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Abstract 

Materials informatics and cheminformatics struggle with data scarcity, hindering the extraction of significant 

relationships between structures and properties. The "Ugly Duckling" theorem, suggesting the difficulty of data processing 

without assumptions or prior knowledge, exacerbates this problem. Current methodologies don't entirely bypass this 

theorem and may lead to decreased accuracy with unfamiliar data. We propose using Open AI Generative Pretrained 

Transformer 4 (GPT-4) language model for explanatory variable selection, leveraging its extensive knowledge and logical 

reasoning capabilities to embed domain knowledge in tasks predicting structure-property correlations, such as the refractive 

index of polymers. This can partially overcome challenges posed by the "Ugly Duckling" theorem and limited data 

availability.  
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Introduction 

Materials informatics and cheminformatics are scientific disciplines aiming to process and derive 

meaningful chemical and physical insights from correlations between the structures and properties of 

compounds and materials.1-5 One key feature of these approaches is their capacity to rapidly extract 

statistically significant relationships from constructed databases using data science techniques. 6 These 

methodologies have achieved success in fields such as drug discovery and inorganic material 

exploration.4, 5, 7 They enable the efficient extraction of molecules with significant pharmacological 

activity from a vast pool of candidate substances.2, 5, 6 Moreover, in materials science, analyses of large 

databases have led to the discovery of new luminescent molecules,8 ion conductors,9, 10 heat 

conductors,11 and novel alloys.12 

However, the application of materials informatics in experimental projects faces an apparent problem 

of data insufficiency. Unlike in the field of biology, where large, standardized databases are available,13, 

14 such databases are not necessarily present in materials science.15 This discrepancy can be attributed 

to a variety of factors.15 First, the desired material properties span a wide range. Secondly, a unified 

format for uniquely describing material structures is lacking. Lastly, a standard platform for sharing this 

data does not always exist. As a result, the number of entries in these databases often remains in the 

tens.15-20 

A well-known theorem in statistics further illustrates the predicament, the "Ugly Duckling" theorem, 

which suggests that informatics with small-scale data is exceptionally challenging.21, 22 This theorem 

posits that tasks like pattern recognition, classification, and regression are impossible without certain 

assumptions or prior knowledge. For instance, in the tale of the "Ugly Duckling," the judgment that the 

black duckling is ugly arises from prior exposure to a large dataset - namely, the common knowledge 

that typical ducklings are yellow. A person, or an AI, who has only seen two or three ducklings would 

not be able to judge that the black duckling is ugly. 

The "Ugly Duckling" theorem potentially poses a critical problem in materials informatics and 

cheminformatics.15 Identifying significant relationships between material structures and properties can 

become extremely challenging without a large and diverse dataset for these fields. Therefore, the 

development of standardized, comprehensive databases for materials science is a pressing issue that 

requires collective action and coordinated effort from the global scientific community.15 

In cheminformatics, the discussion often revolves around the correlation between molecular structure 

and property. For example, consider the three organic molecules illustrated in Fig. 1a: toluene, 

cyclohexane, and trimethylamine. It is experimentally known that the boiling point of trimethylamine 

is lower than that of the other two molecules. Readers with a background in chemistry may intuitively 

conclude that the lower boiling point of trimethylamine is due to its smaller molecular weight. 

However, for readers without a background in chemistry or AI algorithms, identifying the factors that 

determine boiling points from merely three data points would be challenging. One could posit that the 



methyl groups in trimethylamine contribute to its lower boiling point, or perhaps that the presence of 

the nitrogen atom is responsible. This predicament shares the same logical structure as the dilemma 

introduced by the "Ugly Duckling" theorem. 

Discussing the issue more quantitatively, the dilemma arises from an imbalance between the 

dimensions of the explanatory variables and the number of data points available for learning. Over years 

of cheminformatics research, numerous methods have been proposed to describe the characteristics of 

molecular structures numerically.23, 24 Typical molecular descriptors have dimensions in the hundreds, 

and fingerprints can possess bits in the thousands.23, 24 Recent advancements in deep learning for 

molecular recognition often involve latent vectors of several hundred dimensions.7, 25, 26 Consequently, 

a vector of several hundred dimensions is generally required to characterize a molecular structure. 

While there is no general rule determining the minimum ratio between the dimensions of explanatory 

variables and the number of learning data points, one benchmark suggests that a ratio of over 10:1 is a 

good starting point.27 Therefore, having at least a few thousand data points is desirable as a general 

guideline for progressing molecular informatics. Unfortunately, most experimental informatics projects 

fail to meet this requirement, illustrating a critical challenge in the field.15 

 

Fig. 1 a) Relationships between chemical structures and their boiling points. b) Steps to extract 

explanatory variables via domain knowledge and data itself. c) Workflow to conduct prediction tasks 

via supervised learning.  

Several data science methodologies, such as sparse modeling techniques like Lasso and Ridge,28 

feature engineerings techniques like Boruta,29 and information criterion (e.g., Akaike criterion),30 have 

been reported to fit well with databases. These methodologies remove parameters with low relevance 

to the target variable based on certain statistical rules. Such data science tools are compatible with 

experimental informatics that struggle with small-scale data, producing notable results.10, 16, 20 However, 

these techniques do not essentially transcend the "Ugly Duckling" theorem, often resulting in decreased 

accuracy with untrained data.15 



These problems arise from data-oriented feature selection methods, overfitting to the training data, 

or mismatches between the mathematical algorithms used for dimensionality reduction and the behavior 

of the target material system. According to the "Ugly Duckling" theorem, the only way to successfully 

apply machine learning to small-scale data sets is to provide some assumptions or prior knowledge of 

the regression system. This corresponds to the task of pre-extracting parameters correlated with the 

predicted properties, based on the domain knowledge of the user of the prediction model — in this case, 

knowledge of chemistry or materials science.15 

Alternatively, recent deep learning approaches have gained attention, such as transfer learning 

methods that deploy deep learning models trained on specific structure-property correlations to other 

material systems.9, 11 The deep learning model to be transferred here is an encoder that automatically 

converts molecular structures into numerical spaces. Thus, specifying a particular trained model for 

transfer is essentially the same as humans choosing explanatory variables generated by cheminformatics 

techniques. 

These knowledge-oriented variable selection approaches are at the heart of data science (Fig. 1b). 

However, there has been no effective methodology because variable selection requires a deep 

understanding of both experimental and data science.15 This task has been performed by personnel based 

on their unique intuition and know-how15 However, these individuals may not have perfect experimental 

and data science knowledge, and objectively verifying this process in the scientific community has been 

difficult. 

