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Abstract 28 

Lipophilicity is a physicochemical property with wide relevance in drug design and also 29 

applied in areas such as food chemistry, environmental chemistry, and computational biology. This 30 

descriptor strongly influences the absorption, distribution, permeability, bioaccumulation, protein-31 

binding, and biological activity of bioorganic compounds. Lipophilicity is commonly expressed 32 

as the n-octanol/water partition coefficient (PN) for neutral molecules, whereas for molecules with 33 

ionizable groups, the distribution coefficient (D) at a given pH is used. The logDpH is usually 34 

predicted using a pH correction over the logPN using the pKa of ionizable molecules, while often 35 

ignoring the apparent ionic partition (PI
app) because of the challenge of predicting the partitioning 36 

of the charged species and/or related species (e.g., ion-pairs, counterions, molecular aggregates). 37 

In this work, we studied the impact of PI
app on the prediction of lipophilicity of small molecules by 38 

modeling 225 logDpH of a set of experimental values using the formalism that takes into account a 39 

pH correction (see Eq. 1) and the one considering the apparent partition of ionic species (see Eq. 40 

2). Our findings show that a better fit is obtained by considering the apparent ionic partition while 41 

ignoring its contribution can lead to inadequate computational predictions. In this context, we 42 

developed machine learning algorithms to determine in which cases the PI
app should be considered. 43 

The results indicate that small, rigid, and unsaturated molecules with logPN close to zero which 44 

present a significant proportion of ionic species in the aqueous phase, were better modeled using 45 

Eq. 2. In addition, we validated our findings using a test and two external set which include small 46 

molecules and amino acids analogs where the logistic regressions, random forest classifications, 47 

and support vector machine models predicted the better formalism to determine the logDpH for 48 

each molecule with high accuracies, sensitivities, and specificities. Finally, our findings can serve 49 

as guidance to the scientific community working in early-stage drug design, food, and 50 

environmental chemistry who deal with ionizable molecules, to determine a priori which pH-51 

dependent lipophilicity profile should be used depending on the structure of a substance in their 52 

research. 53 

 54 

 55 

 56 
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Introduction 57 

Lipophilicity has been a relevant physicochemical property in pharmaceutical research 58 

since the late 1800s, where the toxicity and anesthetic properties of several substances have been 59 

correlated to their solubilities in water and oil/water partition coefficients.1 In addition, this 60 

property has been associated with several pharmacokinetic properties, such as enzyme binding2, 61 

toxicity3, solubility4, membrane permeability5, and bioaccumulation.6 Thus, lipophilicity has been 62 

considered a significant descriptor in drug discovery metrics, such as Lipinski’s7 and Veber’s8 63 

empirical rules, which are intended to optimize oral bioavailability for drug-like compounds. The 64 

partition coefficient (PN) describes the equilibrium of a molecule between the organic and aqueous 65 

phases, where the n-octanol/water system has historically been the medium of choice in 66 

pharmaceutical research because of its high correlation with biological activities.9,10 However, 67 

logPN only describes the equilibrium of molecules in their neutral states, which implies an 68 

unrealistic protonation state for most molecules with ionizable groups at physiological pH. 69 

Since the pH of the solution directly affects the concentration of neutral and ionic species, 70 

the equilibrium constant varies with pH, which also means that the lipophilicity of a compound is 71 

dependent on it. The partition coefficient as a function of pH is often called distribution coefficient 72 

(logDpH).11 The logDpH is often a more proper descriptor for human bioavailability due to the 73 

frequent pH-dependence of drugs. This property has shown be useful in QSAR models to explain 74 

how small molecules have human brain cells permeability12 or binding to human serum albumin13. 75 

The logDpH has also been used as an effective predictor of pH-dependent lipophilicity profiles for 76 

small molecules14 and to characterize structural properties in proteins and peptides, such as 77 

protein-folding and aggregation15, solubility16, and antimicrobial activity17,18, through pH-78 

dependent lipophilicity scales.19,20 79 

As an alternative to the experimentally determined logDpH values, theoretical lipophilicity 80 

profiles give the opportunity to obtain this descriptor quickly and often with high accuracy.14,21,22 81 

Equation 1 models logDpH as a function of pH for monoacidic and monobasic compounds. This 82 

equation is derived as a mass balance between ionic and neutral species in thermodynamic 83 

equilibrium in the aqueous phase. This model assumes that the organic phase holds mostly neutral 84 

species, so that the acid-base dissociation is negligible, and it also assumes that there is not a 85 

partition equilibrium for the ionic species.23 86 
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logDpH =	log	PN	- log 	$1 + 10δ%                                              [1] 87 

where d = pH – pKa for acids, and d = pKa – pH for bases. 88 

 89 

Figure 1a displays the equilibria from which it is derived. Eq. 1 has been used to easily 90 

calculate logDpH from logPN values obtained by empirical computational models.24-26 This equation 91 

was widely used in logDpH estimation methods in the SAMPL6 and SAMPL7 blind challenge, 92 

which is a large-scale comparative evaluation for drug design predictive models.27,28 93 

 94 

Figure 1. Representations of the mechanism of partition for a symbolic ionizable acidic molecule 95 

for both neutral (HX) and ionic (X−) species using (a) Equation 1 and (b) Equation 2. The 96 

theoretical partition of the charged organic specie (PI,X-) has been replaced by experimental 97 

measurable apparent partitioning (PI
app) in Eq. 2.  98 

 99 

Equation 2 represents the extended lipophilicity profile for monoprotic acids and bases (see 100 

