals was prepared at around 1.0 O.D. at 330 nm and placed in the first

syringe, while OLA and Br solutions were mixed in the second syringe. Each experiment

was performed at least in triplicate for a duration of 60 seconds. Observations in the interval

between 420 and 305 nm in which absorption due to lead halide nanoplates and nanocrystals

occurs were used for further analysis. Data processing is described in the SI.

Results and discussion

In-Situ Studies of Exfoliation and Synthesis

To observe the formation process of 2D perovskite nanosheets, we utilized stopped flow

studies as shown in Figure 1. To initiate the reactions, solutions containing lead oleate,

oleylamine and oleic acid were rapidly (< 5 ms) mixed with benzoyl bromide solutions by

injecting them into the stopped-flow chamber. We quantified the time-dependent concen-

trations of lead bromide nanocrystals and 2D perovskite nanosheets through their distinct

optical signatures: a shoulder on the absorption peak near 330 nm with an onset at 350 nm

represents lead bromide nanocrystals, and 2D perovskite above-bandgap states are repre-

sented by an exciton peak around 395 nm along with an absorption band above 370 nm (

Figure S1, see also ref12,32). These features are marked with dotted lines in Figure 1 A - D.

In this figure, each vertical slice is a spectrum, with the height of the spectrum converted

to color. The spectra shown here cover over 3 orders of magnitude in time, from 10s of

milliseconds to minutes, which allows us to observe and interrogate early stages of reaction

kinetics. At low [OLA] to [Pb] ratios, initial formation of PbBr2 nanocrystals is followed
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Figure 1: Qualitative Observations in Stopped Flow of OLA2PbBr4 Synthesis and cartoons
of the proposed associated mechanisms. A and E) Transformation from PbBr2 nanocrystals.
B and F) Synthesis at low OLA concentrations. C and G) Synthesis at intermediate OLA
concentrations. D and H) Synthesis at high OLA concentrations. The stopped flow exper-
imental results (A-D) are depicted as 2D contour plots, with time in logarithmic units on
the x-axis, wavelength on the y axis and color representing relative absorbance.
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by the appearance of OLA2 PbBr4 absorption peaks at 395 nm (Figure 1 B). Conversely,

at high [OLA]/[Pb] values, no PbBr2 formation is observed and the excitonic peak of OLA2

PbBr4 is initially blue-shifted by 50 nm or 200 meV, gradually shifting to ∼ 390 nm over

1 - 20 seconds after the reaction is initiated (Figure 1 C and D). This blueshift most likely

indicates lateral quantum confinement, which diminishes over time as the nanosheet grows

to larger sizes. These qualitative observations imply that there is a transition between two

mechanisms by which 2 D perovskites may be formed in colloidal solution: either through a

transformation process from PbBr2 nanocrystals (Figure 1 E, F), or via a direct nucleation

and growth pathway (Figure 1 G, H). We have also observed that there appear to be inter-

mediate processes, i.e. transformation from very small PbBr2 nanocrystals to OLA2PbBr4

nanosheets, at [OLA]/[Pb] values between those shown in Figure 1 B and C (Figure S3).

To further test and characterize the transformation reaction from PbBr2 nanocrystals, we

exposed a solution of previously synthesized PbBr2 nanocrystals to oleylammonium bromide

solutions, inducing exfoliation to single layer OLA2PbBr4 flakes. Both the nanocrystals

and their transformation product were characterized with absorption spectroscopy, XRD,

TEM and AFM, and match previously reported information on the proposed species (see

Figure S1).12,32,33 On a qualitative level, what is most apparent is that the characteristic 2D

perovskite exciton peak appears immediately above 390 nm, with hardly any observable blue-

shift at shorter time scales (Figure 1 A), regardless of the initial conditions chosen (Figure

S2). This invariance implies that the nanosheets are not laterally confined at any time, i.e.

larger structures of OLA2PbBr4 (1 ML) nanosheets are formed synchronously rather than

from smaller, initially confined nuclei. This is highly suggestive of a chemical exfoliation

mechanism (Figure 1 E) rather than dissolution of PbBr2 nanocrystals and renucleation as

nanosheets (Figure S2).

To analyze and quantify these two mechanisms, we deliberately chose two different ap-

proaches based on the data at hand and the complexity of the system. For the transforma-

tion, there are two main chemical species, the PbBr2 nanocrystals and large 1 ML nanoflakes.
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This system can be approximated as only involving two observed chemical species and their

absorption profiles and extinction coefficients are known, so we used traditional kinetic anal-

ysis based on the initial rates of reaction to gain further understanding of the mechanism.

