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Abstract

Rapid prediction of environmental chemistry properties is critical towards the green

and sustainable development of chemical industry and drug discovery. Machine learn-

ing methods can be applied to learn the relations between chemical structures and

their environmental impact. Graph machine learning, by learning the representations

directly from molecular graphs, may enable better predictive power than conventional

feature-based models. In this work, we leveraged graph neural networks to predict en-

vironmental chemistry properties of molecules. To systematically evaluate the model

performance, we selected a representative list of datasets, ranging from solubility to

reactivity, and compare directly to commonly used methods. We found that the graph

model achieved near state-of-the-art accuracy for all tasks and, for several, improved

the accuracy by a large margin over conventional models that rely on human-designed

chemical features. This demonstrates that graph machine learning can be a powerful
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tool to do representation learning for environmental chemistry. Further, we compared

the data efficiency of conventional feature-based models and graph neural networks,

providing guidance for model selection dependent on the size of datasets and feature

requirements.

INTRODUCTION

A recent focus of the chemical industry is the reduction of its environmental footprint.1 Pro-

posed routes to this goal include the adoption of green chemistry frameworks that minimize

the impact of chemical synthesis and manufacturing at scale and alter process designs to

use chemicals with minimal carbon intensity and toxicological risk.2 Successful application

of such a framework requires rapid and accurate assessments of the environmentally relevant

properties of prospective chemical components — a task to which machine learning (ML)

techniques are particularly well-suited.3–8

Machine learning algorithms have proven a useful augmentation to traditional data an-

alytics techniques in the evaluation of environmental impacts of chemical processes. For

example, Zhang and Zhang employed a deep-neural-network regression for the prediction

of aqueous solubilities of persistent, bioaccumulative, and toxic chemicals.9 Dawson et al.

approximated the intrinsic metabolic clearance rate and plasma bound fraction of toxic

chemicals using random forest regression for their application in the toxicokinetic model-

ing.10 Zhong et al. trained an ensemble regression model for the prediction of reactivity of

organic contaminants toward a variety of oxidants.11 Other successful applications include

the identification of endocrine-disrupting chemicals12 and direct modeling of environmen-

tal impacts from chemical production.13 These and other use cases demonstrate the broad

applicability of machine learning techniques to problems in environmental engineering.14

Common across the existing literature is the use of chemical features to produce a flat-

tened, vector representation of the complex geometry of an organic molecule. We denote ML

models that take this approach as ”feature-based” models, as they rely on explicit featur-
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ization of the molecular structure to construct an input representation. Chemical features

have a long history of use in cheminformatics applications and may be broadly classified

into two families: molecular descriptors and fingerprints.15 Molecular descriptors may be

understood to abstract molecular structural information into summary statistics, such as

molecular weight, polarizability, or numbers of heteroatoms. They have the advantage of

being relatively intuitively understood; however, they fail to fully capture the information

contained in the molecular structure, and the selection of appropriate molecular descrip-

tors for a given prediction task is often nontrivial. Common examples of descriptor-based

features include PaDEL descriptors,16 Mordred descriptors,17 and MACCS descriptors.18

The second class of chemical features, molecular fingerprints, explicitly encode the presence

and local environment of functional groups into a feature vector. An example is extended-

connectivity fingerprints (ECFP).19 The use of molecular fingerprints provides a more direct

representation of the molecular structure and simplifies feature selection at the cost of some

interpretability relative to molecular features.

With recent advances in graph machine learning, direct graph representation of molecular

structures, where nodes represent atoms and edges represent chemical bonds, has become a

viable alternative to chemical descriptors.15 Following this approach, Duvenaud et al. created

data-driven features, NeuralFPs, by applying convolution operations directly to molecular

graphs and showed the resulting representation to be better performing than ECFP fea-

tures.20 Subsequent work has solidified these results, with graph neural networks achieving

state-of-the-art accuracy for a variety of molecular machine learning tasks.21,22 Recently,

ring-enhanced graph neural network (O-GNN23) has been reported as an advancement to

existing graph-machine-learning methods, by explicitly encoding information on rings into

graph neural networks. It shows state-of-the-art accuracy on molecular property prediction

benchmarks.