Figure 1b). This model considers acid-base ionization in both water and n-octanol phases where 101 

ionic species migrate between the phases.  102 
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                           logDpH = log$PN + PI
app⋅10δ% - log$1 + 10δ%                           [2] 103 

 104 

Equation 2 is commonly called ionic partition PI model 29, which represents a simplification 105 

that only considers the partition of the charged organic specie (see Figure 1b).  Experimental 106 

techniques for lipophilicity evaluation such as shake-flask, potentiometric, and chromatographic 107 

methods30, can measure but do not allow direct identification of the nature of the ionic specie (es) 108 

involved in the partitioning, hence, the partition of ionic species is measured as an apparent 109 

partitioning (PI
app). This experimentally measurable apparent partition coefficient depends on the 110 

background salt31, compound concentration32, and may involve much more complex species such 111 

as ion-pairs33-40, and aggregates41. Some studies have simplified the PI
app to the partition of only 112 

ionic organic species (PI) because these methods used have been parametrized by using 113 

experimental PI
app values14,42, while other theoretical studies have modeled it using the 114 

participation of ion-pairs (PIP)21,22. Recently, an alternative model14 to that of ion-pair partitioning 115 

has been used by applying the theory of ionic transfer between two immiscible electrolyte 116 

solutions (ITIES)43,44, obtaining excellent predictions of experimental logDpH values. Previous 117 

experimental trials have also shown the importance of the PI
app of ionizable molecules in n-118 

octanol/water systems33-40. Recently, Disdier et al. measured the logDpH at different pH values of 119 

a set of 13 compounds via the shake-flask method45, where they fitted their experimental values to 120 

lipophilicity formalisms for mono- and poly substituted acids, amphoteric, and zwitterionic species 121 

derived on previous theoretical studies.46 The relevance of PI
appfor small ionic molecules between 122 

aqueous and organic phases has also been studied through interphase transfer mechanisms of 123 

substances via ionic partition diagrams as a function of pH obtained through cyclic voltammetry.47-124 
49 125 

Despite the lack of a consensus formalism to model logDpH as a function of the PI
appand 126 

considering that different theoretical approaches have shown similar trends14,21,22, Equation 2 has 127 

been successfully used for modeling lipophilicity of ionized compounds in many areas of basic 128 

and applied sciences. For instance, to study aggregation of naphthenic acids in aqueous 129 

environments with different saline concentrations50, in logDpH calculations for lignin derivatives 130 

and small datasets of drug-like compounds in different solvents by QM and statistical 131 

thermodynamical methods51 , partitioning of antioxidants52, aquatic hazard assessment of ionizable 132 



   
 

   
 

6 

organic chemicals53, sorption mechanisms of antimicrobials in the soil54, and physicochemical 133 

properties of peptides and proteins.15-18 134 

Previous studies have evaluated predictions of logDpH using Equations 1 and 2 for a small 135 

set of 35 ionizable molecules with computed logPN and logPI
app values calculated via an extension 136 

of the Miertus-Scrocco-Tomassi solvation model.14 It was reported that Equation 1 tends to 137 

overestimate the hydrophobicity of the studied molecules, given that the PI
app is not considered, on 138 

the other hand, Equation 2 predicts a logDpH value closer to the experimental values. This study 139 

showed that Equation 2 provides a more exact lipophilicity profile at a wider pH range than 140 

Equation 1. However, no systematized study has been performed to evaluate the importance of 141 

considering the ionic partition on the logDpH prediction for large sets of small drug-like molecules 142 

at various pH values although when it has been reported that much of the poor performance of 143 

some models on blind remains has been due to the simplification of ignoring the ionic species 144 

partition.27 145 

In this study, we aim to provide guidance to the scientific community working in early-146 

stage drug design, food and environmental chemistry who deal with ionizable molecules, to 147 

determine a priori which pH-dependent lipophilicity profile should be used depending on the 148 

structure of a substance in their research. For this, we collected the experimental values of logPN, 149 

pKa, and logPI
app of different compounds at various pH values, which are used to compute logDpH 150 

with Equation 1 and Equation 2. We compared both calculations through statistical parameters 151 

with the experimental logDpH values. In addition, logistic regression (LR), random forest 152 

classification (RFC), and support vector machine (SVM) models are developed to define from the 153 

molecular structure which formalism is recommended for modeling a pH-depended lipophilicity 154 

profile.  155 

 156 

Methodology 157 

Data collection and classification  158 

We critically compiled experimental values of logPN, pKa, logPI
app, and logDpH of 225 159 

entries based on earlier literature reports (database available in reference 33).29,55,56 Refs. 29 and 160 

55 were chosen based on the wide selection of experimental data for logPN, logDpH and logPI 161 
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values and because they accommodate the desired chemical space of small molecules for our 162 

modeling. SMILES codes were collected from publicly available data in PubChem57 The pKa 163 

values were also obtained from PubChem but they were also corroborated by reviewing their 164 

values in primary literature reports.38,57-80 The experimental technique of logPN, logDpH, and 165 

logPI
appmeasurements for each entry was thoroughly revised and added to the database.81-91 Ref 55 166 

provided experimental logDpH values of molecules at diverse pH ranges. The logPI values were 167 

obtained from the logDpH at the most extreme measured pH, in which the molecule will be mostly 168 

