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ABSTRACT: Carboxylic acid derivatives are appealing alternatives to organohalides as cross-coupling electrophiles for fine 
chemical synthesis due to their prevalence in biomass and bioactive small molecules as well as their ease of preparation and 
handling. Within this family, carboxamides comprise a versatile electrophile class for nickel-catalyzed coupling with carbon 
and heteroatom nucleophiles. However, even state-of-the-art C(acyl)–N functionalization and cross-coupling reactions 
typically require high catalyst loadings and specific substitution patterns. These challenges have proven difficult to overcome, 
in large part due to limited experimental mechanistic insight. In this work, we describe a detailed mechanistic case study of 
acylative coupling reactions catalyzed by the commonly employed Ni/SIPr catalyst system (SIPr = 1,3-Bis(2,6-di-
isopropylphenyl)-4,5-dihydroimidazol-2-ylidine). Stoichiometric organometallic studies, in situ spectroscopic 
measurements, and crossover experiments demonstrate accessibility of Ni(0), Ni(I), and Ni(II) resting states. Although in situ 
precatalyst activation limits reaction efficiency, the low concentrations of active, SIPr-supported Ni(0) select for electrophile-
first (closed-shell) over competing nucleophile-first (open-shell) mechanistic manifolds. We anticipate that the experimental 
insights into the nature and controlling features of these distinct pathways are likely to accelerate rational improvements to 
cross-coupling methodologies involving pervasive carboxamide substrate motifs. 

Over the past decade, tremendous progress has been 
reported in the use of carboxylic acid derivatives, such as 
carboxamides, as substrates for catalytic cross coupling.1-3 
Carboxamides are attractive alternatives to traditional 
organohalide electrophiles due to their relative abundance 
in biomass and drug-like molecules, ease of synthesis, and 
avoidance of halogenated waste streams.4-8 Typically, 
carboxamide C(acyl)–N functionalization methods rely on 
Ni catalysis due to the enhanced electropositivity of Ni 
(which facilitates activation of more polar C–O and C–N 
bonds) compared to conventional Pd cross-coupling 
catalysts (which favor reactions with more covalent C–
halogen bonds).9, 10 However, Ni readily undergoes both 1e– 
and 2e– processes, complicating method development and 
study. 9, 10 11 

In contrast to conventional Pd-catalyzed cross-
coupling reactions,12-16 the sequence of steps, identities of 
catalytically active species, and selectivity-determining 
factors remain ambiguous for Ni-catalyzed coupling 
reactions with carboxamide electrophiles. Studies of 
Ni/bisphosphine catalyst systems have begun to shed light 
on related coupling reactions with carboxylate ester and 
acyl fluoride electrophiles.17-19 However, complementary 
Ni/ N-heterocyclic carbene (NHC) catalyst systems remain 
comparatively understudied. 20-28 This deficiency is 
noteworthy given the broad variety of acylative coupling 
reactions that rely on Ni/NHC precatalysts.22, 29-42 
Experimental characterization of catalytically relevant 

species and steps is thus essential to enable future rational 
improvements.  

Herein, we report the systematic examination of 
C(acyl)–N functionalization reactions of carboxamide 
electrophiles catalyzed by the commonly employed 
combination of Ni and SIPr (SIPr = 1,3-bis(2,6-di-i-
propylphenyl)-4,5-dihydroimidazol-2-ylidine). We provide 
evidence for the accessibility and chemical competence of 
Ni(0), Ni(I), and Ni(II) resting states in such reactions, 
where the nucleophile identity and concentrations of C–N 
activated complexes play key roles in gating access to 
distinct, off-cycle Ni(I) species. These findings shed light on 
the baseis for catalyst inefficiencies and limited substrate 
compatibility, thereby providing the insights needed for 
rational development of next-generation methodologies 
with carboxamides and other carboxylic acid-derived 
electrophiles. 

