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Abstract 

Molecular generation is crucial for advancing drug discovery, material design, and chemical 

exploration. It expedites the search for new drug candidates, facilitates tailored material creation, 

and enhances our understanding of molecular diversity. By employing artificial intelligence 

techniques, such as molecular generative models based on molecular graphs, researchers have 

tackled the challenge of efficiently molecules with desired properties. We proposed a new 

molecular generative model combining deep learning and reinforcement learning evaluated the 

validity, novelty, and optimized physicochemical properties of the generated molecules. 

Importantly, the model explored uncharted regions of chemical space, allowing for the efficient 

discovery and design of new molecules. This innovative approach has significant potential to 

revolutionize drug discovery, material science, and chemical research for accelerating scientific 

innovation. By leveraging advanced techniques and exploring previously unexplored chemical 

spaces, this study offers promising prospects for the efficient discovery and design of new 

molecules in the field of drug development. 
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Introduction 

Molecular generation is highly significant for its applications in novel drug discovery, material 

design, and the exploration of chemical space. It enables the efficient search and identification of 

new drug candidates, speeding up the process of drug development1. In material design, it allows 

for the creation of materials with tailored properties, contributing to advancements in various 

industries2. Furthermore, molecular generation aids in the systematic exploration of chemical 

space, uncovering novel compounds with unique properties and expanding our understanding of 

molecular diversity3. Overall, it has the potential to revolutionize the fields of drug discovery, 

material science, and chemical research for accelerating scientific innovation2, 4. 

Whereas it has been estimated as there are theoretically more than 1060 small organic molecule 

chemical structures5, the number of molecules actually explored in drug discovery is limited to 

about 108 at most6. To efficiently propose new molecules with desirable physicochemical 

properties from a wide chemical space, an artificial intelligent (AI) technique called molecular 

generative model has been studied in recent years4, 7. As an input of the AI model, the chemical 

structure is represented in two ways: SMILES8 and a molecular graph9. In general, molecular 

graphs are more robust and precise to represent the molecular features than SMILES, because 

graph representations can capture the molecular similarity and can consider chemical checks, 

such as protecting the number of valence electrons, unlike SMILES representations10, 11. 

According to these advantages, much cheminformatics research has actually reported to work 

well with chemical structures represented as molecular graphs10-12. We focused on a graph 

representation for molecules in this study. 

The two main learning methods for molecular generative models are deep learning and 

reinforcement learning10, 13-15. Since deep learning-based models, which learn molecular features 
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of known compounds10, 13, tend to generate molecules similar to the learned compounds, ability 

of generating structurally new compounds is fundamentally limitted16. On the other hand, 

reinforcement learning-based models, which learn molecular features from scratch without prior 

learning of known compounds, is superior in generating molecules with structures distinct from 

known compounds14, 15. However, the generated molecules fundamentally lack drug-like 

properties due to the algorithm exploring chemical space distinct from the existing compounds. 

The molecules produced by the two types of the molecular generative model would be located 

far apart from each other in the chemical space, indicating that there is a region beyond the reach 

of exploration between the two groups of molecules. 

In this study, we proposed a new molecular generative model that can explore chemical spaces 

unreachable by previous molecular generative models and discover new molecules with drug-

like properties by combining deep learning and reinforcement learning based on a molecular 

graph representation. Specifically, the proposed method uses chemical features which learned 

physicochemical properties of known compounds using the Variational Graph Auto-Encoder 

(VGAE)17 and generates molecules with desirable properties through reinforce learning with 

Monte Carlo Tree Search (MCTS)18. Evaluation of the generated molecules demonstrated that 

the validity and novelty of the chemical and the optimization of physicochemical properties was 

equivalent to or better than the previous methods. Furthermore, investigating the chemical 

structure diversity showed that the generated molecules are distributed in chemical space that 

was not well explored by the previous methods. The proposed method is expected to be useful 

for efficiently discovering and designing new molecules in the drug development.  
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Results 

Proposed method for molecular design 

We have developed a new molecular design model that combines a deep learning model, 

Variational Graph Auto-Encoder (VGAE), and a reinforcement learning model, Monte Carlo 

Tree Search (MCTS). Our developed model (called VGAE-MCTS) is divided into three parts: a 

part for preparation of input data, a part for training of VGAE, and a part for molecular 

generation using MCTS (Figure 1). Details of each part are described in Materials and Methods 

section. 