For the direct nucleation, which involves a series of plates at different sizes for which the

exciton peak positions and extinction coefficients are not known, we built a combined model

based on kinetic and optical descriptors that incorporates both density functional theory

and in-situ data.
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Kinetic Analysis of the Activation Energy for 2D Perovskite for-

mation via PbBr2 nanocrystals

Figure 2: Activation Energy of Transformation A) Kinetic traces of OLA2PbBr4 concentra-
tions formed by exfoliation from pure PbBr2 nanocrystals at different temperatures, with
linear initial fits (blue dotted lines). B) Kinetic traces of OLA2PbBr4 concentrations in a low
OLA concentration synthesis at different temperatures with linear fits (orange dotted lines).
C) Arrhenius plot of initial kinetic rates extracted from A (blue squares) and B (orange
circles) showing activation energies.

For the traditional kinetic analysis of the transformation of PbBr2 nanocrystals into

OLA2PbBr4 nanoflakes, we analyzed the rate of appearance of 1 ML during the early parts

of the reaction. We extracted the concentrations using a previously described deconvolution

algorithm12 to separate the optical spectrum into relative contributions of different species.

This approach was possible for any stopped flow measurement in which we did not observe

significant blue-shifts (i.e. experiments which follow the transformation pathway and do not

have significantly changed absorption properties), as the algorithm uses peak positions to

assign species identity.

Fig. 2 shows the concentrations of nanosheets formed as a function of time at different

temperatures and conditions. While there are non-linear dynamics and product degradation

at longer times as well as an induction period, the initial linear concentration regime should

correspond to the rates of the process most directly involved in the transformation. We
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fit these ”initial” kinetic rates for a concentration range between 2 and 15% of the final

concentration to eliminate any effects from induction periods or degradation observed at

longer times in Figure 2 (further discussion of this treatment in the SI). We apply this

analysis to both the transformation-only experiments starting from pre-synthesized PbBr2

nanocrystals (Figure 2A) and the de novo synthesis at low [OLA]/[Pb] (Figure 2B) at a

variety of temperature. A standard Arrhenius plot of the logarithm of initial rates versus

inverse temperature (Figure 2C) demonstrates that the activation energies for the direct

transformation and the low [OLA]/[Pb] synthesis cannot be distinguished within standard

error. This observation supports the idea that both reactions occur via the same mechanism.
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Kinetic analysis for de novo nucleation and growth of 2 D perovskite

nanosheets

Figure 3: Overview of Combined Model A) Stopped flow scheme mixing benzoyl bromide
and lead ions with oleylamine in a transparent window to observe nanosheet formation. B)
Example of time series of absorption spectra obtained from stopped flow measurements. C)
Example of time series of absorption spectra obtained from combined model and fit to data
in B. D) Optical model of extinction coefficient as a function of particle size (blue - small
to red - large). E) Kinetic model of the concentration of nanosheets of different sizes as a
function of time.

In the exfoliation mechanism, the concentration of nanocrystals was directly related to

absorption intensity, allowing estimation of rates and activation energies based on initial rate

fits to kinetic measurements. In a nucleation and growth mechanism, such measurements are

not possible because a wide distribution of particle sizes are present simultaneously. Since

confinement effects mean that the wavelength of the excitonic absorption peak depends on

particle size, concentrations of nanoparticles with a wide size distribution cannot be extracted

simply from the absorption intensity. To extract growth kinetics and mechanistic information

from the time-dependent spectrum, we developed a combined kinetic and spectral model

to predict both the particle-size distribution and corresponding absorption spectrum as a

function of time. We optimised the parameters of this model to reproduce our experimental

data and hence determined the likely range of kinetic parameters for nanocrystal nucleation.

This process is shown schematically in Figure 3.
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Exciton Energy Model

The first component of the combined model is a description of how the excitonic energy

(i.e. the absorption frequency) depends on particle size, based on time-dependent quantum

mechanical calculations. The OLA2PbBr4 nanosheet was simulated via a tight-binding GW-

BSE method34 summarized in the SI. The tight-binding nature of the method enables us

to calculate the optical gaps and band gaps as a function of the nanosheet size. The GW

approximation is applied to correct the underestimated DFT band gap, followed by the

Bethe-Salpeter Equation (BSE) to calculate the excitonic energy. Since the largest nanosheet

that was computationally tractable with the tight-binding GW-BSE was 15.3 nm for the band

gap and 4.1 nm for the optical gap, we fitted an effective mass model to the calculated values

to estimate the optical gap of larger nanosheets.