To address these problems, we propose using the large language model GPT-4,31 to choose 

explanatory variables. GPT-4 is a model that possesses vast knowledge, including science, and is 

capable of logical reasoning. As of the writing of this paper, only two months have passed since its 

public release, and revolutionary results are being reported one after another by GPT-4 and a large 

language model (LLM). Examples include the selection of machine learning algorithms,32 predicting 

structure-property correlations,33 in-context learning,34 and controlling robotic arms.35 Our approach 

utilizes the scientific knowledge that GPT-4 possesses for the purpose of embedding domain knowledge 

in tasks predicting structure-property correlations. 

Experimental section 

The code related to this study is made available on GitHub 

(https://github.com/KanHatakeyama/RefractiveIndexGPT).  

Dataset preparation 

Dataset preparation: We utilized the polymer database available on CROW 

(https://polymerdatabase.com/), from which we collected data of 44 conventional polymers. The 

molecular structures of these polymers are shown in Fig. S1. The number 44 represents a value 



frequently observed in experimental informatics with a small amount of data. In this study, the unit 

structure of the polymers was recognized in SMILES format, from which the task of predicting the 

refractive index was set. The molecular weight and higher-order structures of the polymers were not 

considered. 

Descriptor calculation 

 Several molecular descriptors were calculated as explanatory variables that can determine the 

refractive index (Table S 1).  

1) Basic molecular descriptors (rdkit_**): We calculated descriptors outputted by the RDKit module  

(ver. 2022.9.5). 

2) Values calculated by DFT (DFT_**): After optimizing the structure using the semi-empirical PM7 

level method in Gaussian16, we calculated energy, dipole moment in each axis direction (dipole_), total 

dipole moment (dipole_Tot), HOMO, LUMO, and molecular polarization at 656 nm with the same 

method. Calculations were conducted in vacuo. 

3) Property values predicted by the group contribution method (JR_**): We calculated predicted values 

such as boiling point using a reported package (JRgui: A Python Program of Joback and Reid Method).36 

4) Molecular volume estimated by the approximate DFT-MD method (DFTMD_vol): Using a module 

of the AI molecular simulator Matlantis (v. 3.0.0),37 we estimated the volume occupied by a single 

molecule. This method packs 20 low molecules into a cell and estimates molecular volume by 

optimizing the structure (Fig. S2). Although systematic errors accompanied by low molecular 

approximation were present, the correlation coefficient with the actual measured volume was 0.993, 

making it a useful value as an explanatory variable. 

Regression scheme 

A regression task was set with the above parameters as explanatory variables and the actual measured 

refractive index as the target variable (Fig. 1c). The database was evaluated with 5-fold cross-validation, 

and mean absolute error (MAE) and root mean squared error (RMSE) were calculated against the 

validation dataset. As regression models, we selected general algorithms such as Ridge, Lasso, Support 

Vector Machines (SVM), Gaussian Process Regression (GPR, RBF + white kernel), Random Forest 

Regression (RFR), and Gradient Boosting Regression (GBR). All were driven on the scikit-learn (1.2.2) 

module.38 Ridge and Lasso used the RidgeCV and LassoCV classes to optimize the regularization term 

automatically. Other models, less influenced by hyperparameters, were operated with default settings. 

During regression, all parameters were standardized using the StandardScaler class of scikit-learn. 

Parameter selection as a baseline 

The variables used for regression were pre-selected by the following methods as baselines. 



All: This is the case where all variables are used (Table S 1). 

Random-10: This is the case where 10 randomly selected variables are used (Table S 2). 

Random-20: This is the case where 20 randomly selected variables are used (Table S 2). 

Boruta: Statistically significant parameters between the explanatory variables and target parameters in 

each training dataset were selected by the Boruta algorithm with default hyperparameters (v0.3). A 

Random Forest was chosen as the regressor. In Fig. 3, the descriptor set of Boruta is given as the selected 

parameters for the train data during first cross-validation step. In the case of Lasso, an entire dataset 

was introduced to discuss typical descriptors. 

  



Parameter selection by GPT-4 

We selected explanatory variables by asking ChatGPT (May 12 Version, GPT-4) for preferred 

parameters (Fig. 2, see Supplementary Information for the full chat log).39 The question task consists of 

three parts: 

1) Instruct GPT-4 to consider the theoretical formula that determines the refractive index of the 

molecule. This was to induce reasoning based on physical chemistry. 

2) Ask what explanatory variables should be used for polymers. In doing so, we wrote out all the 

explanatory variables and supplemented the meanings of prefixes such as 'DFT_' and 'rdkit_'. 

3) Command GPT-4 to output the list of selected descriptors. 

 

The ChatGPT answers could change each time the question was asked slightly, mainly due to the 

inclusion of a temperature parameter related to randomness as an internal variable of the LLM. The 

randomness can be controlled only by using the API. In this study, we adopted the first answer that 

came up in the interface on ChatGPT.  

 

Fig. 2 Conversation between the author and GPT-4 to select molecular descriptors. See Supplementary 

Information for the full text. 

  



Results and discussion 

Explanatory parameter extraction by GPT-4 

In this study, we employed ChatGPT, the May 12 version, an LLM with knowledge spanning various 

technical disciplines, including chemistry and programming, as a new approach to molecular descriptor 

selection. In response to the initial question regarding the theoretical formula to determine the refractive 

index, GPT-4 accurately identified the Lorentz-Lorenz equation as a key determinant (Fig. 2). As this 

equation is one of the most common formulas used for predicting the molecular refractive index, 40-44 

this verified GPT -4's capability to provide pertinent insights. 

Subsequently, we asked GPT-4 to highlight factors essential for predicting the refractive index of 

polymers based on the theoretical formula. This yielded 14 molecular descriptors, including boiling 

point, enthalpy of formation, and heavy atom count, as shown in Fig. 3a. 

  



 

 

a) 

 

b)                                                     c) 

Fig. 3 a) Venn’s diagram for the molecular descriptors selected by GPT-4 and Boruta. b) Classification 

of descriptor sets. Parameters selected by GPT-4 are marked yellow. c) Breakdown of groups in each 

descriptor set. 

Three significant points should be inferred from these responses. First, despite our omission in 

explaining explanatory parameters, GPT-4 demonstrated the ability to interpret them correctly. For 

instance, we did not explicitly define the abbreviation "DipoleTot," but GPT-4 replied, "Total dipole 

moment, directly related to polarizability." This shows that GPT-4 correctly deciphered the meaning of 

the abbreviation and made an accurate inference on the substantial influence of the dipole moment on 

polarizability, a critical factor in the Lorentz-Lorenz equation. 