 

 

Figure 1. Workflow of our proposed method (VGAE-MCTS). VGAE-MCTS is 

consisted of three parts: (i) Converting the molecules of the training data into feature maps 

(preparation of input data), (ii) Learning the distribution of molecules in the training data 

using VGAE (training of Variational Graph Auto-Encoder (VGAE)), and (iii) Generating 

molecules by connecting atoms and bonds one by one based on the feature map output 

from the learned VGAE decoder using MCTS (molecular generation using Monte Carlo 

Tree Search (MCTS)). 
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The basic performance of molecular generation using VGAE-MCTS, namely validity, 

uniqueness, novelty, Kullback-Leibler divergence (KL divergence), and Fréchet ChemNet 

Distance (FCD) was evaluated with Distribution-Learning Benchmarks in the GuacaMol 

framework19 (Table 1). We compared the performance of VGAE-MCTS among the previous 

models that are Graph MCTS20 and VGAE21. 

The molecules generated by VGAE-MCTS showed scores of 1.000 for validity, uniqueness, 

and novelty. In other words, all molecules generated were valence electron counts protected, no 

duplications, and novel molecules that were not present in the training dataset. The results for 

these three types of scores were comparable or better than the previous models. The KL 

divergence score for VGAE-MCTS was 0.659. This is the highest result compared to the 

previous models, Graph MCTS and VGAE. The details of KL divergence scores for VGAE-

MCTS are shown in Table S1. The FCD score for VGAE-MCTS was 0.009. FCD compares the 

similarity of the distribution of predicted bioactivity values between the generated molecules and 

compounds from the ChEMBL database. Similar to the previous models, VGAE-MCTS also had 

a low FCD score. 

 

Table 1. Benchmarking Results using GuacaMol distribution-learning benchmarks 

 GraphMCTS* VGAE* VGAE-MCTS 

validity 1.000 0.830 1.000 

uniqueness 1.000 0.944 1.000 

novelty 0.994 1.000 1.000 

KL divergence 0.522 0.554 0.659 

FCD 0.015 0.016 0.009 
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* Values of GraphMCTS and VGAE are taken from Table 4 in O. Mahmood, et al.22 

 

Optimizing physicochemical properties of drug discovery 

The ability of VGAE-MCTS to generate molecules was evaluated when the physicochemical 

properties were optimized. The physicochemical properties to be optimized are the Quantitative 

Estimate of Drug-likeness (QED) 23 and penalized logP. QED is a quantitative measure of drug-

likeness and an evaluation of the ability to optimize single properties. Penalized logP is an index 

that combines three physicochemical properties: liposolubility, synthetic accessibility score, and 

penalty for large rings, and is an evaluation of the ability to optimize multi-properties. Both 

indices are commonly used physicochemical properties of drug discovery in the evaluation of 

molecular generation models11, 14. These indices range from 0 to 1, with molecules closer to 1 

indicating that they are better molecules for drug discovery. We compared the performance of 

VGAE-MCTS among the prior study models that are JT-VAE10 and MolDQN14. 

 

QED optimization 

Molecules generated by optimizing QED score by VGAE-MCTS were compared with 

molecules from the ZINC dataset used as training data. In addition, comparisons were also 

performed with molecules generated by JT-VAE and MolDQN. The distribution of QED scores 

for each method is shown in Figure 2(A), and the mean, standard variance, and median statistics 

were shown in Figure 2(B). Examples of molecules generated by VGAE-MCTS were also shown 

in Figure 2(C). The QED scores of the molecules generated by VGAE-MCTS (mean: 0.772, 

median: 0.815) was clearly higher than those in the ZINC dataset (mean: 0.732, median: 0.762) 

(Mann-Whitney U test: P=2.53×10-7). This result suggests that VGAE-MCTS is able to expand 
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molecules toward better QED that is a physicochemical property in MCTS-based search. VGAE-

MCTS was also able to generate higher QED scoring molecules compared to previous methods, 

JT-VAE (mean: 0.720, median: 0.760) and MolDQN (mean: 0.455, median: 0.518) (Mann-

Whitney U test: P=4.77×10-11, P<0.01). 