(above 95 %) in its ionized state. The logPI
appvalues for molecules that were not measured under 169 

ionizable pH conditions were obtained from external sources.38,74,92,93 The molecules were 170 

classified as acids or bases based on their functional groups and pKa values. Zwitterionic 171 

compounds were found by evaluating the difference between acidic and basic pKa in conjunction 172 

with ChemAxon’s calculator of protonated species distribution in function of pH.94 Zwitterionic 173 

and amphoteric species were also classified as acidic or basic based on their behavior of their 174 

lipophilicity profiles, which were evaluated using the ChemAxon partitioning calculator.95 175 

The experimental data for each molecule were used to compute the logDpH values using 176 

Eq. 1 and Eq. 2 and are labeled as logDEq.1 and logDEq.2, respectively. The modeling performance 177 

for each molecule was evaluated by calculating the absolute errors d1 and d2 (Eqs. 3 and 4): 178 

d1= '	logDEq.1 - logDexp	'                                                     [3] 179 

d2='	logDEq.2 - logDexp	'                                                     [4] 180 

where logDexp represents the experimental logDpH value.  181 

The performances of the two formalisms were tested by performing a linear regression of 182 

logDEq.1 and logDEq.2 on their experimental values. The root mean squared error (RMSE), mean 183 

absolute error (MAE), mean squared error (MSE), and Pearson’s correlation coefficient squared 184 

(R2) were calculated with the ‘Metrics’ package in R.96 We also tested the performance of each 185 

formalism on each individual molecule using descriptor d3 (Eq. 5). When d3 yields a value greater 186 

than zero, Eq. 2 fits a more appropriate lipophilicity value and vice versa.  187 

d3	=	d1	-	d2                                                               [5] 188 

 189 
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We create a binomial conditional based on the values of d3, where Eq. 2 should be used 190 

when d3 is greater than 0.2 (see Results and Discussion), otherwise, both equations are considered 191 

to fit equally well, which can be interpreted as Eq. 1 providing better modeling due to its simplicity. 192 

 193 

Machine Learning models to classify the molecules according to the best fit to pH-dependent 194 
lipophilicity profiles 195 

Topological and constitutional descriptors were calculated with the software ‘rcdk’ 196 

package in R97 while experimental descriptors (logPN,  pKa, and pH) were added from our dataset. 197 

We also added the free energies of hydration and hydrogen bond strengths computed using the 198 

open-source tool ‘Jazzy’98 The H-bond donor and acceptor strengths were obtained by calculating 199 

the partial charges of hydrogen atoms and atoms with lone electron pairs, respectively, along with 200 

corrective terms. The free energy of hydration was calculated using the sum of the polar, apolar, 201 

and interaction terms. The polar term was derived from the previously calculated H-bond donor 202 

and acceptor strengths. The apolar terms consist of the sum of the weighted contributions of the 203 

topological surface area, number of rings, and p-orbital counts in sp and sp2 atoms. The interaction 204 

term consists of a weighted sum of the amount of neighboring H-bond acceptor groups each atom 205 

has in a molecule.98 206 

We eliminated intercorrelated properties so that no descriptor had a correlation value of r2 207 

> 0.6 (Figure S1 and S2). After this filtration step, two different feature selection methods were 208 

tested to choose the best descriptors for our Machine Learning models. Firstly, we performed a 209 

Welch’s t-test (WTT), which evaluates the statistical difference between the means of two 210 

populations that have unequal variances and sample sizes.99,100 The algorithm calculates the mean 211 

of both groups from the binomial conditional for each descriptor. These values are evaluated using 212 

Equation 6. 213 

																																																													𝑡 =
∆𝜇
δ#$̅

																																																																									[6] 214 

 215 
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where t stands for the statistic t in the Welch's t-test,  Dµ represents the mean difference between 216 

data samples from each population (Eq. 1 or Eq. 2 better fits), and the uncertainty value of both 217 

groups, which was calculated using the standard deviation of both population samples (Eq.7): 218 

 219 

																																												δ#$̅ = 01
𝑠&
3𝑁&

5
'

+ 1
𝑠'
3𝑁'

5
'

																																																								[7] 220 

 221 

The WTT was performed for each descriptor using R where the p-value was extracted. 222 

Features that did not show statistical significance between the means (p > 0.05) were eliminated. 223 

Secondly, a recursive feature elimination (RFE) was performed. This iterative feature selection 224 

method builds a predictive model using the entire set of descriptors and calculates its importance 225 

score (see Figure S3). The least important descriptors are removed, and the model was re-iterated 226 

to achieve maximum performance.101 This RFE algorithm was programmed using the ‘caret’ 227 

package in R102 and tuned via a 5-time reiterated k-fold cross validation (k = 10). Table 1 shows 228 

the selected descriptors with the WTT feature selection method for acids and bases, along with 229 

their definitions and target molecules. Table S1 shows the descriptors selected using the RFE 230 

method. 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 
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Table 1. List of the most influential structural descriptors98,103-106 used for the logistic regression 242 

models, their target molecules, and the divergence between the two populations from our dataset 243 

were determined using the WTT feature selection method by separating the populations with the 244 

conditional d3 > 0.2. 245 

Descriptor Type Definition Target 
molecules 

MDEC.11 

Topological CDK 
descriptor 

Molecular distance edge between all 
primary carbons. Acids 

MDEC.22 Molecular distance edge between all 
secondary carbons. 