 



 

Scheme 1. Model reactions selected for evaluation of competing mechanistic hypotheses. a   

  

a Ar = aryl; cod = 1,5-cyclooctadiene; [LG] = leaving group; [Nu] = nucleophile 

To probe the pathways involved in Ni-catalyzed 
C(acyl)–N functionalization, we elected to examine the 
landmark catalytic esterification and transamidation 
methodologies reported by Garg and coworkers in 2015 
and 2016 (Scheme 1A).22, 29 These catalytic methods achieve 
carbonyl-retentive C–heteroatom bond-formation between 
alcohol or amine nucleophiles and N-functionalized 
benzamide electrophiles, which are commonly described as 
twisted amides.43-45 Although these methods are formally 
the equivalent of traditional acyl substitution chemistry, 
they proceed under comparatively mild conditions (room 
temperature to 80 °C) in the absence of strong Lewis or 
Brønsted acids. Although many cross-coupling reactions 
with C(acyl)–N electrophiles require highly twisted amide 
substrates, which exhibit enhanced electrophilicity due to 
disrupted n(N) → π*(CO) conjugation, 43, 46-49 the 
heteroatom coupling methods under study notably require 
only moderately activated substrates.  

At the outset of our investigation, we identified two 
general mechanistic manifolds that could account for the 
observed, carbonyl-retentive coupling. In a “nucleophile-
first” manifold (Scheme 1B), initial formation of a Ni(I) 
nucleophile adduct would be followed by (i) migratory 
insertion with the twisted amide electrophile, (ii) β-
elimination, and (iii) exchange of the leaving group for 
nucleophile to turn over the catalytic cycle. A variation of 
the “nucleophile-first” manifold could alternatively involve 
(i′) oxidative addition and (ii′) reductive elimination 
through a Ni (I/III) cycle intercepting many of the same 
intermediates as the redox-neutral case above. 

In an alternative “electrophile-first” manifold (Scheme 
1C) (i) initial C–N oxidative addition by Ni(0) would be 
followed by (ii) ligand exchange and (iii) carbon–
nucleophile bond-forming reductive elimination. Despite 

the surprising preference for carbonyl-retentive reactivity 
(in contrast to the decarbonylative reactivity often noted 
with Ni(II) acyl complexes),17-19 the electrophile-first 
manifold is generally invoked, with computational studies 
supporting its energetic feasibility.21, 22 However, no 
conclusive experimental validation has been disclosed, and 
to the best of our knowledge, no head-to-head comparison 
with alternative mechanistic hypotheses (such as the 
nucleophile-first case) has been conducted. Notably, 
kinetics alone cannot distinguish between the two 
manifolds, which may feature rate laws with analogous 
forms depending on the rate-determining step.27 
Differentiating these pathways instead requires direct 
identification of catalytically active intermediates. 

In light of these mechanistic ambiguities, we first set 
out to identify the composition/speciation and resting 
state(s) of nickel under catalytically relevant conditions. In 
analogy to in situ activation protocols, equimolar [Ni(cod)2] 
and SIPr were mixed in benzene-d6 (0.1 M) at room 
temperature (approx. 22 °C) and monitored by 1H NMR 
spectroscopy (Scheme 2A). Generation of [(SIPr)Ni(C6D6)] 
(6) was noted, but even after mixing for several hours, 
substantial [Ni(cod)2] and SIPr remained in solution 
([SIPr]:6 = [Ni(cod)2]:[cod]/2 = 2:1). Although [Ni(SIPr)2] 
has previously been suggested as the primary catalyst 
resting state,22 it was not detected when employing a 1:1 
ratio of [Ni] and ligand. Under catalytic conditions (10 
mol% [Ni(cod)2]; 10 mol% SIPr) in the presence of amide 
1a and methanol (2), the low concentrations of 6 generated 
in situ were depleted but substantial [Ni(cod)2] and SIPr 
remained even after several hours, comprising an off-cycle 
catalyst resting state (Scheme 2B). In control experiments, 
neither [Ni(cod)]2 nor SIPr alone catalyzed the acylative 
couplings under investigation. As such, these findings are 



 

consistent with inefficient formation of 6 or another active 
catalyst necessitating the relatively high loadings (≥10 
mol%) typically required for these transformations.  

