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Abstract 

Antimicrobial peptides (AMPs) have gained significant attention in the field of drug discovery due 

to their potential therapeutic applications in the fight against antimicrobial resistance. Since 

rationally designing AMPs is notoriously difficult due to the vast number of possible peptide 

sequences and their complex structure-activity relationship landscape, this problem is ideally suited 

for machine-learning models, which can be trained from available data to predict new sequences 

with a desired activity profile. Here we investigated the performance of large language models 

(LLMs) fine-tuned with data from Database of Antimicrobial Activity and Structure of Peptides 

(DBAASP) to predict AMP antimicrobial activity and hemolysis from their amino acid sequence. 

We show that GPT-3 based models perform slightly better than previously reported recurrent neural 

networks (RNN) and related architectures on comparable datasets. Furthermore, GPT-3 based 

models perform remarkably well on low data regime. Advantages in terms of training time and 

costs are also discussed.    

Keywords: large language models, LLM, GPT-3, hemolysis, activity prediction, antimicrobial 

peptides 
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Introduction 

 

Antimicrobial peptides (AMPs) have gained significant attention in the field of drug discovery due 

to their potential therapeutic applications in the fight against antimicrobial resistance.1–3 However, 

the vast number of possible peptide sequences and their complex structure-activity relationship 

landscape mean that it is difficult to rationally design peptides with the desired activity.4,5  

To address this issue, several machine learning models have been developed for the de novo 

design of antimicrobial peptides.6–17 Because property prediction from a peptide sequence can be 

framed as a natural language processing problem, many of these models use robust architectures 

specifically designed for language processing tasks.18–20 Furthermore, the emergence of large 

language models (LLMs), such as GPT-3,21 has opened new possibilities for leveraging powerful 

language processing capabilities in drug discovery applications. Recent attempts to explore the 

capabilities of GPT-3 for predicting properties of small molecules in various applications have 

shown that GPT-3 was able to perform comparably or even outperform the conventional methods, 

particularly in the low data regime.22 There also have been successful efforts into augmenting LLM 

capabilities to tackle tasks related to small molecule chemistry in the areas of organic synthesis, 

drug discovery, and materials design.23 However, to the best of our knowledge LLMs have not been 

implemented to predict the activity of peptides.   

In this study we aim to compare GPT-3 models fine-tuned on antimicrobial peptide 

sequence data with models that have been previously used to predict antimicrobial activity and 

hemolysis of peptide sequences.13,14 Alongside evaluating the performance of the fine-tuned GPT-3 

models, especially in the low data regimes, we also seek to assess their overall usability and explore 

the advantages they offer in terms of time and cost effectiveness. 
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Methods 
 

Datasets 

The datasets used in this study were peptide sequences with annotated antimicrobial and hemolytic 

activity collected from the Database of Antimicrobial Activity and Structure of Peptides 

(DBAASP),24 as previously described.13 The datasets used for the classification tasks contained 

9,548 (7,160 training / 2,388 validation) sequences with annotated antimicrobial and 2,262 (1,723 

training / 539 validation) sequences with annotated hemolytic activity. To test models in low data 

regimes, we randomly selected subsets from the original training sets, representing approximately 

20% and 2% of the original activity set, and approximately 10% of the original hemolysis set. Used 

datasets are further described in Table 1. 

Table 1: Sizes and composition of the datasets used in the present study. All datasets are available at 

https://github.com/reymond-group/GPT3_classifier. 

Name Size # Actives / Not Hemolytic # Inactives / Hemolytic 

Activity Training 7,160 3,580 3,580 

Activity Training 20% 1,400 701 699 

Activity Training 2% 140 74 66 

Activity Validation 2,388 1,194 1,194 

Hemolysis Training 1,723 717 1,006 

Hemolysis Training 10% 170 65 105 

Hemolysis Validation 539 226 313 

 

Models 

To explore the potential of GPT-3 models for antimicrobial and hemolytic activity classification, we 

performed fine-tuning of the Ada, Babbage, and Curie models accessible through the OpenAI API. 

The fine-tuning process involved training each model using the full, 20% and 2% sets for activity 

classification and the full and 10% set for the hemolysis classification.  ROC AUC, accuracy, 

precision, recall and F1 scores were directly obtained from the OpenAI platform after fine-tuning 

was completed. These metrics were used to compare the performances of fine-tuned GPT-3 models 

https://github.com/reymond-group/GPT3_classifier
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with the ones of Naïve Bayes (NB), Support Vector Machine (SVM), Random Forest (RF), and 

Recurrent Neural Network (RNN) classifiers described in a previous project13.  