We model the band gap of a nanosheet, ENS
G , as the sum of the band gap of an infinite

two-dimensional OLA2PbBr4 slab, E2D
G , and the confinement energy of the electron and hole,

Econf,e and Econf,h.

ENS
G = E2D

G + Econf,e + Econf,h (1)

Similarly, the optical gap of a nanosheet, ENS
opt , is modeled as a sum of the optical gap of

an infinite slab, E2D
opt composed of the energy of the gap of the 2D material E2D

G and the 2D

exciton binding energy E2D
b , as well as the confinement energy of an exciton, Econf,X .

ENS
opt = E2D

opt + Econf,X = E2D
G − E2D

b + Econf,X (2)

When an exciton in a nanosheet is approximated as a particle in a simple two dimensional

box, Econf,X is proportional to 1
mpL2 where mp is the effective mass of a quasi particle p

and L is the side length of the nanosheet. However, a classical effective mass model with

1
L2 -dependence was unable to fit the tight-binding GW-BSE energies, even when the effective

masses of electron and hole were treated as separate free parameters. Good fits to GW-BSE

energies for both optical gaps and band gaps were obtained using a 1
L

dependence for Econf,X .
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These fitting parameters for this model are E2D
G , E2D

b , and a variable M with units of eV
nm

which replaces the effective mass dependence to allow a 1
L

model (see Figure S12). Such

deviation from the 1/L2-dependence for the excitonic energy has been observed in other

nanoscale systems.35 Assuming the mass of the exciton mExc = me + mh ≈ 2me and that

the free variable follows this relationship MExc ≈ 2M , this approach leads to the following

final equations:

ENS
G (L) = E2D

G + 2
M

L
(3)

ENS
opt (L) = E2D

G − E2D
b +

M

2L
(4)

These two equations were jointly fit to the calculated band gaps ENS
G (L) and optical gaps

ENS
opt (L) to determine the three parameters. The optical gap of an infinite two dimensional

slab E2D
opt is estimated to be 3.03 eV based on this fit, which is in line with the experi-

mental measurements on the emission energy of micron-scale single layer (C4H9NH3)2PbBr4

crystals.36

Spectral Model

Next, we modified a model from Sun and Goldys37 to allow estimation of the excitonic

peak extinction coefficients and peak widths as a function of lateral plate size. The original

model assumed a gaussian distribution of plate sizes centered on L and with width σL. This

distribution produces an estimated optical exciton peak width, WNS
opt , for a nanosheet, given

by:

WNS
opt (L) ∼

∂ENS
opt (L)

∂L

1

σL
(5)

Similarly, the extinction coefficient εNS is given by

εNS(L) ∼ 1

ENS
opt (L)

1

WNS
opt (L)

(6)
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Into these expressions we substitute the approximation for the exciton energy that was

fitted to the DFT values (eq. (4)). Since the material at large L is a 2D material with a

strong exciton binding energy and clearly distinguishable exciton peak, we also add constant

infinite 2D slab exciton linewidths B and extinction coefficients D as fit parameters, as in

the original model both linewidth and extinction vanish with increasing size. In addition,

we assume that individual plates have discrete side lengths given by integer multiples of the

width of a unit cell, ∆L = 0.45 nm. This assumption is also used in the kinetic model. We

therefore approximate σL ≈ ∆L
L

, to account for errors arising from the assumption that only

square plates with integer numbers of unit cells L±∆L are formed, while in reality a variety

of plates with different numbers of adatoms may exist. Combining these substitutions, we

arrive at the usable expressions:

WNS
opt (L) = A

M∆L

2L
+B (7)

εNS(L) = C
1

AM∆L
2L

+B
∗ 1

E2D
G − E2D

b + M
2L

+D (8)

where A and C denote fit parameters substituted for the material properties used by Sun

and Goldys that have not been determined for this system.

We model the excitonic peak as a gaussian function, with the center given by the exciton

energy model eq.(4), and the exciton extinction coefficient and peak width determined by

the above equations. To this gaussian, we add a power law, with two fit variables F and H,

to describe the distribution of states above the bandgap (S > G):

εS>G(λ) =


FλH , if λ < ENS

opt (L)

0, if λ ≥ ENS
opt (L)

(9)

Experimental spectra can be described sufficiently by this model by summing over all

side lengths based on the concentration CL of each nanosheet:
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ε(λ) =
∑
L

CL[εNS(L) ∗ e
(
λ−ENSopt (L)

WNS
opt (L)

)2

+ εS>G(λ)] (10)

On all of the free parameters involved in the spectral model, we imposed limits based on

spectra of large OLA2 PbBr4 nanosheets in solution, coupled with ICP measurements of Pb

concentrations.