 

 

Figure 2. Results of QED-optimized generated molecules. (A) The vertical axis is the 

QED value from 0 to 1, the horizontal axis is the molecules of the ZINC dataset, VGAE-

MCTS, and previous models. The white dots represent the mean values, and the bulge 

represents the density. (B) The mean (standard deviation), and median QED values for each 

molecular group are shown. (C) Chemical structures of the top 5 molecules generated by 

VGAE-MCTS and their QED values are displayed. 

 

Penalized logP optimization 

As with the QED optimization, we compared the molecules generated by optimizing penalized 
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JT-VAE and MolDQN (Figure 3(A), (B), and (C)). The penalized logP of the molecules 

generated by VGAE-MCTS (mean: 0.536, median: 0.606) was higher than those in the ZINC 

dataset (mean: 0.572, median: 0.610) (Mann-Whitney U test: P=6.08×10-1). We found that the 

molecules generated by VGAE-MCTS had a smaller percentage of low penalized logP values 

than the molecules in the ZINC dataset and the molecules generated by the previous models. In 

other words, this suggests that VGAE-MCTS avoids expanding molecules toward the lower 

penalized logP in the molecular generation using MCTS. VGAE-MCTS was also able to 

generate molecules with higher penalized logP compared to previous methods, JT-VAE (mean: 

0.392, median: 0.309) and MolDQN (mean: 0.472, median: 0.442) (Mann-Whitney U test: 

P=4.26×10-14, P=1.90×10-3). 

 

 

Figure 3. Results of penalized logP-optimized generated molecules. (A) The vertical 

axis is the scaled penalized logP value from 0 to 1, the horizontal axis is the molecules of 

the ZINC dataset, VGAE-MCTS, and previous models. The white dots represent the mean 
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scaled penalized logP values and the bulge represents the density. (B) The mean (standard 

deviation), and median scaled penalized logP value for each molecular group are shown. 

(C) Chemical structures of the top 5 molecules generated by VGAE-MCTS and their 

scaled penalized logP and penalized logP values are displayed. 

 

Visualizing chemical space of generated molecules 

We evaluated whether the molecules generated by VGAE-MCTS were able to expand the 

chemical space from the training molecules. Specifically, molecules generated by each of the 

QED-optimized models (JT-VAE, MolDQN, and VGAE-MCTS) and molecules from the ZINC 

data set were mapped onto the chemical space (Figure 4(A)). First, the molecules generated by 

VGAE-MCTS were plotted in a slightly different chemical space than the molecules in the ZINC 

dataset (Figure 4(B)). In other words, the molecules generated by VGAE-MCTS have a new 

chemical structure that is slightly different from the training molecules. On the other hand, the 

molecules generated by JT-VAE were plotted in almost the same chemical space as the 

molecules in the ZINC dataset (Figure 4(C)). In other words, the molecules generated were very 

chemically similar to those in the ZINC data set. Molecules generated by MolDQN, which is 

trained without using the dataset, were plotted in a chemical space that was significantly 

different from the molecules in the ZINC dataset (Figure 4(D)). 
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Figure 4. Visualization of QED-optimized generated molecules. Molecules generated 

by optimizing QED are plotted in two dimensions using ECFP descriptors. Molecules from 

the ZINC training data are shown in blue. The molecules generated by JT-VAE are shown 

in orange, MolDQN in green, and VGAE-MCTS in red. (A) Distribution of molecules in 

ZINC training data and molecules generated by the three methods. (B) Distribution of 

molecules in ZINC training data and molecules generated by VGAE-MCTS. (C) 

Distribution of molecules in ZINC training data and molecules generated by JT-VAE. (D) 

Distribution of molecules in ZINC training data and molecules generated by MolDQN. 
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Discussion 

In this study, our proposed molecular generation model, VGAE-MCTS, was developed by 

combining VGAE, a deep learning model, and MCTS, a reinforcement learning model, to be 

able to explore chemical spaces that could not be explored by previous models. 