The second advantage of this approach lies in the physical-chemical relevance of the chosen 

parameters. According to the Lorentz-Lorenz equation, molecular density (volume) and polarizability 

are vital in determining the refractive index. These parameters correspond to DFT_alpha656nm and 



DFTMD_vol in our descriptors list. Although DFT_alpha656nm was not selected by GPT-4, the 

DipoleTot, which can serve as a substitute, was chosen. Furthermore, as we expected, DFTMD_vol was 

set. In addition to these two parameters, GPT-4 also selected descriptors like boiling point and enthalpy 

of formation, which could be seen as corrective factors. These parameters strongly correlate with the 

refractive index,40-44 and their selection demonstrates the chemically sound judgment made by GPT-4. 

The third point of significance lies in the interpretability of the chosen parameters. All the selected 

variables possessed straightforward physical-chemical meanings and were accompanied by concise 

explanatory notes from GPT-4. The series of inferential processes carried out by GPT-4 seemed to agree 

with the decision-making of an experienced researcher well-versed in chemistry and informatics.40-44 

This suggests that embedding domain knowledge could be delegated to an LLM. Furthermore, the fact 

that this process of descriptor selection was accomplished in significantly less time than a human (in a 

matter of seconds) is intriguing. A human researcher, requiring ample time for reading and interpreting 

the descriptors, would need tens of minutes or more. This finding hints at the potential for significant 

efficiency gains by integrating LLMs in similar scientific workflows. 

Data-oriented explanatory parameter extraction by Boruta and Lasso 

Boruta algorithm extracts statistically significant explanatory variables through repetitive testing 

procedures. For a given dataset, Boruta identified the following six explanatory variables: EState_VSA7, 

FractionCSP3, GibbsEnergy, HOMO, SMR_VSA10, VSA_EState6 (Fig. 3a). The noticeable 

differences between the variable selection results of GPT-4 and Boruta lay in a) the number of selected 

variables, and b) the nature of the variables themselves. 

GPT-4 proposed 14 parameters as candidate explanatory variables, whereas Boruta only suggested 

six. Given a dataset size of 44, this outcome could be deemed reasonable. However, parameters 

statistically significant in the training dataset do not necessarily remain effective in unfamiliar datasets. 

This assumption holds only when the dataset size is sufficiently large and the quality of training and 

validation (or testing) datasets is comparable. For small-scale data, as in our case, the applicability of 

such a hypothesis is dubious. Another issue with Boruta is the interpretability of the proposed 

explanatory variables. Although the suggested parameters, such as EState_VSA7, SMR_VSA10, and 

VSA_EState6, might help predict the refractive index, they are highly specialized parameters that no 

one outside of cheminformatics experts may fully interpret.  

Lasso Regression, a widespread technique in statistical modeling, has also been utilized to extract a 

series of parameters (Fig. S3). The list of extracted parameters includes the following: BalabanJ, 

CriticalTemp, dipoleX, dipoleY, EState_VSA7, EState_VSA8, fr_Al_COO, fr_COO, fr_COO2, 

fr_NH2, fr_priamide, FractionCSP3, GibbsEnergy, LUMO, qed, SlogP_VSA12, SlogP_VSA8, 

SMR_VSA4, SMR_VSA7, and VSA_EState3. These parameters cover a broad spectrum, ranging from 

conventional descriptors like critical temperature (CriticalTemp) to more specific ones such as the 



functional group counts (e.g., fr_NH2, fr_priamide). Approximately half of these parameters might not 

be immediately familiar to experimental chemists.  

 

Comparison of parameter selection trends 

In order to enhance our understanding of the trends in the parameters extracted by each algorithm, 

we classified each parameter into one of four groups (Fig. 3b). Group 1 encompasses parameters that 

determine refractive index based on the Lorentz-Lorenz equation, specifically, polarizability (𝛼) and 

volume (𝑉). Group 2 consists of physical properties that are relatively familiar to chemists, such as 

boiling points, HOMO, and LUMO energies. Group 3 refers to typical molecular descriptors, such as 

molecular weight and MaxAbsPartialCharge. Group 4 contains geometric descriptors, like counts of 

specific functional groups. 

Each group can be understood as forming a hierarchical structure. Lower-numbered groups (i.e., 

Groups 1 and 2) are seen as dependent variables of higher-numbered groups. Although there are no 

golden rules for selecting parameters for regression, as a rule of thumb, smaller group number  

parameters are more likely to generalize well. For instance, a descriptor counting the number of -NH2 

bonds in a molecule (Group 4) does not generalize well to bonds with similar properties like >NH. If 

one wants to discuss molecular polarity, one should use higher-order parameters such as dipole (Group 

2), which are determined as dependent variables of the various functional groups. Therefore, an 

effective variable selection strategy for small datasets is to choose parameters likely to generalize well 

(i.e., those from smaller group numbers) as the basis, then add lower-order variables as correction terms. 

Interestingly, about 60% of the explanatory variables selected by GPT-4 belonged to Groups 1 and 

2, indicating a justifiable parameter selection from a physical chemistry perspective (Fig. 3c). 

Conversely, the proportions for Boruta and Lasso were approximately 30% and 25%, respectively. In 

other words, from a physical chemistry perspective, these data-oriented methods chose parameters that 

are not necessarily easy to generalize in over 70% of cases, which may have contributed to a decline in 

the aftermentioned performance in cross-validation. Such data-oriented approaches can only deal with 

raw numerical data, without considering the meaning of the given explanatory variables. They fail to 

consider the hierarchical nature of the parameters, an issue directly connected to the "Ugly Duckling" 

theorem. If data-oriented approaches want to account for hierarchical relationships between parameters, 

they must prepare a suitable scale database. However, this is often impractical in experimental 

informatics due to the high data acquisition cost, thus leaving the dilemma unresolved. 

On the other hand, GPT-4, having been trained on a vast amount of scientific data, can make feature 

selections that consider the context of physical chemistry and the hierarchy of the parameters. We can 

call this a knowledge-oriented feature selection. We performed prompts to infer their causal 

relationships to confirm whether GPT-4 truly understands the hierarchical relationships between 

variables (Fig. 4, see Supplementary Information for the actual conversation). The model postulated 

that the refractive index is a function of a molecule's energy, HOMO, LUMO, dipole moment, and 



volume. It also suggested that these parameters are functions of lower-order variables such as the 

number of valence electrons and molecular weight. There were some instances where the model made 

incorrect physical-chemical interpretations, such as boiling point being an independent variable for the 

number of valence electrons. The cause seems to be either that GPT-4's inferential ability is still 

insufficient, that it lacks sufficient chemical knowledge, or possibly both. Regardless, the relationships 

between variables were generally captured correctly. Combining this with data-oriented methods is 

expected to achieve higher regression performance. 