Acids 

khs.sCH3 Number of -CH3 fragments in a molecule 
(Kier and Hall). 

Acids 

C2SP3 Singly bound carbon atom bound to two 
other carbons. 

Acids 

khs.dsCH Number of =CH- fragments in a molecule 
(Kier and Hall). Acids 

khs.sNH2 Number of -NH2 fragments in a molecule 
(Kier and Hall). Acids 

khs.dssS Number >S= fragments (sulfones) in a 
molecule (Kier and Hall). Acids 

HybRatio 
Ratio of the number of sp3-C atoms 

compared to the sum of sp3 and sp2 C 
atoms. 

Acids 

C1SP3 Singly bound carbon atom bound to one 
other carbon. Acids 

nRings7 Number of 7-membered rings Bases 

khs.aaNH Number of Ar-NH-Ar fragments in a 
molecule (Kier and Hall). Bases 

ATSc3 

Autocorrelation topological distance 
weighed by charge calculated at every 3-
atom distanced segment. Moreau-Broto 

autocorrelation descriptor 3 using 
polarizability 

Bases 

Alogp2 Constitutional CDK 
descriptor 

(logP)2 value calculated with 3D structure 
directed QSAR method (Ghose & 

Grippen logKo/w). 
Acids & Bases 

delta Experimental 
descriptor 

d (acids) = pH - pKa 

d (bases) = pKa - pH Acids & Bases 

CH_strength Jazzy calculation C-H donor strength predicted with the 
Jazzy calculations. Acids 

 246 
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Logistic Regression Classification 247 

A logistic regression (LR) is a simple classification statistical model that provides a binary 248 

response to the distribution of the input data among a specific descriptor. The simplest regressions 249 

fit the distributions of data to a sigmoidal function, where the input values are given a probability 250 

value, which is then classified into one of the two classes based on a cut-off value. We firstly 251 

performed a feature selection process specific for logistic regressions by using the ‘bestglm’ 252 

package in R107 which evaluates through n iterations, which combination of descriptors gives the 253 

best fitted regression through the leaps algorithm.108 This package evaluates the weight of each 254 

descriptor by linearizing the sigmoidal function and giving a slope value and standard error for 255 

each parameter like a multiple linear regression model (Equation 8). 256 

ln : (($)
&+(($)

; = ∑ 𝑐,𝑥,-
,.& + b                                                      [8] 257 

The ‘bestglm’ package drops the parameters, where 𝑐, → 0. The algorithm iterates the 258 

sigmoidal fit using Equation 8 n times until it finds the combination of descriptors in which the 259 

parameters have the smallest standard error. This feature selection process was performed 260 

separately for acids and bases because the descriptors have different behaviors for each type of 261 

molecule.  262 

Figure 2 shows a flowchart of the modelling process. The dataset was divided into acids 263 

(113 entries) and bases (100 entries). Zwitterions (7 entries) were not considered for the Machine 264 

Learning predictions because of their small sample size and because further lipophilicity modeling 265 

can be performed for these molecules (see Results and Discussion section). Acids and bases were 266 

randomly sampled into training and test sets at a ratio of 80:20. Multiple logistic regressions were 267 

performed for the training sets based on previously collected descriptors. Predictive models were 268 

programmed using the ‘caret’ package. Acids and bases were modeled separately and labeled as 269 

Models A and B, respectively (see Figure 2). The test sets were evaluated using both models. The 270 

performance of Models A and B was evaluated using confusion matrices (see Table S2), which 271 

are widely used to evaluate classification models.109 The confusion matrices tabulate the number 272 

of true positives (TP), false positives (FP), true negatives (TN), and false negative (FN) 273 

predictions, along with the sensitivity, specificity, and accuracy of the models. Sensitivity 274 

determines the ability of the model to detect events of the positive class, that is, it indicates the 275 

predictive performance of the molecules of the logDEq.2 population (Equation 9). On the other 276 
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hand, specificity indicates the performance of the model in detecting the negative class, which in 277 

this case are the molecules of the logDEq.1 population (Equation 10). The accuracy indicates the 278 

overall performance in detecting false positives and false negatives (Equation 11). 279 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁																																																												[9] 280 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁																																																									[10] 281 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁																																													[11] 282 

 283 

Models A and B were tested further using an external set. The experimental lipophilicity 284 

measurements made by Disdier et al. 45 consisted of 69 data entries of small molecules with 38 285 

acids, 16 bases, and 15 zwitterions, the latter being discarded for our analysis. To further check 286 

the robustness of our models, a second external set of amino acid analogs were evaluated110, 287 

consisting of 8 entries of histidine (basic amino acid) and 10 entries of tyrosine (acidic amino acid). 288 

Then, we evaluated the performance of Model A and Model B for this data set with confusion 289 

matrices (see Table S3-S4). 290 

 291 



   
 

   
 

13 

 292 

Figure 2. Graphical representation of the data classification and sampling of our dataset to create 293 

our predictive multiple logistic regression model using topological, constitutional, and 294 

experimental descriptors. 295 

 296 

 297 
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Random Forest Classification  298 

Decision trees are a simple visual method for evaluating or classifying data, where each 299 

node consists of a variable in the dataset. Each node leads to a leaf in which the desired output is 300 

issued. A random forest is a combination of decision trees, which are randomly sampled, and the 301 

nodes are randomly organized.111 We split our dataset, training-, and test-sets as shown in Figure 302 