To better assess the identities and catalytic 
competencies of the nickel-containing species generated in 
situ, we deemed it essential to work directly with single-
component precatalysts. Following modification of 
conditions reported previously, the combination of 
[Ni(cod)2], SIPr•HCl, and KOtBu in benzene under H2 
pressure (~1 atm, to effect the hydrogenation of 1,5-
cyclooctadiene) afforded direct access to 6 (Scheme 2A).50 

Scheme 2. In Situ Precatalyst Activation is Inefficient.a 

 

a dipp = 2,6-diisopropylphenyl; cod = 1,5-cyclooctadiene 

Hartwig and coworkers demonstrated previously that 
treating 6 with phenol resulted in the formation of nickel(I) 
phenoxide dimer [(SIPr)Ni(OPh)]2 (7a) via sequential 
oxidative addition comproportionation (Scheme 3A).51-53 
Although phenols are poor substrates for the nickel-
catalyzed esterification, presumably due to the low 
thermodynamic driving force for formation of the 
corresponding phenyl esters, we postulated that 7a could 
act as a shunt into the nucleophile-first mechanistic 
manifold through ligand exchange to access on-cycle Ni(I) 
nucleophile adducts. Consistent with this hypothesis, using 
7a (5 mol% dimer, 10 mol% [Ni]) in place of SIPr/[Ni(cod)2] 
under otherwise standard conditions resulted in formation 
of ester 4 (9% yield), albeit with reduced conversion 
relative to standard conditions (Scheme 3B). 

We thus sought to determine whether the alcohol and 
amine nucleophiles applied for the model reactions could, 
in analogy to phenol, promote access to nickel(I).54, 55 Mixing 
6 with 2 or 3 (2.0 equiv) in benzene-d6 at room temperature 
up to 80 °C afforded negligible reactivity with no new 
species detected by 1H NMR until eventual decomposition 
of [(SIPr)Ni(C6D6)] (Scheme 3A).5657 Taken together, these 
results suggest that oxidative addition into the stronger, 
less acidic O–H/N–H bonds of unactivated alcohols or 
amines is negligible in catalytically relevant arene solvents. 
However, these findings did not rule out the possibility of 
accessing Ni(I) species from alternative Ni(II) sources 
generated in situ (see below). 

Scheme 3. Access to and Viability of Catalytically 
Relevant Nickel(I) Complexes.  

 

We next assessed the reactivity of single-component 
Ni(0) precatalyst 6 toward representative twisted amide 
substrates across a range of amidicities (Scheme 4A).44, 48, 58 
Amides 1b–d underwent clean conversion to the 
corresponding SIPr-supported Ni(II) acyl products, which 
were isolated in 43–81% yield and characterized by SC-XRD 
(Figure 1), confirming their composition and connectivity. 
Although no oxidative addition products were detected 
with substrates lacking a carbamate directing group (e.g. 
1a), a crossover experiment between 1a and fluorine-
tagged substrate 1e provided support for their kinetic 
accessibility (Scheme 4B).59-61  
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Figure 1. Solid-state structures of (A.) 8b (B.) 8c, and (C.) 8d determined by SC-XRD. Thermal ellipsoids depicted at 50% probability. H-atoms and 
co-crystallized solvent molecules omitted for clarity. C = charcoal, N = blue, O = red, Ni = teal 

 