In this work, we systematically evaluated the predictive power of graph machine learning

methods and compared them with feature-based models that rely on chemical features. A list
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of molecular property prediction tasks were selected in the environmental chemistry domain.

Results from four sets of models have been reported: ECFP-based models, NeuralFP-based

graph models, NeuralFP, feature-based models built on other types of chemical features, as

well as one of the state-of-the-art graph models, O-GNN. We found that the state-of-the-art

graph machine learning models outperformed or were at least on par with the feature-based

methods in all tasks. To support these results, we conducted a data-efficiency analysis to

provide guidance on when graph models are advantaged over feature-based approaches and

examine the correlation of residual errors across both methods. We found the graph machine

learning architecture an exemplary tool for molecular property prediction tasks on datasets

exceeding 1000 observations and competitive with conventional feature-based models down to

several hundred observations. The state-of-the-art graph machine learning methods provide

a rapid and accurate approach for environmental chemistry property prediction.

MATERIALS AND METHODS

Data Collection

We identified a series of molecular property prediction tasks with associated datasets reported

in the recent literature, ranging from solubility to metabolic susceptibility to reactivity, on

which to assess the performance of O-GNN relative to the literature-reported model. We pro-

vide an overview of the selected datasets, baseline accuracy and our new results in Table 1

of the results section. In the first task, ESOL, the model was asked to predict the aqueous

solubility of a series of small molecules. The ESOL dataset is composed of 1144 structures

paired with experimentally measured aqueous solubilities reported in logarithm-transformed

units of mol/L.24 In the reporting publication,24 the ESOL dataset was fit using molecular

descriptors and linear regression, which identified a high dependence of aqueous solubilities

on both the calculated octanol-water partition coefficient logPoctanol and the proportion of

heavy atoms in aromatic systems. Recently, Zhang and Zhang demonstrated improved accu-
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Table 1: Selected Datasets for Environmental Chemistrya

Task Property Size Baseline Accuracya Baseline Model

ESOL
Small Molecule

Solubility in Water
1144 0.62 (0.04) PaDEL-DNN

BCF
Bioconcentration

Factor
1056 0.67 (0.04) PaDEL-DNN

Clint
Intrinsic Metabolic
Clearance Rate

4422 0.86 (0.05)
Descriptor-based Features +
Random Forest Regressionb

O3-react
Chemical Reactivity
with O3 Oxidants

759 2.06
Fingerprint-based Features +

Ridge-Regression

SO4-react
Chemical Reactivity
with SO•−

4 Oxidants
568 0.64

Descriptor-based Features +
Random Forest Regression

a Baseline accuracy is reported in root-mean-square-error of the testing dataset
(RMSEtest), where the numbers outside and inside the parenthesis are the mean and
standard deviation values obtained from cross-validation. The splits in O3 − react and
SO4 − react are given in the literature,11 so no cross-validation is conducted. The units of
ESOL and Clint are ln(mol/L) and ln(µL/min/106), while others are non-dimensional
properties.
b This baseline result is created by this work.

racy on this task using molecular descriptors, PaDEL features, with a deep neural network

(PaDEL-DNN), and we included their achieved RMSEtest of 0.62 as the baseline in Table