2. In this case, Model A and Model B consist of random forest classification (RFC) performed 303 

with the ‘randomForest’ package in R.112 Both models were previously refined using the tuneRF 304 

function within the package, which chooses the optimal mtry variable. This value indicates the 305 

number of features selected at each split in each decision tree, where mtry = 2 gave the best 306 

prediction for both models (number of trees = 500, see Supporting Information Figure S4). The 307 

importance of each descriptor in both models was evaluated through the mean decrease in the Gini 308 

impurity index using the MeanDecreaseGini function (see Figure S4). 309 

The best lipophilicity profile fit for the acidic and basic tests and external sets was predicted with 310 

Models A and B, respectively. The performance of each prediction was evaluated using confusion 311 

matrices (see Tables S5-S7) and their respective sensitivity, specificity, and accuracy calculations 312 

(Eqs. 9-11). 313 

 314 

Support Vector Machine Classification 315 

A Support Vector Machine (SVM) algorithm works by dividing training data into two 316 

categories, either by linear or nonlinear classification; new data are then assigned to one of the two 317 

classes. The model separates the data by finding a hyperplane that maximizes the gap between 318 

categories.  In the case of linear classification, the space is two-dimensional, making the 319 

hyperplane a linear function.113 When the data are not linearly separable, the algorithm performs 320 

the kernel trick, which consists of increasing the dimensions of the data space. This results in the 321 

hyperplane being able to be another function in the original space, such as radial or polynomial, 322 

allowing to classify the data in different ways.114  323 

We split our datasets in the same manner as with the other classification models and set 324 

Model A and Model B as support vector machines given by the ‘e1071’ package in R.115 We 325 

decided to compare the performance of using a linear kernel (SVML) and a polynomial kernel 326 

(SVMP); radial kernels were not evaluated because our binary data do not follow a circular 327 
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separation by the hyperplane, so it does not adequately fit a radial kernel SVM classification. The 328 

hyperparameter selection for each model was performed with the trainControl and train functions 329 

from the ‘caret’ package, which executes a k-fold cross-validation (k = 10 was used), where 330 

different values of the parameters were tested and selected, which resulted in the highest accuracy. 331 

The best hyperparameters were the function's default parameters: C = 1 for SVML and for SVMP, 332 

C = 1, degree = 3, gamma =1, and coef0 = 0. We calculated the accuracy, sensitivity, and 333 

specificity of each model using Eq. 9-11, using the results from their respective confusion matrices 334 

(see Tables S8-S13). We then compared the confusion matrices of the LR, RFC, SVML, and 335 

SVMP models to determine the one that yielded the best results.  336 

 337 

Results and Discussion 338 

Our database consists of pKa, logPN, logPI
app, and logD7.4 values reported by Avdeef 29. In 339 

addition, we employed experimental entries of 86 molecules from the work of Tsantili-Kakoulidou 340 

and collaborators containing logDpH values at various pH for each molecule as an individual 341 

entry.55 Molecules with logDpH values measured in the presence of background salt concentrations 342 

above 0.15 mol/L were discarded because the study of the effect of external ions on lipophilicity 343 

is beyond the scope of our study. Thus, we finally obtained 225 entries (118 individual molecules) 344 

with 113 acids, 100 bases, and 12 zwitterions. 345 

Calculation of logDpH was accomplished using Eq. 1 and Eq. 2 for each molecule at their 346 

respective pH. Figure 3 shows the overall performance of each model by comparing the computed 347 

values with their respective experimental logDpH values. As expected, most of the molecules 348 

whose logDpH values were measured under different pH conditions to 7.4, present the largest 349 

deviation using the Eq. 1 (see Figure 3a, red marks) with highly underestimated predictions. As a 350 

consequence, Eq. 1 poorly predicts the logDpH values at extreme pH. On the other hand, the 351 

predicted values using the Eq. 2 are significantly better (see Figure 3b), reducing the RMSE by 352 

0.48 logD units, which represents an improvement of 55% in accuracy. 353 

 354 
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 355 

Figure 3. Evaluation of the computed logDpH of our database compared with the experimental 356 

values with (a) Eq. 1 and (b) Eq. 2. Rhomboids represent logDpH when the pH is different of 7.4. 357 

Red dots and rhomboids highlight compounds with a deviation greater than 1.5 logD units. 358 

Statistical parameters were calculated using the ‘Metrics’ package in R (R2 = squared Pearson’s 359 

correlation coefficient, RMSE = root mean squared error, MAE = mean absolute errorand , MSE 360 

= mean squared error).  361 

 362 

Table 2 shows the reduction of RMSE in logD units of each molecule type by using Eq.2 363 

instead Eq.1. It is observed that any type of molecule shows a significant improvement in its 364 

performance when its distribution coefficient is modeled with logDEq.2 (see Figure S5). Basic 365 

molecules showed the greatest improvement as the deviation shown by logDEq.1 was greater than 366 

one unit of RMSE in logD units.  Zwitterions also showed a significant improvement, even though 367 

these molecules can have multiple ionic partition coefficients (cationic partitions P+, and anionic 368 

partitions P-, and zwitterionic partitions Pz), which are not considered in the model logDEq.2. These 369 

partitions can be added by considering both acidic and basic pKa into the thermodynamic 370 

equilibria.45 Despite this, the implementation of just one of the two PI
app did a significant 371 

improvement in the lipophilic modelling of zwitterions. 372 

 373 

 374 
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Table 2. Values of DRMSE for each type of molecule analyzed within our dataset by comparing 375 

the modelled lipophilicities by logDEq.1 and logDEq.2 with their experimental values (Figure S1). 376 