Metrics 

All models were evaluated using five commonly accepted performance metrics: ROC AUC, 

Accuracy, Precision, Recall and F1.  

ROC AUC (Receiver Operating Characteristic Area Under the Curve:  Measures the area 

under the Receiver Operating Characteristic curve, which plots the True Positive Rate (Sensitivity) 

against the False Positive Rate. A higher ROC AUC value (ranging from 0 to 1) indicates better 

discrimination and predictive performance of the model. 

Accuracy: Measures the overall correctness of the model's predictions, calculating the ratio 

of correctly classified instances to the total number of instances. It provides a general understanding 

of the model's performance but can be misleading in imbalanced datasets. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

Precision: Measures the proportion of true positives out of all predicted positives. It focuses 

on the model's ability to avoid false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall: Measures the proportion of true positives out of all actual positives. It represents the 

model's ability to identify positive instances accurately.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 score: Harmonic mean of precision and recall. It provides a balanced measure that 

considers both precision and recall. 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Results and Discussion 

Datasets and models 

To assess the performance of the fine-tuned GPT-3 models for classification of antimicrobial and 

hemolytic activities, we conducted a comprehensive comparison with Naïve Bayes (NB), Support 

Vector Machine (SVM), Random Forest (RF) and a Recurrent Neural Network (RNN) models 

previously trained for the same tasks.13 Since the RNN outperformed the other models in our 

previous work, we selected it as the benchmark model for the current study. Through this study, we 

sought to identify whether fine-tuned GPT-3 models could potentially outperform the existing 

models as well as elucidate benefits and limitations of repurposing state-of-the-art language models 

for drug discovery projects.  We fine-tuned the Ada, Babbage, and Curie models only and made the 

deliberate decision not to train Davinci, the most powerful out of the four available models, due to 

its higher training costs. Additionally, we observed that the performances of the fine-tuned GPT-3 

models were relatively comparable. As a result, we focused on these three models to ensure a cost-

effective and efficient training process while maintaining comparable performance levels.  

To maintain consistency and comparability of performance metrics across all tested models, 

we used the identical training and validation sets that we used to train and validate the NB, SVM, 

RF and RNN classifiers to fine-tune the GPT-3 models. To further explore the performance of fine-

tuned models in scenarios with limited data, we created additional training sets. These sets were 

derived from the original antimicrobial activity training set and included subsets containing 

approximately 20% and 2% of the original data. Additionally, we prepared a training set for 

hemolysis prediction, which consisted of approximately 10% of the original training set. The 

purpose of creating these reduced training sets was to simulate low-data regimes, which frequently 

occur in real-life drug discovery projects. 
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Training time and costs 

Training times for all models were around 1 h and the associated costs found to be quite affordable.  

The highest training time and cost among all models were achieved by the Curie model, which took 

01:15:05 h and $2.93 to train (detailed overview of training times and costs in Table 2). 

Furthermore, the API provided easy access to fine-tuning the GPT-3 models. This removed the need 

for complex setup and further contributed to the accessibility and usability of these models. 

 

Table 2. Training times and costs of models on the full training sets. 

Model Time (h) Costs ($) 

GPT-3 Ada Activity 01:05:04 $0.39 

GPT-3 Babbage Activity 01:09:38 $0.59 

GPT-3 Curie Activity 01:15:05 $2.93 

GPT-3 Ada Hemolysis 00:55:37 $0.09 

GPT-3 Babbage Hemolysis  00:57:19 $0.13 

GPT-3 Curie Hemolysis 01:08:09 $0.67 

 

Antimicrobial activity classification 

Our initial objective was to assess the performance of fine-tuned GPT-3 models to correctly predict 

antimicrobial activity of peptide sequences. In our previous work, we identified the RNN model to 

outperform the other models, achieving a ROC AUC of 0.84 and an accuracy of 0.76. Upon 

evaluating the fine-tuned GPT-3 models, we observed that all three tested models demonstrated 

comparable or even improved performance compared to the RNN. Among all tested models, Curie 

performed the best, achieving a ROC AUC of 0.86 and an accuracy of 0.79.  It is also worth noting 

that the performances of all GPT-3 models were consistently similar between each other and that 

the Ada and Babbage models both performed better than the RNN as well (detailed performance 

metrics in Table 3).  
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As expected, there was a noticeable decrease in performance when we decreased the size of 

the training set. This decrease in performance can be attributed to the fact that machine learning 

models rely on large amounts of data to achieve optimal performance. Thus, it is expected that 

decreasing the training set size would have a negative impact on the model's performance. We 

found that all fine-tuned models performed poorly in the lowest data regime (training size: 140), 

indicating that the models struggled to generalize and make accurate predictions with such limited 

data. However, as the training set size was increased to the middle range (training size: 1400), the 

performance improved to an acceptable level. 