Kinetic Model

The preceding sections provide simple equations to convert a predicted nanosheet size dis-

tribution into a model absorption spectrum. To predict these distributions theoretically, we

constructed a series of time-dependent models for plate formation and growth, each corre-

sponding to a different growth mechanism. By comparing to the experimental spectra, we

are able to discriminate between these different mechanisms and identify the most probable.

We chose a simple description of nanosheets as square arrays of unit cells with the thick-

ness of a single cell and a side length of N unit cells. We assume that these plates nucleate

from collision of monomer units that form in solution, with a minimum stable nucleus size

N = 2 (i.e. 4 monomer units). We consider the following three possible nucleation mech-

anisms, where Mn indicates a cluster of n monomers and P2 indicates the minimum stable

nucleus:

N (A) 2M −→M2 ; M2 +M −→M3 ; M3 +M −→ P2

N (B) 3M −→M3 ; M3 +M −→ P2

N (C) 2M −→M2 ; M2 +M2 −→ P2

Similar to Riedinger et al.,38 we use the assumption that nanosheet growth is rate-limited

by nucleation of new facets (or in this purely 2D case, edge layers). Using this assumption,

all nanosheets grow and shrink laterally using the same set of equations. We created multiple

models based on different mechanistic possibilities:

1. Either one or two monomer units could be involved in the nucleation of new edges,

17



depending on whether the rate limiting step is the attachment of the first monomer to

the plate, or the formation of a linear cluster on the plate edge.

2. Attachment for new monomers on a plate rates could depend linearly on the number

of edge atoms in a plate (4N - 4) (i.e. the attachment to an edge site is rate limiting),

or they could be constant with plate size (i.e. diffusion of monomers to the plate is

limiting).

These different possibilities may all be described by the following differential equation

for PN , the concentration of plates with side length N :

d[PN ]

dt
= kattach × [PN−1][M ]a(4(N − 1)− 4)b

− kattach × [PN ][M ]a(4N − 4)b

− kdetach × [PN ]

+ kdetach × [PN+1].

(11)

Here, [M ] is the concentration of monomers and a, b are exponents that codify different

choices for the above mechanistic possibilities: a =1 or 2 and b =0 or 1. A cartoon depiction

of each of these mechanisms can be found in Figure 4 E.

Combining the different mechanistic possibilities for nucleation with the different choices

of exponents in the growth equation, we consider a total of 12 different reaction networks.

Each possibility is combined with a simple kinetic treatment of the key solution-phase reac-

tions, such as the decomposition of benzoyl bromide and formation of lead halide complexes.

Utilizing a modified Runge-Kutta method implemented in Fortran, we were able to numer-

ically solve the resulting differential equations for a range of model parameters (i.e. rate

constants) and predict time series of every species’ concentrations as well as particle size

distributions varying through time. Further information can be found in the SI.
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Optimization Process

By multiplying the simulated concentration of each plate size at each point in time with the

appropriate extinction coefficient for that plate size, we can effectively simulate the stopped

flow spectra. To determine the optimal fitting parameters for our various models, we defined

a local loss function χ2
Itot

=
∑

i,t,λ(Ii,t,λ − Si,t,λ)2/σ2
i,t,λ , where Ii,t,λ are the experimentally

measured absorbance values for each experiment i, time t and wavelength λ, the correspond-

ing standard deviation of measured values is σi,t,λ, and Si,t,λ represents the simulated stopped

flow data. We constructed a global loss function by adding the χ2 loss of all absorbance values

in the nanosheet range (305-420 nm) to the χ2 loss of the exciton energy peak position (λmax)

and height (Imax), determined as the highest intensity peak above 350 nm with absorbance

greater than 20 mAu. This procedure was useful to improve optimization for misaligned

peaks and to avoid local optima with no discernible exciton absorbance. In addition, we

added a penalty for solutions that did not produce nanosheets with side lengths greater than

4 unit cells, which was the critical nucleus size observed in our simulations, or that took

longer than 20 s to calculate.