The solid-state structures for 8b–d determined by SC-
XRD (Figure 1) exhibited chelation by the carbamate 
directing group in either a κ2-N,O or κ2-O,O arrangement, 
resulting in distorted square planar coordination 
geometries (8b: τ4 = 0.17; 8c: τ4 = 0.19; 8d: τ4 = 0.10).62 In 
both complexes 8b and 8c, the NHC was found mutually cis 
to the benzoyl group, cis to the carbamate O, and trans to N 
in an arrangement minimizing steric interference with the 
bulking ligand wingtip substituents. While the geometric 
parameters for 8b and 8c were near-identical, complex 8d, 
demonstrated a 6-membered chelate with the two 
carbamate directing groups. Although such chelates have 
been described for phosphine-based catalyst systems,63 
computational studies of NHC-based catalyst systems have 
instead invoked 3-centered oxidative addition with 
disagreement over the role of directing-group assistance or 
chelation post-oxidative addition.21,28 

We next evaluated the chemical and catalytic 
competencies of these well-defined Ni(II) acyl complexes 
for the acylative coupling model reactions. Even at room 
temperature, complexes 8b and 8c react with excess 
nucleophile in benzene-d6 to yield acyl coupling products 4 
(37% yield from 8b) and 5 (30% yield from 8b) within 24 
hours. Reformation of 6 was observed, but no other 
organometallic intermediates were detected under these 
conditions. Using 8c (10 mol%) in place of [Ni(cod)2]/SIPr 
under otherwise standard conditions similarly resulted in 
clean formation of product 4 (90% yield). 

Scheme 4. Kinetic Accessibility and Catalytic Relevance 
of C(acyl)–N Oxidative Addition   

 

a Up to 80 °C. b Isolated yields validated by integration of 
diagnostic 1H NMR resonances relative to 1,3,5-
trimethoxybenzene as an internal standard. Winkler–Dunitz 
Distortion twist angles (τ) from Ref 44–46. c Relative 
integration of diagnostic signals detected by analytical gas 
chromatography.  

The chemical and catalytic competence of the Ni(II) 
acyl species supports the viability of the electrophile-first 
mechanistic manifold. However, an alternative providing 
access to Ni(I) and the nucleophile-first mechanistic 
manifold could not be excluded. In this case, reversible 
reductive elimination from the Ni(II) acyl species would 
enable Ni(0)–Ni(II) comproportionation. To evaluate the 
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feasibility of this latter possibility, we examined the 
reactivity between 6 and Ni(II) acyl complex 8c in C6H6 at 
80 °C (Scheme 5). The 1H NMR spectrum obtained after 5 
hours revealed complete consumption of both Ni complexes 
and the formation of at least two new species, including 
major components with paramagnetically-shifted 
resonances. Further characterization of the resulting 
species by X-band electron paramagnetic resonance (EPR) 
spectroscopy in THF glass at 10 K afforded two sets of 
rhombic signals (simulated as gA = [2.92, 2.38, 2.01], gB = 
[2.54, 2.37, 2.01]). However, deploying this mixture of 
species as the precatalyst under otherwise standard 
conditions promoted reactivity with inverted 
chemoselectivity. Instead of ester 4, products 9 and 10 
resulting from attack of the carbamoyl activating group 
were formed. In light of these findings, we hypothesize that 
the inefficient in situ precatalyst activation limits the 
concentrations of SIPr-supported Ni(0) and Ni(II), thereby 
inhibiting counterproductive Ni(I) generation. 

Scheme 5. Evidence for Comproportionation of Amide 
Oxidative Addition Products.  

 

Taken together, these stoichiometric organometallic 
studies, in situ spectroscopic measurements, and crossover 
experiments provide evidence for the accessibility of Ni(0), 
Ni(II), and Ni(I) complexes under catalytically relevant 
conditions. Our work provides the first unambiguous 
experimental validation of the presumptive electrophile-
first mechanistic manifold but also supports the viability of 
a competing nucleophile-first mechanistic manifolds that 
induce counterproductive chemoselectivity. We anticipate 
that these findings will provide a nuanced understanding of 
coupling reactions to enable new and more efficient 
coupling reactions involving abundant acyl electrophiles. 
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