 

Fig. 4 Suggested relationships of parameters by GPT-4. 

 

Regression results 

Fig. 5a illustrates the performance provided by each descriptor set (All, Random-10, 20, Boruta, 

GPT-4) generated by the respective algorithms during a 5-fold cross-validation task (see Table 1 and 

Table S 3 for actual values). Overall, the combination of GPT-4 and Ridge (MAE = 0.0229) offered the 

best regression performance, followed by Lasso (0.0236). RMSE followed a similar trend with MAE, 

indicating that outliers did not affect results significantly. The next best performance was achieved 

under the condition of using all variables with Lasso (0.0272). In GPT -4's descriptor set, only one 

parameter (MaxAbsPartialCharge) had a coefficient reduced to zero by Lasso regression, indicating that 



GPT-4 selected instrumental variables for defining the refractive index from both physical chemistry 

and statistical perspectives (Fig. S3b). These results imply that if a crucial variable selection is 

conducted in advance by applying physical chemistry knowledge, the performance of the regression 

model can be improved. 

In other words, it is demonstrated that tasks traditionally considered unique to human expertise, such 

as embedding domain knowledge, can be delegated to LLMs. To our knowledge, there are scarcely any 

reported material research examples of assigning such high-level abstract intellectual work in data 

science to AI. 

Another implication of these findings is that even algorithms that automatically perform variable 

selection, like sparse modeling, cannot ideally determine parameters solely based on the given dataset. 

This result entirely agrees with the "Ugly Duckling" theorem. Boruta, another critical baseline, provided 

a relatively good predictive performance on average (MAE = ca. 0.03) but failed to reach the maximum 

performance of GPT-4. This reveals the limitations of variable selection procedures that solely rely on 

the given dataset, much like sparse modeling. 

 

 

Fig. 5 Summary of regression results. a) MAE versus descriptor for cross-validation. b) Relationship 

between experimental and predicted refractive index for an example of Ridge regressor with "All" 

descriptor set. c) Boruta set. d) GPT-4 set. Typical validation results are shown for b) to d). 



 

Table 1 Best ten regression conditions for MAE. 

Descriptor Model MAE RMSE 

GPT-4 Ridge 0.0229  0.0310  

GPT-4 Lasso 0.0236  0.0320  

All Lasso 0.0272  0.0334  

Boruta GPR 0.0276  0.0339  

Boruta Ridge 0.0279  0.0345  

All GBR 0.0287  0.0374  

All Ridge 0.0291  0.0373  

Boruta RFR 0.0295  0.0391  

All RFR 0.0297  0.0394  

Boruta GBR 0.0304  0.0384  

 

 

The worst predictive performance occurred when descriptors were randomly selected, likely due to 

the omission of crucial variables affecting the refractive index. The performance of GPR improved with 

the use of Boruta and GPT-4. Since GPR lacks an internal system for variable selection, the model 

probably failed with the 'All' option due to an excess of explanatory variables. SVR generally delivered 

poor predictive performance, possibly due to an overabundance of model degrees of freedom relative 

to the available data for learning. RFR and GBR models, which typically have high predictive 

performance, failed to match the conditions of GPT-4 combined with linear models, even when 

combined with Boruta, for the limited data set in this study. Given the nature of these decision tree-

based algorithms, it is plausible that they struggled to regress flexibly on small datasets. 

To observe actual prediction plots, examples of regression results performed during cross-validation 

using the Ridge model with several descriptor sets are presented in Fig. 5b-d. When all descriptors were 

used, there was a variance in the overall correlation with the actual values. In the case of using Boruta, 

the predictions were biased toward the average value. This could be due to Boruta selecting explanatory 

variables using a nonlinear mechanism, which may not have been appropriate for ridge regression. 

Conversely, GPT-4 reduced variance and bias compared to the previous two methods, supporting the 

efficacy of variable selection based on domain knowledge. 

Conclusions 



In this study, we demonstrated that the preselection of explanatory variables, a task historically 

performed by human scientists through the application of domain knowledge, can be delegated to large 

language models like GPT-4. Large language models can quickly and objectively verify and delegate 

such tasks. For example, we set a task to predict the refractive index from molecular structure using a 

small dataset of approximately 40 polymer records. Instead of providing an actual dataset, we asked 

GPT-4, which 'knows' physical chemistry, to select variables that could influence the refractive index. 

This approach revealed that superior predictive performance could be achieved compared to algorithms 

like Boruta and sparse modeling that perform variable selection based on given only numerical datasets. 

This success indicates the importance of utilizing domain knowledge, especially for small datasets, 

aligning with the "Ugly Duckling Theorem." 

Future work needs to incorporate chemical and material information for more specialized targets. 

Since GPT-4 only has general physical chemistry knowledge, mechanisms for learning through 

retrieving recent literature or fine-tuning are necessary. Building more advanced large language models 

could also automate machine learning tasks by suggesting descriptors to calculate from scratch or 

designing regression models. Alternatively, combining with models like symbolic regression that align 

well with theoretical research could provide interpretability and superior predictive performance. The 

linguistic selection process must also be revealed objectively by scientific approaches. By continuing 

to investigate these specific cases, we aim to uncover the extent to which large language models can 

serve as a potent tool in various chemical and material sciences. 
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Fig. S1 Chemical structures recorded in the polymer database. 

 

Table S 1 List of molecular descriptors employed in this study. 