Type DRMSEa 

Acid 0.30 

Base 0.67 

Zwitterion 0.38 

All 0.48 

a ΔRMSE	=	RMSE	$logDEq.1%	-	RMSE		$logDEq.2% 377 

 378 

The molecules with the highest deviations in the prediction of the experimental logDpH 379 

using the logDEq1 are displayed in Figure 4. The chemical nature of the outliers is dominated by 380 

the presence of ionic species because these compounds were experimentally measured to extreme 381 

pH. These deviations respond to the theoretical framework of Eq. 1 and Eq. 2, thus, the inclusion 382 

of the term PI
appin Eq. 2 corrects the prediction. Figure 4 shows various polyacids or amphoteric 383 

molecules with multiple ionizable sites included in our dataset. Bases 16, 151-152 have multiple 384 

protonation sites, while acids 77, 78, 87, and 195 have two deprotonation sites, and amphoteric 96 385 

has a carboxylic acid and a tertiary aromatic nitrogen that can protonate at certain pH values. The 386 

prediction of the logDpH of these molecules can be improved by using more complex 387 

thermodynamic models considering several equilibria.45 However, it is shown here that the 388 

consideration of one of the PI
app

 with logDEq.2 is enough to significantly increase the accuracy of 389 

the lipophilicity modeling of these compounds to extreme pH where one charged species can 390 

predominate over the others. 391 
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 392 

Figure 4. Representation of the molecules with the highest deviations in the prediction of the 393 

experimental logDpH using the logDEq1. The protonation and deprotonation sites of each molecule 394 

were labeled in blue and red, respectively. 395 

 396 

One of the aims of this study is to develop a classification algorithm that can differentiate 397 

whether the lipophilicity profile of a molecule would be better predicted with logDEq.1 or logDEq.2. 398 

However, we noticed that a significant number of entries yielded d3 values close to 0 (see Figure 399 

S6a), which denotes that both formalisms compute a similar result compared to their experimental 400 

values. Therefore, let us note that we focus on the specific cases with a significant improvement 401 

when the PI
app of molecules is considered. Indeed, we decided to delimit the conditional d3 402 

indicating that if a molecule exceeds a certain value of d3, it is important to consider its apparent 403 

ionic partitioning for predicting its lipophilicity. We tested d3 values between 0.1-1 and picked the 404 

optimal value based on two parameters. Firstly, considering that our set is small due to the fact 405 

that we used strictly experimental values in our database, we seek that the population of molecules 406 

that best fit with logDEq.2 should be at least 10 %. Then, there should be a sufficient number of 407 
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descriptors that have statistically proven divergence by WTT (p < 0.05). Thus, machine learning 408 

algorithms will have a larger number of parameters to create predictive models with higher 409 

accuracy. In consequence, the delimiter ‘0.2’ showed an adequate balance between these two 410 

parameters, and it was selected as our cut-off value (see Figure S6b). Thus, molecules with values 411 

of d3 > 0.2 showed an improvement in lipophilicity modeling using Eq. 2. On the other hand, 412 

entries that had negative d3 values or that fell into the range 0.2 < d3 < 0 were classified as 413 

molecules where the difference between both models was negligible, and thus were classified as 414 

better fitted using the logDEq.1 due to its easy implementation (it does not depend on PI
app , resulting 415 

in less computational effort and fewer experimental parameters). Higher thresholds significantly 416 

decreased the population in logDEq.2, while lower values reduced the structural divergence between 417 

molecules in logDEq.1 and logDEq.2, making it more difficult to find structural descriptors that can 418 

differentiate between both populations. The value ‘0.5’ was also tested since a local maximum of 419 

descriptors with p-values < 0.05 was observed at this point (see Figure S6b). Furthermore, this 420 

value is of experimental interest, because logPN measurements of substances with different 421 

techniques tend to vary by amounts less than 0.5 logP units (using the Shake-Flask method as a 422 

reference), being this value considered as a parameter to indicate that the experimental techniques 423 

are not equivalent.30 However, this extreme value and the descriptors selected (see Table S14) 424 

showed poor performance in the ML models tested, especially with the external set 1 (see Figure 425 

S7). This phenomenon can be explained since this d3 delimiter has a very small logDEq.2 426 

population, thus the datasets are extremely unbalanced, and the robustness of the models is 427 

reduced, on the other hand, the accuracy of experimental methods, even using different techniques, 428 

rounds at values less than 0.2 logP units.30 Therefore, we continued to train the ML models using 429 

the d3 > 0.2 cut-off value to determine tendencies among the selected descriptors via the feature 430 

selection methods and to evaluate the performance of the ML algorithms.  431 

Figure 5 shows the distribution of the molecules in our database, classified using the criteria 432 

d3 > 0.2 as binary descriptor. Most entries can be computed using logDEq.1 with satisfactory results. 433 

However, we observed that 25 acids and 10 bases showed a clear improvement within our d3 434 

threshold by modeling lipophilicity with logDEq.2.  435 
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 436 