1.9 The second task, BCF , required to predict a bioconcentration factor for the accumu-

lation of a series of small molecules in fish. The BCF dataset covers 1056 molecules, and

includes both molecular structures and bioconcentration factors reported as a the logrithm-

transformed ratio between concentration in the organism and in the containing water at

steady-state.25 Zhang and Zhang also applied the PaDEL-DNN method to this task, achiev-

ing an RMSEtest of 0.67. In the third task, Clint, the model was developed to predict the

rate of intrinsic metabolic clearance (Clint) of a series of small molecules, an important pa-

rameter for toxicokinetic modeling.10 Dawson et al. assembled experimental measurements

of Clint by hepatic cells and microsome assays from the ChEMBL and ToxCast databases,

which were standardized into the unit of µL/min/106 cells. While they utilized this dataset

to train a classifier, we framed a regression problem for consistency with the remainder of the

tasks and trained a random forest model with Mordred descriptors, in order to predict the
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logrithm-transformed Clint to serve as the baseline model in Table 2.17 The last two tasks,

O3-react and SO4-react, asked the model to predict the reactivity of organic contaminants

to two oxidants, O3 (ozone), and SO4
•−.11 To construct the associated datasets, Zhong et al.

collected reactivity data from the literature, curating a total of 759 and 557 data points in

O3-react and SO4-react, respectively.
11 The logarithm-transformed reaction rate constants

log(k) were reported alongside reaction conditions.11 ECFP fingerprints and molecular de-

scriptors were benchmarked in combination with multiple machine learning algorithms, with

the best performing models ultimately obtaining an RMSEtest of 2.06 on the O3-react task

and an RMSEtest of 0.64 on the SO4-react task.

Graph-based Machine Learning

Figure 1: Model Architecture for Graph Neural Networks. The model starts with molecular
graph G and features and then applies graph convolutions iteratively on those features to
get graph-level features. The graph-level features are transformed by feed-forward neural
networks to predict the environmental properties. For the NeuralFP-based graph model, the
graph only has atom features hV , G=(V, E). For O-GNN, the graph covers atom, bond, and
ring-level features (hV , hE, hR) and G=(V, E, R)

We briefly introduce the graph neural networks leveraged in this work, NeuralFP-based

graph model, NeuralFP, and O-GNN. NeuralFP generalizes ECFP features by applying con-

volution operations directly on graphs, while O-GNN further adds the explicit encoding of ring

structures, along with features of bonds and rings in the graph convolution steps. A more in-

depth theoretical analysis of graph machine learning approach may be found in literature.20,23

We summarize the architectures of NeuralFP and O-GNN in Figure 1. Mathematically, for

graph machine learning methods, we define the molecular graph G as G = (V,E,R), where
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V, E and R are the atom, bond and ring set, respectively. Atom, bond, and ring features are

specified by hV (atom type, chirality, degree number, etc.), hE (bond type, stereochemistry,

conjugated type) and hR (a concatenation of atom and bond features that are involved in

the rings). For NeuralFP, only G = (V,E) and atom features hV are utilized in the it-

erative message passing (graph convolution) step, where involved features are updated by

message-passing layers that merge information from the neighborhood of a central node.

After pooling of message-passed node features, we obtain a graph-level molecular feature.

The molecular properties are then obtained by transformation with a feed-forward neural

network on the graph-level features. Unlike NeuralFP, O-GNN further encodes the edge and

ring features, (R,hE,hR), inside the neural network. For studies on the graph-based models,

NeuralFP model was implemented in DeepChem,26 and O-GNN was implemented in PyTorch

as previously reported.23 A consistent 5-fold cross-validation split was defined for each task.

As only summary statistics were available in the literature reports of the baseline mod-

els, we trained a feature-based model to serve as a surrogate for the direct comparison of

predictions. In each case, we reported two sets of results for feature-based models. First, to

compare with NeuralFP, we paired ECFP features with various machine learning algorithms

(random forests, gradient boosting, support vector machines, neural networks) and reported

the lowest RMSEtest. Further, we obtained an optimized feature-based model with a com-

binatorial search of molecular features (ECFP, Mordred, MACCS) and machine learning

algorithms, where the best performing model was measured by RMSEtest to represent the

feature-based methods. A consistent 5-fold cross-validation split was defined for each task.