DFT_energy rdkit_MaxEStateIndex rdkit_Kappa1 rdkit_EState_VSA8 rdkit_fr_N_O rdkit_fr_phos_ester 

DFT_dipoleX rdkit_MinEStateIndex rdkit_Kappa2 rdkit_EState_VSA9 rdkit_fr_Ndealkylation1 rdkit_fr_piperdine 

DFT_dipoleY rdkit_MaxAbsEStateIndex rdkit_Kappa3 rdkit_VSA_EState1 rdkit_fr_Ndealkylation2 rdkit_fr_piperzine 

DFT_dipoleZ rdkit_MinAbsEStateIndex rdkit_LabuteASA rdkit_VSA_EState10 rdkit_fr_Nhpyrrole rdkit_fr_priamide 

DFT_dipoleTot rdkit_qed rdkit_PEOE_VSA1 rdkit_VSA_EState2 rdkit_fr_SH rdkit_fr_prisulfonamd 

DFT_HOMO rdkit_MolWt rdkit_PEOE_VSA10 rdkit_VSA_EState3 rdkit_fr_aldehyde rdkit_fr_pyridine 



DFT_LUMO rdkit_HeavyAtomMolWt rdkit_PEOE_VSA11 rdkit_VSA_EState4 rdkit_fr_alkyl_carbamate rdkit_fr_quatN 

DFT_alpha656nm rdkit_ExactMolWt rdkit_PEOE_VSA12 rdkit_VSA_EState5 rdkit_fr_alkyl_halide rdkit_fr_sulfide 

JR_BoilingPoint rdkit_NumValenceElectrons rdkit_PEOE_VSA13 rdkit_VSA_EState6 rdkit_fr_allylic_oxid rdkit_fr_sulfonamd 

JR_MeltingPoint rdkit_NumRadicalElectrons rdkit_PEOE_VSA14 rdkit_VSA_EState7 rdkit_fr_amide rdkit_fr_sulfone 

JR_CriticalTemp rdkit_MaxPartialCharge rdkit_PEOE_VSA2 rdkit_VSA_EState8 rdkit_fr_amidine rdkit_fr_term_acetylene 

JR_CriticalPress rdkit_MinPartialCharge rdkit_PEOE_VSA3 rdkit_VSA_EState9 rdkit_fr_aniline rdkit_fr_tetrazole 

JR_CriticalVolume rdkit_MaxAbsPartialCharge rdkit_PEOE_VSA4 rdkit_FractionCSP3 rdkit_fr_aryl_methyl rdkit_fr_thiazole 

JR_EnthalpyForm rdkit_MinAbsPartialCharge rdkit_PEOE_VSA5 rdkit_HeavyAtomCount rdkit_fr_azide rdkit_fr_thiocyan 

JR_GibbsEnergy rdkit_FpDensityMorgan1 rdkit_PEOE_VSA6 rdkit_NHOHCount rdkit_fr_azo rdkit_fr_thiophene 

JR_HeatCapacity rdkit_FpDensityMorgan2 rdkit_PEOE_VSA7 rdkit_NOCount rdkit_fr_barbitur rdkit_fr_unbrch_alkane 

JR_EnthalpyVap rdkit_FpDensityMorgan3 rdkit_PEOE_VSA8 rdkit_NumAliphaticCarbocycles rdkit_fr_benzene rdkit_fr_urea 

JR_EnthalpyFus rdkit_BCUT2D_MWHI rdkit_PEOE_VSA9 rdkit_NumAliphaticHeterocycles rdkit_fr_benzodiazepine 

JR_LiquidVisco rdkit_BCUT2D_MWLOW rdkit_SMR_VSA1 rdkit_NumAliphaticRings rdkit_fr_bicyclic 

JR_CrystalSolub_1 rdkit_BCUT2D_CHGHI rdkit_SMR_VSA10 rdkit_NumAromaticCarbocycles rdkit_fr_diazo 

JR_CrystalSolub_2 rdkit_BCUT2D_CHGLO rdkit_SMR_VSA2 rdkit_NumAromaticHeterocycles rdkit_fr_dihydropyridine 

JR_AmorphSolub_1 rdkit_BCUT2D_LOGPHI rdkit_SMR_VSA3 rdkit_NumAromaticRings rdkit_fr_epoxide 

JR_AmorphSolub_2 rdkit_BCUT2D_LOGPLOW rdkit_SMR_VSA4 rdkit_NumHAcceptors rdkit_fr_ester 

DFTMD_vol rdkit_BCUT2D_MRHI rdkit_SMR_VSA5 rdkit_NumHDonors rdkit_fr_ether 

rdkit_vol rdkit_BCUT2D_MRLOW rdkit_SMR_VSA6 rdkit_NumHeteroatoms rdkit_fr_furan 

 rdkit_BalabanJ rdkit_SMR_VSA7 rdkit_NumRotatableBonds rdkit_fr_guanido 

 rdkit_BertzCT rdkit_SMR_VSA8 rdkit_NumSaturatedCarbocycles rdkit_fr_halogen 

 rdkit_Chi0 rdkit_SMR_VSA9 rdkit_NumSaturatedHeterocycles rdkit_fr_hdrzine 

 rdkit_Chi0n rdkit_SlogP_VSA1 rdkit_NumSaturatedRings rdkit_fr_hdrzone 

 rdkit_Chi0v rdkit_SlogP_VSA10 rdkit_RingCount rdkit_fr_imidazole 

 rdkit_Chi1 rdkit_SlogP_VSA11 rdkit_MolLogP rdkit_fr_imide 

 rdkit_Chi1n rdkit_SlogP_VSA12 rdkit_MolMR rdkit_fr_isocyan 

 rdkit_Chi1v rdkit_SlogP_VSA2 rdkit_fr_Al_COO rdkit_fr_isothiocyan 

 rdkit_Chi2n rdkit_SlogP_VSA3 rdkit_fr_Al_OH rdkit_fr_ketone 

 rdkit_Chi2v rdkit_SlogP_VSA4 rdkit_fr_Al_OH_noTert rdkit_fr_ketone_Topliss 

 rdkit_Chi3n rdkit_SlogP_VSA5 rdkit_fr_ArN rdkit_fr_lactam 

 rdkit_Chi3v rdkit_SlogP_VSA6 rdkit_fr_Ar_COO rdkit_fr_lactone 

 rdkit_Chi4n rdkit_SlogP_VSA7 rdkit_fr_Ar_N rdkit_fr_methoxy 

 rdkit_Chi4v rdkit_SlogP_VSA8 rdkit_fr_Ar_NH rdkit_fr_morpholine 

 rdkit_HallKierAlpha rdkit_SlogP_VSA9 rdkit_fr_Ar_OH rdkit_fr_nitrile 

 rdkit_Ipc rdkit_TPSA rdkit_fr_COO rdkit_fr_nitro 

  rdkit_EState_VSA1 rdkit_fr_COO2 rdkit_fr_nitro_arom 

  rdkit_EState_VSA10 rdkit_fr_C_O rdkit_fr_nitro_arom_nonortho 



  rdkit_EState_VSA11 rdkit_fr_C_O_noCOO rdkit_fr_nitroso 

  rdkit_EState_VSA2 rdkit_fr_C_S rdkit_fr_oxazole 

  rdkit_EState_VSA3 rdkit_fr_HOCCN rdkit_fr_oxime 

  rdkit_EState_VSA4 rdkit_fr_Imine rdkit_fr_para_hydroxylation 

  rdkit_EState_VSA5 rdkit_fr_NH0 rdkit_fr_phenol 

  rdkit_EState_VSA6 rdkit_fr_NH1 rdkit_fr_phenol_noOrthoHbond 

  rdkit_EState_VSA7 rdkit_fr_NH2 rdkit_fr_phos_acid 

 

Table S 2 Molecular descriptor sets for Random-10 and 20. 