First, the basic performance of VGAE-MCTS in generating molecules was evaluated with the 

Distribution-Learning Benchmarks in the GuacaMol framework. The molecules generated by 

VGAE-MCTS had a validity of 100%. This result is due to the fact that the chemical structure is 

represented as a molecular graph and the MCTS creates molecules by connecting atoms and 

bonds while protecting the number of valence electrons. The uniqueness and novelty scores of 

VGAE-MCTS were also higher. These results are thought to be due to the fact that VGAE-

MCTS is able to output a wide variety of molecules because the more atoms that make up a 

molecule, the more molecules are candidates for expansion, and the type of atoms selected is 

stochastic. 

Next, molecular generation was performed using VGAE-MCTS to optimize for each of the 

two types of physicochemical properties values, QED and penalized logP, and in both cases, the 

accuracy was confirmed to be equal to or better than that of previous studies. The molecules 

generated by QED optimization are more drug-like than those generated by the models in the 

previous methods, indicating that VGAE-MCTS is a valuable method for use in drug discovery. 

Penalized logP is composed of a combination of the three physicochemical properties of logP, 

SA score, and RingPenalty, and multi-property optimization was relatively successful in VGAE-

MCTS. This suggests that VGAE-MCTS can be used to search for molecules considering 

multiple physicochemical properties. VGAE-MCTS can be expected to be used in practical drug 

discovery process where multiple conditions are optimized. 
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Finally, we evaluated whether the molecules generated by VGAE-MCTS were able to expand 

the chemical space from the training data. Because the ZINC dataset is registered for drug-like 

compounds, many molecules have a large QED, a quantitative measure of drug-likeness 

(approximately 92% of the molecules in the ZINC have a QED ≥ 0.5). Therefore, we can 

evaluate whether the generated molecules have expanded their chemical space using the 

chemical space of drug-like molecules in the ZINC as a reference. Figure 4 shows that the 

molecules generated by VGAE-MCTS were different in structure from those in the ZINC data 

set. In other words, the molecules generated by VGAE-MCTS showed a chemical spatial spread 

in the form of derivatives from molecules in the ZINC data set. On the other hand, molecules 

generated by the deep learning-based JT-VAE showed little chemical spatial spread. The 

molecules generated by the reinforcement learning-based MolDQN were found to be located in a 

completely different chemical space than the molecules in ZINC data set, i.e., they were not 

drug-like molecules. The above confirms that the molecules generated by VGAE-MCTS were 

located in a different part of the chemical space than those generated by other methods, and that 

the molecules generated by VGAE-MCTS were in a part of the chemical space that has not been 

found in previous methods. 

We developed a new molecular generation model, VGAE-MCTS, which combines VGAE, a 

deep learning model, and MCTS, a reinforcement learning model, to explore chemical spaces 

that could not be explored by the models in previous studies. VGAE-MCTS showed comparable 

or better performance than existing models in the GuacaMol benchmark. We also showed that 

the performance of the optimization of the physicochemical properties, QED and penalized logP, 

is comparable or better than previous studies. In addition, to assess the diversity of chemical 

structures generated, we evaluated the distribution of molecules generated by VGAE-MCTS and 
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several previous models in chemical space. The results indicate that the molecules generated by 

VGAE-MCTS are distributed in areas that were not well explored by the molecules generated by 

the previous models. Based on these results, it is expected that our proposed VGAE-MCTS will 

be able to propose molecules that may have been out of the scope of exploration so far, which 

will be useful for drug development. 
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Materials and Methods 