Additional details on feature generation and model selection may be found in the Supporting

Information (SI).
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RESULTS AND DISCUSSION

In Table 2, we report observed performances of the two feature-based models and two graph

models. Consistent with the previous publication,20 NeuralFP yielded better predicted val-

ues than the ECFP-based model for most tasks. However, the feature-based model using

Mordred descriptors significantly outperformed both the ECFP-based model and NeuralFP

graph-based model. For example, with Mordred descriptors, an RMSEtest of 0.61 was

observed for the ESOL task, 48.7% and 24.7% lower than the ECFP-based model and

NeuralFP, respectively.

Table 2: Overview of Collected Datasets, Model Performances of Graph Models versus
Feature-based Modelsa

ESOL BCF Clint O3-react SO4-react
Property Solubility Bioconcentration Intrinsic Clearance Reactivity Reactivity

Size 1128 1034 4422 759 557
ECFP 1.19 (0.06) 0.85 (0.05) 0.91 (0.09) 2.26 0.74

NeuralFP 0.81 (0.01) 0.79 (0.05) 0.71 (0.04) 2.12 0.90
Best

Feature-based
0.61 (0.04) 0.67 (0.05) 0.86 (0.05) 2.05 0.60

O-GNN 0.36 (0.03) 0.40 (0.08) 0.34 (0.03) 2.07 0.66
a Performance reported in the format of RMSEtest after 5-fold cross-validation, except
that the two reactivity datasets were trained with the splits following literature.11 The
most accurate model is highlighted by bolding.

To further explore the potential of graph machine learning for these tasks, we leverage

the representation power of ring-enhanced graph neural networks, O-GNN. With O-GNN, we

observed a substantial improvement in prediction accuracy on tasks ESOL, BCF and Clint,

relative to the best-performing feature-based models. This improvement may be attributed

to the increased capacity of the O-GNN architecture to capture information related to the

molecular structures relative to the molecular descriptors or fingerprints employed in the

baseline models.15 On the O3-react and SO4-react tasks, the performance of O-GNN was found

to be comparable to best-performing feature-based models, without the substantial gains in

RMSEtest observed on the other tasks. One plausible explanation is that, the datasets for

8



tasks O3-react and SO4-react contained fewer observations than those for the other tasks.

We hypothesized that the O-GNN architecture may require model training on a larger dataset

to achieve optimal predictive performance than the feature-based model architectures.

Figure 2: Comparing Learning Curves of Feature-based Models and O-GNN for (1) the BCF
Task and (b) the Clint Task. The X-axis is the number of input data points for training,
while the Y-axis is RMSEtest, reported by its mean (the line) and standard deviations (the
colored area around the line) after cross-validation. The red curve is from feature-based
models and the green curve is from O-GNN results.

Here and going forward, we will compare the best-performing graph machine learning

methods, i.e. O-GNN, and the best-performing feature-based methods. We denoted them

as O-GNN and ’feature-based’ models, respectively, since they are the most desirable options

for the two categories of experimented molecular machine learning methods.To test our hy-

pothesis on the data size, we conducted a data-efficiency experiment, in which a series of

models were trained on randomly sampled subsets of the BCF and Clint datasets utilizing

both O-GNN and a feature-based architecture. The performance of each model was evaluated

against varying training set size, by 5-fold cross-validation, to give learning curves (Figure

2).27These learning curves are data-efficiency experiments that could provide insight into

the relative performance of O-GNN on the data-limited O3-react and SO4-react tasks. Al-

though the O-GNN models are substantially advantaged over the feature-based models when

trained on the full-sized BCF and Clint datasets, the loss reduction is less substantial as

we decreased the training data size, as shown in Figure 2. In both cases, the performance
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of the O-GNN model becomes comparable to that of the feature-based model as the training

dataset drops below approximately 1000 observations, in line with the size of the O3-react

(759) and SO4-react (557) datasets. At the extreme, the feature-based model outperforms

the O-GNN model on the BCF task when the training dataset drops below approximately

100 observations. This behavior may be attributed to the contributions of chemistry knowl-

edge introduced with the use of human-designed molecular features, and suggests that a

feature-based model may become a more appropriate choice on data-limited tasks.