Random-10 Random-20 

rdkit_fr_urea 

rdkit_EState_VSA6 

rdkit_fr_oxazole 

JR_LiquidVisco 

rdkit_VSA_EState5 

rdkit_MinEStateIndex 

rdkit_PEOE_VSA8 

rdkit_MolLogP 

rdkit_NumHeteroatoms 

rdkit_VSA_EState10 

rdkit_fr_phos_ester 

rdkit_fr_thiazole 

rdkit_SMR_VSA9 

rdkit_NumHAcceptors 

rdkit_EState_VSA1 

rdkit_fr_NH2 

JR_CrystalSolub_1 

DFTMD_vol 

rdkit_PEOE_VSA10 

rdkit_RingCount 

rdkit_BertzCT 

rdkit_SMR_VSA4 

rdkit_fr_nitroso 

rdkit_FpDensityMorgan2 

rdkit_fr_allylic_oxid 

rdkit_fr_prisulfonamd 

rdkit_PEOE_VSA6 

rdkit_fr_Ar_COO 

rdkit_fr_imide 

rdkit_fr_sulfide 

 



 

Fig. S2 Relationship between calculated and experimental molecular volume (angstrom unit). Calculations were 

conducted by Matlantis. Experimental values were derived from actual density and molecular weight. 

 

  



Chat log between the authors and GPT-4. 

(1) Parameter selection 

Question by Author 

Tasks 

1: consider theoretical equation of refractive index of molecules  

2: select essential descriptors from below by yourself 

Especially, I want to predict refractive index of aliphatic and aromatic polymers. 

#Followings are list of descriptors 

DFT_energy,DFT_dipoleX,DFT_dipoleY,DFT_dipoleZ,DFT_dipoleTot,DFT_HOMO,DFT_LUMO,DFT_alp

ha656nm,rdkit_vol,rdkit_MaxEStateIndex,rdkit_MinEStateIndex,rdkit_MaxAbsEStateIndex,rdkit_MinAbsES

tateIndex,rdkit_qed,rdkit_MolWt,rdkit_HeavyAtomMolWt,rdkit_ExactMolWt,rdkit_NumValenceElectrons,r

dkit_NumRadicalElectrons,rdkit_MaxPartialCharge,rdkit_MinPartialCharge,rdkit_MaxAbsPartialCharge,rdki

t_MinAbsPartialCharge,rdkit_FpDensityMorgan1,rdkit_FpDensityMorgan2,rdkit_FpDensityMorgan3,rdkit_B

CUT2D_MWHI,rdkit_BCUT2D_MWLOW,rdkit_BCUT2D_CHGHI,rdkit_BCUT2D_CHGLO,rdkit_BCUT2

D_LOGPHI,rdkit_BCUT2D_LOGPLOW,rdkit_BCUT2D_MRHI,rdkit_BCUT2D_MRLOW,rdkit_BalabanJ,r

dkit_BertzCT,rdkit_Chi0,rdkit_Chi0n,rdkit_Chi0v,rdkit_Chi1,rdkit_Chi1n,rdkit_Chi1v,rdkit_Chi2n,rdkit_Chi

2v,rdkit_Chi3n,rdkit_Chi3v,rdkit_Chi4n,rdkit_Chi4v,rdkit_HallKierAlpha,rdkit_Ipc,rdkit_Kappa1,rdkit_Kap

pa2,rdkit_Kappa3,rdkit_LabuteASA,rdkit_PEOE_VSA1,rdkit_PEOE_VSA10,rdkit_PEOE_VSA11,rdkit_PE

OE_VSA12,rdkit_PEOE_VSA13,rdkit_PEOE_VSA14,rdkit_PEOE_VSA2,rdkit_PEOE_VSA3,rdkit_PEOE_

VSA4,rdkit_PEOE_VSA5,rdkit_PEOE_VSA6,rdkit_PEOE_VSA7,rdkit_PEOE_VSA8,rdkit_PEOE_VSA9,rd

kit_SMR_VSA1,rdkit_SMR_VSA10,rdkit_SMR_VSA2,rdkit_SMR_VSA3,rdkit_SMR_VSA4,rdkit_SMR_V

SA5,rdkit_SMR_VSA6,rdkit_SMR_VSA7,rdkit_SMR_VSA8,rdkit_SMR_VSA9,rdkit_SlogP_VSA1,rdkit_Sl

ogP_VSA10,rdkit_SlogP_VSA11,rdkit_SlogP_VSA12,rdkit_SlogP_VSA2,rdkit_SlogP_VSA3,rdkit_SlogP_

VSA4,rdkit_SlogP_VSA5,rdkit_SlogP_VSA6,rdkit_SlogP_VSA7,rdkit_SlogP_VSA8,rdkit_SlogP_VSA9,rdk

it_TPSA,rdkit_EState_VSA1,rdkit_EState_VSA10,rdkit_EState_VSA11,rdkit_EState_VSA2,rdkit_EState_V

SA3,rdkit_EState_VSA4,rdkit_EState_VSA5,rdkit_EState_VSA6,rdkit_EState_VSA7,rdkit_EState_VSA8,rd

kit_EState_VSA9,rdkit_VSA_EState1,rdkit_VSA_EState10,rdkit_VSA_EState2,rdkit_VSA_EState3,rdkit_V

SA_EState4,rdkit_VSA_EState5,rdkit_VSA_EState6,rdkit_VSA_EState7,rdkit_VSA_EState8,rdkit_VSA_ES

tate9,rdkit_FractionCSP3,rdkit_HeavyAtomCount,rdkit_NHOHCount,rdkit_NOCount,rdkit_NumAliphaticCa

rbocycles,rdkit_NumAliphaticHeterocycles,rdkit_NumAliphaticRings,rdkit_NumAromaticCarbocycles,rdkit_

NumAromaticHeterocycles,rdkit_NumAromaticRings,rdkit_NumHAcceptors,rdkit_NumHDonors,rdkit_Num