Data 

Two compound datasets were prepared for the training of VGAE in the proposed method. The 

first dataset was compounds obtained from ChEMBL24 for the evaluation of basic molecular 

generating capability (validity, uniqueness, novelty, KL divergence, and FCD) using 

GuacaMol’s Distribution-Learning Benchmarks19. The total number of compounds obtained 

from ChEMBL was 1,352,672, which were divided into 1,273,104 for training and 79,568 for 

validation. As the second dataset, compounds were obtained from ZINC25, where drug-like 

compounds are registered, in order to evaluate the capability to optimize the physicochemical 

properties of molecular generation. The number of compounds obtained from ZINC was 249,456, 

which were divided into 199,565 for training and 49,891 for validation. 

 

Proposed Methods 

Preparation of input data. The molecules of the training dataset are represented in a feature 

map, which is the data format for input to VGAE. The graph structure representation of a 

molecule is to convert it into a vector, with atoms represented by nodes and bonds by edges. In 

the conversion of the molecules to vector representation, node features and edge features were 

computed using RDKit26. Details of node and edge features are shown in Tables S2 and S3, 

respectively. The features of the nodes were concatenated to create a feature map of the nodes. 

The features of the edges were also concatenated to create a feature map of the edges. 

Training of Variational Graph Auto-Encoder (VGAE). VGAE was used to generate feature 

maps for use in MCTS. VGAE consists of an encoder part (Figure S1 left) and a decoder part 

(Figure S1 right) 27. The loss function of the VGAE consists of a regularization term calculated 
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by the Kullback-Leibler (KL) divergence between the normal distribution with mean 0 and 

variance 1 and the distribution of the encoder’s output, and the sum of the reconstruction error 

calculated based on the input data and the data output by the decoder. For the training of VGAE 

in our proposed method, a latent space of 64 dimensions, a learning rate of 0.001, and a batch 

size of 64 were used. 

Molecular generation using Monte Carlo Tree Search (MCTS). Molecules are generated 

by connecting atoms and bonds one by one in MCTS based on the feature map output by the 

learned VGAE. Latent variables are randomly selected from the latent space of the learned 

VGAE. The selected latent variables are passed through a decoder to output a feature map of 

edges, which represents the probability of existence of atom-atom edges, and a feature map of 

nodes, which represents the features of atoms. 

MCTS generates molecules using the feature maps output from the trained VGAE. In MCTS, 

the following 1) Selection, 2) Expansion, 3) Simulation, and 4) Update are considered one search 

and repeated for the number of times specified by the user. When the search is completed for the 

number of times specified by the user on one feature map, the molecule with the best 

physicochemical property value at each depth of MCTS is output for numerators below the user-

specified depth (minimum_depth). Then, the search is moves on to a next feature map. 

1) Selection: Select one node that has the smallest value in the following equation. 

−
𝑠

𝑛
− 𝑐√

𝑙𝑛𝑁

𝑛
 ・・・(4) 

where s is the score of the node, n is the number of times the node has been visited, c is 

the search coefficient (c = 1.5 in our case), and N is the number of times the parent node 

has been visited. Equation (4) corresponds to Equation of the Upper Confidence Bound 1 
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(UCB1) 28, which is well known in reinforcement learning. At this time, the depth is 

increased by one with the selected node. 

2) Expansion: Bonding and atom addition are performed based on the candidate edges for the 

selected node (molecule). 

3) Simulation: Roll out the molecules to which bonds and atoms were added in the 

Expansion part. 

4) Update: The node is updated with a reward based on the physical properties of the 

molecule after the rollout. 

The threshold and the number of searching for candidate edge extraction for this model were 

set to 0.10 and 8,000. For minimum_depth, we set it to 21 for the GuacaMol benchmark 

measurement, 17 for the QED optimization, and 6 for the penalized logP optimization. 

In our model, “aromatic force cycle mode” is introduced to facilitate the formation of aromatic 

rings, which are important for drug discovery. The “aromatic force cycle mode” has the 

following procedures 1) to 3). 