Loss = χ2
Itot + χ2

λmax + χ2
Imax +

4∑
N=1

[PN ]/
Nmax∑
N=4

[PN ] + Time Penalty (12)

To minimize this function and determine the rate constants of the kinetic model and

the optical parameters in the spectral model within physically reasonable bounds, we used a

differential evolution algorithm39 for each of the 12 potential mechanisms. In each generation

of the algorithm, the quality of fit for a population of ∼ 200 parameter sets was evaluated

according to equation 12, then a set of new models was generated by adding a fraction of

each of the other models to the best model. The fraction that each model contributed to

the respective perturbation of the best model depended on the relative quality of its fit.

We validated these results using an extrapolative cross-validation and testing regime.

We constructed a series of test models by fitting the first 400 data points from 3 randomly-
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selected stopped flow experiments (out of 9 performed in total), and examined their ability

to predict the remaining experiments. The test set also included two additional experiments

that were never used in training, one of which had a value of bromide precursor 3 times

higher than any other experiment (Figure 4B). This testing framework allowed reasonable

comparison of the models across experimental conditions with different benzoyl bromide,

oleylamine and lead oleate concentrations. Such an extrapolative cross-validation procedure

would not be useful in a traditional machine learning context, where extrapolation is fre-

quently not possible and model training is relatively cheap. In our case, the physical nature

of the models makes extrapolative predictions possible while training many models requires

significant computational expense.

Analysis of combined model results

Our optimised models were able to reproduce important features of the spectra qualitatively,

such as the peak wavelength evolution (Compare Figure 4A and 4B). The simulated stopped

flow experiments correctly reproduce the appearance of the exciton peak at ∼ 0.2 seconds,

the observed blueshift of peak wavelengths at the onset (∼ 370− 380 nm), and the growth

and redshift of the exciton peak between 0.2 and 1 seconds. The ability to connect spectral

features with evolution of the particle size distribution confirms our expectation that these

three features correspond to the accumulation of critical nuclei, the formation of small, blue-

shifted nanosheets, and the gradual growth of nanosheets which relaxes optical confinement,

respectively. This qualitative agreement is in contrast to randomly guessed parameters -

even a large initial array of hundreds of randomly chosen parameters rarely allows for any

significant generation of nanosheets, much less the replication of gradual growth observed

here. Most crucially, while all of the models can at least somewhat fit the overall data they

were trained on, most of them cannot perform any extrapolation (Figure 4 F), and can

thus be discarded. The reaction with nucleation mechanism N (A) and a layer nucleation

that is linearly dependent on the number of edge units of a plate and second order with
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Figure 4: Extrapolation from Optimized Combined Model A) Experimental stopped flow re-
sults for extrapolation tests of observed synthesis dynamics at bromide concentrations higher
than any in the trained dataset. B) Predicted stopped flow results at identical conditions
based on training set. C) Time traces of concentrations of simulation in B. D) Particle size
distribution as a function of time in simulation in B. E) Cartoon reactions of differing reac-
tions utilized in models. F) Summary of model performance for a combinatorial combination
of all reactions shown in E, evaluated through cross-validated extrapolation testing. Each
panel represents results from a different nucleation mechanism, while bars represent different
growth mechanisms
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respect to the concentration of monomer units has the best relative ability to extrapolate

to new conditions. Given the overall quality of fit, we are somewhat cautious about final

conclusions as to which mechanism is operating in this reaction. As with all disproof-based

mechanistic validation, we can only say that it is more likely than the other mechanisms we

have proposed.

Figure 5: Parameter Determination A) Single Variable (Diagonal, blue) and Dual Variable
(Lower left corner) plots of changes in overall fit value with changes in Plate attachment
kattach, Plate detachment kdetach and Nucleation rate kNuc B) Parameter regimes yielding
best fits across multiple mechanistic models. Each row corresponds to a model parameter
(k1 through k8 are rate constants for various solution reactions). On each row, a series of
maplet arrows indicate the range of values that parameter may take without significantly
worsening the fit of a corresponding model, with each range starting with a line and ending
in an arrow. Specifically, these ranges correspond to the parameter regime in which the
shaded region of the single variable plot in A) falls below the best average fit value (dotted
black line).

The sensitivity of the loss function to a particular parameter is somewhat conserved
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across multiple models where other parameters may vary, which can give insight into which

parameters most control the observed behaviour. Unsurprisingly, plate and layer nucleation

rates and denucleation rates significantly affect how well the simulation fits the data (Figure

5 A) - raising the relative χ2 by more than an order of magnitude, which suggests that they

are the controlling steps in this process. The nucleation rate appears to be fast relative

to growth rates (Factor of 100:1), suggesting that LaMer-type reaction models of fast

nucleation and slow growth40–42 may apply to 2D perovskite nanosheets. There appears to

be a correlation between plate and layer nucleation, i.e. reasonable fits could be obtained by

increasing or decreasing both rate constants while keeping the ratio between them constant

(Bottom left panel of figure 5 A). As the particle size distribution of nanosheets depends

largely on the ratio between nucleation and growth rate,41,42 this observation suggests that

there is a unique size distribution that corresponds to the observed width of the exciton

peak.