Heteroatoms,rdkit_NumRotatableBonds,rdkit_NumSaturatedCarbocycles,rdkit_NumSaturatedHeterocycles,rd

kit_NumSaturatedRings,rdkit_RingCount,rdkit_MolLogP,rdkit_MolMR,rdkit_fr_Al_COO,rdkit_fr_Al_OH,rd

kit_fr_Al_OH_noTert,rdkit_fr_ArN,rdkit_fr_Ar_COO,rdkit_fr_Ar_N,rdkit_fr_Ar_NH,rdkit_fr_Ar_OH,rdkit_



fr_COO,rdkit_fr_COO2,rdkit_fr_C_O,rdkit_fr_C_O_noCOO,rdkit_fr_C_S,rdkit_fr_HOCCN,rdkit_fr_Imine,r

dkit_fr_NH0,rdkit_fr_NH1,rdkit_fr_NH2,rdkit_fr_N_O,rdkit_fr_Ndealkylation1,rdkit_fr_Ndealkylation2,rdki

t_fr_Nhpyrrole,rdkit_fr_SH,rdkit_fr_aldehyde,rdkit_fr_alkyl_carbamate,rdkit_fr_alkyl_halide,rdkit_fr_allylic

_oxid,rdkit_fr_amide,rdkit_fr_amidine,rdkit_fr_aniline,rdkit_fr_aryl_methyl,rdkit_fr_azide,rdkit_fr_azo,rdkit

_fr_barbitur,rdkit_fr_benzene,rdkit_fr_benzodiazepine,rdkit_fr_bicyclic,rdkit_fr_diazo,rdkit_fr_dihydropyridi

ne,rdkit_fr_epoxide,rdkit_fr_ester,rdkit_fr_ether,rdkit_fr_furan,rdkit_fr_guanido,rdkit_fr_halogen,rdkit_fr_hd

rzine,rdkit_fr_hdrzone,rdkit_fr_imidazole,rdkit_fr_imide,rdkit_fr_isocyan,rdkit_fr_isothiocyan,rdkit_fr_keton

e,rdkit_fr_ketone_Topliss,rdkit_fr_lactam,rdkit_fr_lactone,rdkit_fr_methoxy,rdkit_fr_morpholine,rdkit_fr_nit

rile,rdkit_fr_nitro,rdkit_fr_nitro_arom,rdkit_fr_nitro_arom_nonortho,rdkit_fr_nitroso,rdkit_fr_oxazole,rdkit_f

r_oxime,rdkit_fr_para_hydroxylation,rdkit_fr_phenol,rdkit_fr_phenol_noOrthoHbond,rdkit_fr_phos_acid,rdki

t_fr_phos_ester,rdkit_fr_piperdine,rdkit_fr_piperzine,rdkit_fr_priamide,rdkit_fr_prisulfonamd,rdkit_fr_pyridi

ne,rdkit_fr_quatN,rdkit_fr_sulfide,rdkit_fr_sulfonamd,rdkit_fr_sulfone,rdkit_fr_term_acetylene,rdkit_fr_tetra

zole,rdkit_fr_thiazole,rdkit_fr_thiocyan,rdkit_fr_thiophene,rdkit_fr_unbrch_alkane,rdkit_fr_urea,JR_BoilingP

oint,JR_MeltingPoint,JR_CriticalTemp,JR_CriticalPress,JR_CriticalVolume,JR_EnthalpyForm,JR_GibbsEne

rgy,JR_HeatCapacity,JR_EnthalpyVap,JR_EnthalpyFus,JR_LiquidVisco,JR_CrystalSolub_1,JR_CrystalSolu

b_2,JR_AmorphSolub_1,JR_AmorphSolub_2,DFTMD_vol  

 

[explanation] DFT_*: parameters calculated by DFT 

rdkit_: parameters calculated by RDKit 

JR_: parameters estimated by group contribution method 

DFTMD_vol: molecular volume estimated by DFT-MD simulation  

3: output the descriptors as list data. 

 

Answer by GPT-4 

Task 1: 

The refractive index of a material is the ratio of the speed of light in a vacuum to the speed of light in that 

material. In general, the refractive index of molecules can be theoretically described by the Lorentz-Lorenz 

equation (also known as the Clausius-Mossotti relation), which is: 

n^2 - 1 / n^2 + 2 = 4π/3 * N * α 

where: 



• n is the refractive index 

• N is the number density of the molecules (number of molecules per unit volume) 

• α is the polarizability of the molecules 

The polarizability describes the ability of a molecule to form instantaneous dipoles, which is directly linked to 

the electronic structure of the molecules. Therefore, descriptors that reflect the electronic structure, size and 

shape of the molecules should be relevant for predicting the refractive index. 

Task 2 & 3: 

Based on the general principles above, the most relevant descriptors from the provided list for predicting the 

refractive index of aliphatic and aromatic polymers would be: 

1. DFT_energy - Reflects overall energy of the system that could correlate with polarizability. 

2. DFT_HOMO - Energy of the Highest Occupied Molecular Orbital, related to electron distribution. 

3. DFT_LUMO - Energy of the Lowest Unoccupied Molecular Orbital, also related to electron 

distribution. 

4. DFT_dipoleTot - Total dipole moment, directly related to polarizability. 

5. rdkit_MolWt - Molecular weight, which could relate to size of the molecule. 

6. rdkit_NumValenceElectrons - The number of valence electrons, related to the bonding and potential 

polarizability. 

7. rdkit_NumAromaticRings - Reflects presence of aromatic systems which could alter the refractive 

index. 

8. rdkit_NumAliphaticRings - Reflects presence of aliphatic rings which could alter the refractive index. 

9. DFTMD_vol - Molecular volume estimated by DFT-MD simulation, could correlate with size of the 

molecule. 

10. rdkit_HeavyAtomMolWt - Weight of the molecule without hydrogen atoms, could be a measure of 

molecular size. 

11. rdkit_MaxAbsPartialCharge - Could be linked to polarizability. 

12. rdkit_MolLogP - Describes the lipophilicity of the molecule which could correlate with polarizability. 

13. JR_BoilingPoint - Boiling point can reflect intermolecular forces and thus polarizability. 

14. JR_EnthalpyForm - Enthalpy of formation, reflects the stability of the molecule, may correlate with 

polarizability. 

Output list: 

["DFT_energy", "DFT_HOMO", "DFT_LUMO", "DFT_dipoleTot", "rdkit_MolWt", 

"rdkit_NumValenceElectrons", "rdkit_NumAromaticRings", "rdkit_NumAliphaticRings", "DFTMD_vol", 



"rdkit_HeavyAtomMolWt", "rdkit_MaxAbsPartialCharge", "rdkit_MolLogP", "JR_BoilingPoint", 

"JR_EnthalpyForm"] 

Please note, however, that the selection of descriptors would ideally be done based on a more detailed 

understanding of the specific polymers under consideration and the performance of these descriptors in initial 

models. Additionally, a machine learning model could be employed to handle feature selection and 

automatically pick out the most informative descriptors. 