1) The feature map output by the VGAE is used to determine if it is possible to form 

aromatic rings of the specified size. In this study, aromatic ring sizes were set to 5- and 6-

membered rings. 

2) If it is determined that aromatic rings can be formed, aromatic rings are generated at the 

beginning of MCTS. 

3) Increase the reward value of nodes for molecules with aromatic rings by 0.5 to make them 

more likely to be selected than nodes for molecules without aromatic rings during MCTS 

Selection. 
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In addition, to generate realistic molecules, the proposed model introduces two filters, a Steric 

strain filter11 and a filter to make it difficult to create a ring structures larger than 7-membered 

rings. If a node was trapped by at least one of these two filters, our method made it less likely to 

be selected as a node to be searched by increasing the MCTS reward value by a factor of 10. 

 

Performance evaluation of molecular generation 

GuacaMol benchmarks. Distribution-Learning Benchmarks within the GuacaMol framework 

were used to evaluate five indicators: validity, uniqueness, novelty, Kullback-Leibler (KL) 

divergence, Fréchet ChemNet Distance (FCD). The scores all range from 0 to 1, with the better 

the score, the closer the value to 1. 

Optimization of physicochemical property. The Quantitative Estimate of Drug-likeness 

(QED) 23 and penalized logP were set as the physicochemical properties to be optimized. QED is 

a quantitative measure of drug-likeness23. QED is a quantitative measure of drug-likeness and 

ranges from 0 to 1, with values closer to 1 indicating that the molecule is more drug-like. When 

optimizing QED, the 1 − 𝑄𝐸𝐷 score was used as the reward function for MCTS. 

Penalized logP is a measure that combines three physicochemical properties: lipophilicity 

(logP), ease of synthesis (SA score), and penalty for large rings (RingPenalty). The formula used 

in the penalized logP optimization is defined below10, 29. 

𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑙𝑜𝑔𝑃 =  𝑙𝑜𝑔𝑃(𝑚) –  𝑆𝐴(𝑚) –  𝑐𝑦𝑐𝑙𝑒(𝑚)  (5) 

𝑆𝑐𝑜𝑟𝑒 =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑙𝑜𝑔𝑃) (6) 

where m denotes the numerator. Using equation (6), penalized logP was converted to a range 

of 0 to 1 to be the score for penalized logP optimization; molecules closer to 1 indicate better 
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molecules. When optimizing penalized logP, the 1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑙𝑜𝑔𝑃) score was used 

as the reward function for MCTS. 

In the evaluation of the optimization of the physicochemical properties, 3,000 molecules were 

randomly selected from the ZINC data set and 3,000 molecules were selected in the order in 

which they were generated by each molecule generation model. The distribution of 

physicochemical properties for the generated molecules was then calculated and evaluated. 

Statistical analysis. The Mann-Whitney U test30 was used to test for differences in the 

distribution of physicochemical property values between methods for molecules generated by 

optimizing QED and penalized logP. In addition, the significance probability p-values were 

corrected by Bonferroni's correction31. The molecules used for the test were 500 randomly 

selected from the 3,000 molecules generated for each method. 

Visualizing chemical space. Molecules from the ZINC dataset used as training data, and 

molecules generated by optimizing QED with each method, were mapped to chemical space. 

Molecules were mapped in two dimensional space by calculating 2048 dimensional ECFP 

descriptors32 with a diameter of 4 in RDKit, and then performing dimensionality reduction using 

UMAP33 in ChemPlot34. 

  



 20 

Supporting Information.  

Table S1. The detail of KL divergence; Table S2. Node features of a graph representation; Table 

S2. Edge features of a graph representation; Figure S1. Model structures of Encoder and Decoder. 

Encoder: Considering the entire molecular structure by the GCN model, feature maps are 

represented by compressing information as low-dimensional vectors and embedding them in the 

latent space. Decoder: From the distribution in the latent space, the information of the molecules 

compressed into a low-dimensional vector is recovered in the form of a feature map. 
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