The rate of monomer detachment from the plate did not appear to correlate with either

plate or layer nucleation, and good fits required it to be 3-5 orders of magnitudes slower

than nucleation and growth rates across a variety of models (Figure 5 B), suggesting that

it plays at most a minor role in the overall reaction dynamics. This suggests that even

though growth slows down on the order of seconds to minutes, Ostwald ripening does not

play an important role for nanoplate growth on this timescale. We did not observe a strong

sensitivity to the optical fit parameters, except for the overall extinction coefficient, which

scales with the magnitude of the absorbed intensity.

Most solution-phase rate constants did not affect the quality of the final fit results even

when varied over a wide parameter regime, as long as they did not fall below a certain critical

value (usually 104s−1mM−1). This is true even if different nucleation and growth models are

utilized - see Figure 5 B, where many models show similar upper and lower limits for some

solution reaction rates. This invariance indicates that solution reactions are fast compared

to the rate determining step in the model, which is most likely the plate attachment rate.
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The parameter sensitivity analysis determines a set of general design rules for generating

2D nanoplates with the mechanisms we have explored: Nucleation should be 10 - 100 times

faster than plate attachment, while layer detachment should be 1000 - 100,000 times slower

than layer attachment. Deviation from these ratios most often resulted in simulations in

which no nanoplates at all were formed, or in which all nanoplates remained as nuclei.

Quantitatively, the models correlate with the overall spectral values of all the reactions

observed after a joint fit to only one third of the reactions. Our approach shows that there

are some rates which are similar across different mechanisms, or kept in a certain ratio

to qualitatively match the observed experimental spectra. We can also confine the rates

for most of the reactions to 2-3 orders of magnitude from a search space of 10 orders of

magnitude. Given that we fit at least 10 physical parameters in each model, this amounts to

a reduction of the multidimensional possible parameter space to a fraction of less than one

millionth of the original search space. However, the somewhat low R2 (≤ 0.5) and high χ2

(≥ 12) values for the training sets suggest there is still some portion of the physics which is

not captured appropriately. Further optimization and refinement of the kinetic models may

allow more robust disproof-based choice of a reaction mechanism in the future.

Our results demonstrate that it is possible to create mechanistic models of 2D nanomate-

rial formation and fit them to observed data. More generally, given a reasonable theoretical

description of the measurement, a mechanistic model can be fitted directly to the observed

data even if crucial physical parameters, such as the size-dependent extinction coefficient,

are not known. Furthermore, being able to extrapolate to new chemical parameter regimes

from the given model presents an advantage over more traditional machine learning methods.

This technique could in principle be applied to any nanomaterials synthesis where in-situ

data can be collected.43 In future, melding machine learning and traditional modeling tech-

niques may enable better understanding and prediction of materials chemistry systems and

allow creation of better materials through rational synthesis.
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Conclusion

We obtained in-situ optical data of a 2D perovskite nanosheet synthesis with high time

resolution and over a wide compositional range. We demonstrated that there are two forma-

tion pathways for this nanoscale species: chemical exfoliation and direct nucleation. These

pathways can be controlled through the ratio of oleylamine to lead in the synthesis. Transfor-

mation reactions from synthesized PbBr2 nanocrystals with oleylammonium bromide have

similar activation energies as synthesis occuring at low oleylamine to lead ratios, further

supporting the exfoliation synthesis mechanism. We have complemented traditional kinetic

analysis techniques by developing a physically interpretable scientific machine learning model

composed of a spectral and a kinetic component, that can be fitted directly to observed

stopped-flow data and that allows extrapolative prediction of experiments with conditions

differing significantly from the training dataset. This approach is in principle amenable to

active learning campaigns that iteratively refine the models of nanoplate formation through

performing and analyzing kinetic experiments, which would enable inference of processes in-

volved in nanocrystal formation or other complex chemical systems through disproof-based

modeling.44 The framework that we advocate here fits neatly into the gap between tradi-

tional physical modeling and machine learning and could be useful for understanding and

predicting synthesis problems more generally.
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