 

(2) Causal relationships 

Question by Author 

Think step by step. Estimate the causal relationship between the following variables and output it in Mermaid 

syntax. 

*** 

Refractive_index 

DFT_energy 

DFT_HOMO 

DFT_LUMO 

DFT_dipoleTot 

rdkit_MolWt 

rdkit_NumValenceElectrons 

rdkit_NumAromaticRings 

rdkit_NumAliphaticRings 

DFTMD_vol 

rdkit_HeavyAtomMolWt 

rdkit_MaxAbsPartialCharge 



rdkit_MolLogP 

JR_BoilingPoint 

JR_EnthalpyForm 

 

Answer by GPT-4 

Mermaid is a simple markdown-like syntax that lets you generate flowcharts, sequence diagrams, and other 

types of diagrams. To write a diagram depicting a causal relationship, we use a flowchart syntax. 

 

However, I should note that in order to map the causal relationships between these variables accurately, I 

would need to have specific knowledge about the relationships themselves. In the absence of this information, 

I'll have to make an assumption for the purposes of demonstration. 

 

Let's assume a hypothetical situation where: 

 

    'Refractive_index' is influenced by 'DFT_energy', 'DFT_HOMO', 'DFT_LUMO', 'DFT_dipoleTot', and 

'DFTMD_vol'. 

    'DFT_energy', 'DFT_HOMO', 'DFT_LUMO', 'DFT_dipoleTot' and 'DFTMD_vol' are influenced by 

'rdkit_MolWt' and 'rdkit_NumValenceElectrons'. 

    'rdkit_MolWt' and 'rdkit_NumValenceElectrons' are influenced by 'rdkit_NumAromaticRings', 

'rdkit_NumAliphaticRings', 'rdkit_HeavyAtomMolWt', 'rdkit_MaxAbsPartialCharge', 'rdkit_MolLogP', 

'JR_BoilingPoint', and 'JR_EnthalpyForm'. 

 

The Mermaid syntax would be something like this: 

graph LR 



    JR_BoilingPoint -->|Influence| rdkit_MolWt 

    JR_BoilingPoint -->|Influence| rdkit_NumValenceElectrons 

    JR_EnthalpyForm -->|Influence| rdkit_MolWt 

    JR_EnthalpyForm -->|Influence| rdkit_NumValenceElectrons 

    rdkit_MolLogP -->|Influence| rdkit_MolWt 

    rdkit_MolLogP -->|Influence| rdkit_NumValenceElectrons 

    rdkit_MaxAbsPartialCharge -->|Influence| rdkit_MolWt 

    rdkit_MaxAbsPartialCharge -->|Influence| rdkit_NumValenceElectrons 

    rdkit_HeavyAtomMolWt -->|Influence| rdkit_MolWt 

    rdkit_HeavyAtomMolWt -->|Influence| rdkit_NumValenceElectrons 

    rdkit_NumAliphaticRings -->|Influence| rdkit_MolWt 

    rdkit_NumAliphaticRings -->|Influence| rdkit_NumValenceElectrons 

    rdkit_NumAromaticRings -->|Influence| rdkit_MolWt 

    rdkit_NumAromaticRings -->|Influence| rdkit_NumValenceElectrons 

    rdkit_MolWt -->|Influence| DFT_energy 

    rdkit_MolWt -->|Influence| DFT_HOMO 

    rdkit_MolWt -->|Influence| DFT_LUMO 

    rdkit_MolWt -->|Influence| DFT_dipoleTot 

    rdkit_MolWt -->|Influence| DFTMD_vol 

    rdkit_NumValenceElectrons -->|Influence| DFT_energy 

    rdkit_NumValenceElectrons -->|Influence| DFT_HOMO 



    rdkit_NumValenceElectrons -->|Influence| DFT_LUMO 

    rdkit_NumValenceElectrons -->|Influence| DFT_dipoleTot 

    rdkit_NumValenceElectrons -->|Influence| DFTMD_vol 

    DFT_energy -->|Influence| Refractive_index 

    DFT_HOMO -->|Influence| Refractive_index 

    DFT_LUMO -->|Influence| Refractive_index 

    DFT_dipoleTot -->|Influence| Refractive_index 

    DFTMD_vol -->|Influence| Refractive_index 

  



 

Table S 3 Full regression results. 

Descriptor Model MAE RMSE 

GPT-4 Ridge 0.0229  0.0310  

GPT-4 Lasso 0.0236  0.0320  

All Lasso 0.0272  0.0334  

Boruta GPR 0.0276  0.0339  

Boruta Ridge 0.0279  0.0345  

All GBR 0.0287  0.0374  

All Ridge 0.0291  0.0373  

Boruta RFR 0.0295  0.0391  

All RFR 0.0297  0.0394  

Boruta GBR 0.0304  0.0384  

GPT-4 GPR 0.0304  0.0372  

GPT-4 RFR 0.0311  0.0403  

Boruta Lasso 0.0314  0.0410  

GPT-4 GBR 0.0328  0.0422  

Random-20 RFR 0.0349  0.0448  

Random-20 GBR 0.0372  0.0453  

Random-10 RFR 0.0383  0.0477  

Random-20 GPR 0.0391  0.0514  

Random-10 GPR 0.0404  0.0512  

Random-10 GBR 0.0407  0.0518  

Random-10 Lasso 0.0430  0.0548  

Random-20 Ridge 0.0460  0.0633  



Random-20 SVR 0.0536  0.0641  

Boruta SVR 0.0546  0.0650  

GPT-4 SVR 0.0553  0.0655  

Random-10 SVR 0.0557  0.0662  

Random-10 Ridge 0.0564  0.0844  

All SVR 0.0567  0.0669  

Random-20 Lasso 0.0572  0.0820  

All GPR 0.0664  0.1310  

 

  



  

a) 

 

b) 

Fig. S3 Venn’s diagram for the descriptor sets. a) All-Lasso and GPT-Lasso. b) GPT and GPT-Lasso. 

GPT: Descriptors selected by GPT-4. 

GPT-Lasso: Descriptors selected by Lasso from the GPT set. 

All-Lasso: Descriptors selected by Lasso from the All set. 

For GPT-Lasso and All-Lasso, all 44 polymers were used for regression. 