Figure 5. Distribution of acid and basic entries from our dataset as a function of their d3 values. 437 

 438 

We obtained several structural and physicochemical descriptors of the molecules to find a 439 

considerable divergence between the populations. First, our database was split into acids and bases 440 

and then in training and test set. The ‘rcdk’ package in R was used to look through the descriptors, 441 

along with the Jazzy calculations of energies of hydration and hydrogen-bond strengths and the 442 

experimental descriptors. The feature selection methods selected show a wide range of diverse 443 

descriptors (see Table 1 and Table S1). Then, we performed a Welch’s t-test on our descriptors 444 

(WTT) where is analyzed the divergence between populations relative to the variances of the two 445 

groups.99 This test was selected over a Student’s t-test because of the divergence of sample sizes 446 

(Figure 5) and variances between groups (Figure 6-7).100 The WTT descriptors gave acceptable 447 

accuracies (see Figure S8).  448 

An iterative feature selection method was also tested using an RFE model. The algorithm 449 

achieved better performance when the 14 most important variables for acids and the nine most 450 

important variables for bases were maintained. The importance of each descriptor posed by RFE 451 

is shown in Figure S3. Good results were obtained when these descriptors were implemented in 452 

the training of the machine learning models. However, the accuracy decreased significantly when 453 

the test and external set 1 was evaluated (see Figure S8c-d), indicating that these descriptors did 454 

not generate a sufficiently robust model, or a large number of chosen descriptors (see Table S1) 455 

may overfit the data. Therefore, we selected the WTT descriptors to analyze the tendencies of the 456 
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molecules in each population and to evaluate the overall performance of the machine learning 457 

algorithms that we developed. 458 

 459 

 460 

Figure 6. Violin plots of the distribution of the acidic molecules in our dataset along the selected 461 

descriptors for the acids ((a) delta, (b) CH_strength, (c) C1SP3, (d) C2SP3, (e) HybRatio, (f) 462 

khs.dsCH, (g) khs.dssS, (h) khs.sNH2, (i) Alogp2, (j) khs.sCH3, (k) MDEC.11, and (l) MDEC.22). 463 

Distributions are separated between acids and bases and classified by the binary operator d3 > 0.2 464 

(green) and d3 < 0.2 (red).  465 

 466 

 467 

 468 

Figure 7. Violin plots of the distribution of the acidic molecules in our dataset along the selected 469 

descriptors for the bases (a) delta, (b) ATSc3, (c) Alogp2, (d) khs.aaNH, and (e) nRings7). 470 

Distributions are separated between acids and bases and classified by the binary operator d3 > 0.2 471 

(green) and d3 < 0.2 (red).  472 

 473 

 474 
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Figure 6 and Figure 7 show the selected descriptors for acids and bases used to train our 475 

classification ML models, respectively. These descriptors showed a statistically significant 476 

divergence between the means of both populations among 180 descriptors tested for acids and 477 

bases.  478 

Both, acidic and basic compounds show significant differences in their means (p < 0.005 479 

in WTT test) for the descriptors delta and Alogp2 (see Table 1). The descriptor delta was calculated 480 

at the respective pH of each entry for the acids and bases. As expected, this descriptor correlates 481 

with the prominence of ionic species in both phases. Therefore, the apparent ionic partition became 482 

more significant for entries with higher delta values (see Figures 6a and Figure 7a). This result is 483 

very promising, because despite being an experimental descriptor, there are computational 484 

methods to determine the pKa that include first principles models116-119 as well as machine learning 485 

tools120,121, so the descriptor delta can be automated and easily used to classify molecules 486 

according to the lipophilicity formalisms analyzed here. In fact, the root-mean-square error 487 

(RMSE) between predicted pKa values using the software ChemAxon and experimental data in 488 

our database is just 0.58 log units and the squared coefficient of determination (R2) of 0.95 (see 489 

Fig. S9) 490 

The ALogp2 descriptor consists of a 3D-QSAR model by Ghose & Crippen (1986) that 491 

predicts a square value of clogPN value by analyzing the presence of 110 structural fragments 492 

within the molecules.104 Figure 6i and 7c show that molecules with hydrophobicity close to logP 493 

= 0 (with lower Alogp2 values) tend to fit best with logDEq.2. Water and n-octanol are not miscible, 494 

yet a small amount of water can dissolve in octanol at room temperature (~ 2.9 mol/kg).105 These 495 

hydrophilic molecules might be dragged by the dissolved water to the octanol phase along with 496 

ionic species; thus, the apparent ionic partition would have a higher importance in these molecules.  497 

 498 

This affinity for water, at least for acidic compounds, was further demonstrated by the 499 

CH_strength descriptor (Figure 6b). This descriptor, calculated by Jazzy, predicts the hydrogen-500 

bond donor strength in carbon atoms.98 The smaller CH_strength values indicate that for entries 501 

with d3 < 0.2, H-bond donors are not primarily found on carbons. Instead, they are found on other 502 

more electronegative heteroatoms. Thus, by weakening the X-H covalent bonds through H-bonds, 503 

the possibility of ionization of these species in both water and n-octanol increases. Figure 6 present 504 
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other important descriptor for acidic compounds such as MDEC.22 and HypRatio. The MDEC.22 505 

descriptor consists of a relationship between the number of secondary carbons in the molecule 506 