Having established a high-level understanding of which molecular property prediction

tasks O-GNN models might be expected to outperform feature-based models, we next sought

to identify potential systematic trends in the models’ predictions that might explain the

improved performance of the O-GNN model on the ESOL, BCF , and Clint tasks. To this

end, we drew parity plots covering model predictions on the test dataset for the Clint task

(Figure 3a). The predicted values from each model exhibit the expected linear correlation

to the true values without notable systematic deviations. This result suggests that the supe-

rior performance of the O-GNN model is attributable to a general improvement in molecular

representation, as opposed to an ability to capture novel molecular features. Further corrob-

orating, a linear trend was observed between the residual errors of the two models (Pearson

correlation coefficient, r = 0.40), indicating that the two models generally overestimate or

underestimate the Clint of the same molecules (Figure 3b).

Finally, for Clint task, we directly compared the learned molecular representations of

the O-GNN model to the molecular features (Modred) utilized in our surrogate feature-based

model, considering the ability of each to distinguish molecules by Clint. Principle component

analysis (PCA) was used to map O-GNN-derived or Mordred feature vector representations of

each molecule in the Clint test dataset into a 2-dimensional chemical space and the results

are plotted in Figure 3c-d. We scaled each dimension of Mordred feature vector to zero mean

and unit variance since the chemistry information it encodes may intrinsically follow distinct

distributions. Graph neural networks like O-GNN transform the discrete atom, bond, and ring
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Figure 3: Detailed Analysis of the Clint task (a) Parity Plot. The black line represents com-
plete agreement of the predicted and true values. (b) Prediction Residual Plot (predicted
values minus true values). X-axis is the residual values of feature-based models while Y-axis
is for O-GNN. (c-d) PCA Plots for (c) Scaled Mordred Features and (d) O-GNN-extracted Fea-
tures. A window with PCA1 and PCA2 in [-200, 0] and [-200, 200] is shown for visualization
purposes. Each dot is color-coded by their clearance values.

features that make up a molecule into a continuous latent representation. In Figure 3c-d, we

observed that the first two PCA features are sufficient to cleanly arrange the O-GNN-encoded

molecules by Clint while the Mordred-encoded molecules remain poorly distinguished.

Conclusions

In this work, we investigated the predictive power of graph machine learning and feature-

based models in order to estimate environmental properties of chemicals. We first observed

that although NeuralFP may outperform ECFP-based models, the best feature-based model
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may be more desirable when appropriate chemical features are selected, e.g. Mordred for

solubility-related prediction tasks. We therefore recommended the best-performing feature-

based models as a new baseline. Compared with baseline feature-based approaches, O-GNN

achieved state-of-the-art predictive accuracy on all tested tasks of solubility, bioconcentra-

tion, metabolism, and contaminant reactivity. By analyzing the data efficiency of the baseline

and graph neural networks, we can conclude that O-GNN outperforms the baseline significantly

when an enough amount of data is provided, while conventional approaches reduce the pre-

diction error in the low-data regime. Lastly, we thoroughly evaluated the model predictions

from the two approaches based on parity plots, residual analysis and the PCA plots of

Mordred descriptors and O-GNN-extracted features. O-GNN demonstrated a higher predictive

power by distinguishing the environmental properties, e.g. Clint, by molecule structures. We

envision future works can be conducted as follows. In the low data regime, emerging ML

methods may offer additional improvement, including multitask learning,11 transfer learn-

ing,28,29 one-shot learning,30 and self-supervised learning.31,32 Where more data is available,

modern graph machine learning models outperform the more commonly used ECFP fin-

gerprint and feature-based models and should be the method of choice where prediction

accuracy is prioritized.
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