Table 3. Performance metrics of all models tested on antimicrobial activity classification. The best value for each 

metric is highlighted in bold.  

Model ROC AUC Accuracy Precision Recall F1 

NB 0.55 0.55 0.59 0.32 0.42 

SVM 0.75 0.68 0.68 0.68 0.68 

RF 0.81 0.71 0.7 0.75 0.73 

RNN 0.84 0.76 0.74 0.8 0.77 

RNN scrambled 0.51 0.49 0.35 0.03 0.05 

GPT-3 Ada 0.84 0.78 0.78 0.78 0.78 

GPT-3 Babbage 0.85 0.79 0.79 0.78 0.79 

GPT-3 Curie 0.86 0.79 0.78 0.81 0.79 

GPT-3 Ada 20% 0.75 0.69 0.7 0.67 0.68 

GPT-3 Babbage 20% 0.76 0.69 0.7 0.69 0.68 

GPT-3 Curie 20% 0.76 0.7 0.71 0.71 0.71 

GPT-3 Ada 2% 0.66 0.6 0.6 0.63 0.61 

GPT-3 Babbage 2% 0.66 0.62 0.6 0.73 0.66 

GPT-3 Curie 2% 0.65 0.6 0.6 0.63 0.61 

 

Hemolytic activity classification 

The results we obtained for the classification of hemolytic activity were comparable to those 

obtained for antimicrobial activity classification. In our previous work the RNN model achieved the 

best performance, with a ROC AUC score of 0.87 and an accuracy of 0.76. As for the antimicrobial 

activity classification, we could observe that all three fine-tuned models performed better than the 
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RNN, with Curie being the best performing model with a ROC AUC score of 0.89 and an accuracy 

of 0.84. The performances of the three GPT-3 models were again consistently similar to each other, 

with Ada even performing slightly better than Curie on the ROC AUC score (detailed performance 

metrics in Table 4).  

Generally, all GPT-3 models and the RNN performed better in hemolysis classification than 

antimicrobial activity classification, despite the dataset being approximately five times smaller. In 

accordance with our previous findings, reducing the training set size led to a decrease in 

performance for hemolytic activity classification as well. However, it is noteworthy that the 

performance in the lower data regime (training size: 170) was better for hemolytic activity 

compared to antimicrobial activity in the same data regime. This suggests that the models may have 

exhibited a certain level of generalization capability in the context of hemolytic activity prediction, 

even with limited data availability. 

Table 4. Performance metrics of all models tested on antimicrobial activity classification. The best value for each 

metric is highlighted in bold. 

Model ROC AUC Accuracy Precision Recall F1 

NB 0.58 0.56 0.48 0.76 0.59 

SVM 0.69 0.73 0.72 0.58 0.65 

RF 0.8 0.77 0.81 0.6 0.69 

RNN 0.87 0.76 0.7 0.76 0.73 

RNN scrambled 0.45 0.61 0.41 0.05 0.1 

GPT-3 Ada 0.9 0.82 0.8 0.79 0.79 

GPT-3 Babbage 0.87 0.8 0.76 0.76 0.76 

GPT-3 Curie 0.89 0.84 0.82 0.79 0.8 

GPT-3 Ada 10% 0.72 0.68 0.63 0.58 0.6 

GPT-3 Babbage 10% 0.72 0.7 0.65 0.6 0.62 

GPT-3 Curie 10% 0.73 0.68 0.63 0.59 0.61 

 

  



9 

 

Conclusion 

In general, when comparing the performance of fine-tuned “out-of-the-box” GPT-3 models with 

specialized models, we observed that the GPT-3 models perform equally, if not better, than the 

specialized models. This finding is especially interesting, given that the GPT-3 models are not 

designed explicitly for the prediction of antimicrobial and hemolytic activity.  

Furthermore, the training of GPT-3 models through fine-tuning is a relatively easy and fast 

process. Accessing the API directly eliminates the need for expensive GPUs to run the models. In 

our study, duration of the fine-tuning process was short, and the associated costs were low. This 

further highlights a significant advantage of GPT-3 models compared to other models, which 

typically require more work and optimization efforts. Overall, the good performance and ease of 

fine-tuning, along with the cost-effectiveness and accessibility of GPT-3 models, make them a 

promising option for various applications, including those in the field of drug discovery. 
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