(i.e., vertices in a graph with only two paths) and the squared average atomic distance between 507 

those atoms.101, whereas HypRatio is the number of sp3-C atoms compared to the sum of sp3 and 508 

sp2 C atoms. Eq. 2 works better for acidic substances with low values of these descriptors, which 509 

considering together the values of Alogp2, allows us to intuit that small and rigid ionizable 510 

molecules with instaurations or aromatic systems need considering the PI
app to obtain an accurate 511 

prediction of logDpH.  512 

Similarly, for basic compounds, higher values of ATSc3 descriptor are associated with 513 

taking into account the PI
app for modeling pH-dependent lipophilic profiles. This descriptor is 514 

related with high molecular polarizability which agrees with the pattern of small molecules with 515 

the presence of polar atoms such as nitrogen.  516 

Therefore, the apparent ionic partition effect should be considered for these small, rigid, 517 

and unsaturated molecules which present a significant proportion of ionic species in the aqueous 518 

phase species. It has been previously shown that the PI
app

  of molecules may mechanistically occur 519 

via a simple ion-transfer reaction.122 Thus, it is more plausible that small and compact molecules 520 

have a more prominent PI
app

  because of the lower energetic cost of transferring to the cavity of the 521 

ion they replace.  522 

 523 

 524 

Machine Learning Classification Models 525 

Models A and B (see Figure 2) were trained using the LR, RFC, and SVM algorithms. A training 526 

set for acidic and basic molecules was used for each model and evaluated using the test set 527 

consisting of 20% of our population (see Figure S10). In addition, two external sets were validated 528 

with the experimental data of Disdier et al. (external set 1) 45 and Fauchère and Pliška (external set 529 

2) 110. Predictions were made as to which formalism best modeled the lipophilicity of the inputs, 530 

and the results were collected in confusion matrices. The performance of each marker was 531 

evaluated by calculating its accuracy, specificity, and sensitivity. Figure 8 shows the results of the 532 

calculations for the four algorithms for the test and external sets of acidic and basic molecules.  533 
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 534 
 535 

Figure 8. Accuracy, sensitivity, and specificity of every ML model evaluated in this study for 536 

acidic (a,c,e) and basic (b,d,f) entries within the test and external sets by defining our populations 537 

with the conditional d3 > 0.2. Descriptors were selected with the WTT method. Accuracies, 538 

sensitivities, and specificities were calculated with Eqs. 9-11 based on the results of each confusion 539 

matrix (Tables S1-S8) 540 
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It is observed that most of the calculated accuracies have high values (between 0.8 and 541 

0.95), denoting that these classification models manage to distinguish relatively well which 542 

molecules best fit with logDEq.1 and logDEq.2. However, it was observed that in the test set of acidic 543 

molecules, the sensitivity decreased, indicating that the models had difficulties in detecting 544 

molecules that fit logDEq.2 (Figure 7a). The external set related with capping amino acids reported 545 

by Fauchère and Pliška110 obtained divergent results. On the one hand, the pH-dependent values 546 

of N-Acetyl-L-tyrosine amide were predicted with excellent metrics, especially using the LR and 547 

SVMP models, because our training set had a representative amount of phenolic groups. On the 548 

other hand, in the case of N-Acetyl-L-histidine amide, the results were very poor, this is due, at 549 

least in part, to the fact that our set has few bases in relation to the acids that best-fit to Eq. 2, and 550 

mainly because there was no imidazole fragment present in our set of bases, thus limiting the 551 

performance of our models. 552 

 553 
 554 

Conclusions 555 

Lipophilicity is undoubtedly the most used and important descriptor in the early stages of 556 

drug discovery and development. Additionally, it is a crucial descriptor in substance risk 557 

assessment and also in areas including adsorption in materials, catalysts, food chemistry, and 558 

computational biology. There are multiple tools to determine this descriptor, mainly for neutral 559 

molecules (logPN), and for substances with ionizable groups, two formalisms are commonly used 560 

to determine the distribution coefficient (logDpH), being the simplest pH correction model the most 561 

widely used. However, previous studies carried out on specific and small molecule sets 562 

recommend considering the effect of the apparent ionic compounds (PI
app), since it has seen a 563 

negative impact on the accuracy of computing lipophilic profiles when charged species or related 564 

species are ignored. Our study, which was based on a larger amount of data and strictly on 565 

experimental values, validates the observations presented in limited previous studies. Thus, we 566 

develop machine learning algorithms using logistic regressions, random forest classifications, and 567 

support vector machine models to determine from molecular structures in which cases the PI
app 568 

should be considered. The results indicate that small, rigid, and unsaturated molecules with logPN 569 
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close to zero which present a significant proportion of ionic species in the aqueous phase, are better 570 

modeled using the formalism which takes into account the apparent ionic compounds (PI
app). 571 

Although we are aware of the molecular complexity of the species that can be included for 572 

the computational determination of the apparent ionic partition (PI
app), parameterization or training 573 

of models using experimental values of PI
app can help to alleviate the restricted application of 574 

formalisms that include this effect. Finally, our findings can serve as guidance to the scientific 575 

community working in early-stage drug design, food, and environmental chemistry who deal with 576 

ionizable molecules, to determine a priori which lipophilicity profile should be used depending on 577 

the structure of a substance in research efforts. Future studies will address the influence played by 578 

the apparent ionic partition (PI
app) on the pH-dependent lipophilic profiles in more complex 579 

systems such as zwitterionic and peptides. 580 
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