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ABSTRACT 

Accurate determination of reaction rate constants in the combustion circumstance is 

very challenging both experimentally and theoretically. In this work, three supervised 

machine learning algorithms, including XGB, FNN and XGB-FNN, are used to develop 

quantitative structure−property relationship models for the estimation of the rate 

constants of hydrogen abstraction reactions from alkanes by the free radicals CH3, H 

and O. The molecular similarity based on Morgan molecular fingerprints combined 

with the topological indices are proposed to represent chemical reactions in the machine 

learning models. Using the newly constructed descriptors, the performance of each 

algorithm in prediction was found to be comparable and even superior to the 

corresponding one using the activation energy as a descriptor. The use of activation 

energy as a descriptor has previously been shown to significantly improve prediction 

accuracy (Fuel, 2022, 322, 124150) but typically requires cumbersome ab initio 

calculations. The hybrid XGB-FNN algorithm performed better than the other two 

algorithms, which could reasonably predict reaction rate constants of hydrogen 

abstractions from different sites of alkanes and their isomers, indicating a good 

generalization ability. It is expected that the reaction descriptors proposed in this work 

can be applied to build machine leaning models for other reactions.  
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1. INTRODUCTION 

Developing reliable combustion models is one of the main objects in the field of 

combustion chemistry.1-4 By utilizing combustion models, a comprehensive 

understanding of the combustion process can be achieved, leading to improved 

efficiency and better control over pollutant emissions. The reliability of combustion 

model is closely related to the accuracy of kinetic parameters of associated chemical 

reactions, such as rate constants.3, 5, 6 However, it is generally very difficult to yield 

accurate reaction rate constants in the combustion circumstance both experimentally 

and theoretically.  

Recently, machine learning, lying at the core of artificial intelligence and data 

science, has emerged as a promising method to yield highly reliable reaction rate 

constants.7-9 The machine learning methods can be in principle clarified into three 

categories: supervised learning, unsupervised learning and reinforcement learning, in 

which the supervised machine learning is usually applied in predicting chemical 

reaction properties by using different molecular representations as inputs.8, 10 In this 

regard, many pioneering works have been performed to learn activation energies and 

minimum energy paths of chemical reactions.7, 11-18 Meanwhile, some efforts have been 

paid to directly predict rate constants.8 

For gas-phase bimolecular reactions, Houston et al. employed Gaussian Process 

Regression to train thermal rate constants using a dataset of 13 reactions over a large 
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temperature range.19-21 The reactions were described by the three parameters related to 

Eckart tunneling, the skew angle and the symmetric stretch vibrational frequency of the 

reactant. The predicted rate constants averaged over the 39 test reactions were within 

80% of the accurate answer. A deep neural network was employed by Komp et al. to 

train ∼1.5 million quantum reaction rate constants from one-dimensional model 

potentials, with the reactant mass and the structure of barriers as input features.22 The 

predicted logarithm of the rate product had a relative error of 1.1%. In the meanwhile, 

chemical reactions in liquid phase have also attracted much attention. Borhani et al. 

applied multiple-linear regression and artificial neural network methods to model the 

hydroxyl radical rate constants of water contaminants on a dataset of 457 water 

contaminants, using three-dimensional geometries of the molecular structures and 

quantum-chemically calculated descriptors as molecular descriptors.23 The absolute 

relative error of the predicted logarithmic rate constants was less than 4%. Zhong et al. 

combined a convolutional neural network with molecular image to model radical rate 

constants of water contaminants, whose predictive performance was comparable to the 

molecular fingerprint-deep neural network model developed by the same group.9, 24-26 

Greaves et al. predicted rate constants for organic processes in mixtures containing 

ionic liquids by applying multiple linear regression and artificial neural networks with 

descriptors taken mostly from the Dragon descriptor data base.27 To make the 

established machine learning models broadly available, Sanches-Neto et al. developed 

a web application “pySiRC” that predicts reaction rate constants of radical-based 
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oxidation processes of aqueous organic contaminants by combining three machine 

learning algorithms with molecular fingerprints.28, 29  

Alkane (CnH2n+2) is an important component of various fuels, such as natural gas 

(mainly composed of methane), lighter fuel (e.g., n-butane), motor gasoline (consisting 

of various compounds of alkane and aliphatic hydrocarbon) and aviation fuel. In the 

case of aviation fuel, the combustion is largely proceeded by abstracting hydrogen 

atoms from different sites of alkanes by free radicals such as O, H, OH, HO2, CH3 and 

so on.6, 30, 31 Accurate measurement of thermal rate constants of combustion reactions 

is very challenging and even infeasible at high temperatures. Compared to the vast 

number of reactions associated with the combustion process, there are only a few simple 

reactions whose rate constants have been measured. Theoretically, transition state 

theory (TST), Rice-Ramsperger-Kassel-Marcus theory and master equation 

approaches, could provide powerful and useful supplements. However, they may not 

be practical as the number of atoms involved in the reaction increases.3, 32 To address 

this challenge, our group proposed using multilayered neural network models to predict 

rate constants of hydroxyl radical reactions with alkanes, with the reactions initially 

represented by three topological indices for the molecular structure of alkane and the 

index for the broken C-H bond.33 Furthermore, we developed a novel hybrid machine 

learning model by combing feedforward neural network with eXtreme gradient 

boosting (XGB-FNN) to predict rate constants of reactions between alkanes and CH3 

radical.34 The model employed six descriptors, including temperature, activation energy, 
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and four Mordred generated descriptors that were selected through Pearson correlation 

analysis. The average deviation of the XGB-FNN model on the prediction set was about 

40%. All these studies have shown that machine leaning models are capable of 

accurately predicting rate constants of combustion reactions with well-designed 

molecular descriptors.  

The activation energy of a chemical reaction looks like an "ideal" descriptor since 

it is closely related to the reaction rate. Previous work showed that using the activation 

energy as a descriptor can significantly improve the prediction accuracy of machine 

learning models.34 However, there exist several difficulties in practical applications. 

Accurate determination of activation energy by quantum chemistry calculations has 

often been challenging for complex polyatomic reactions. In addition, if there exist 

multiple reaction pathways, it is difficult to choose the calculated activation energy used 

in the models. In this work, we intend to design new molecular descriptors to represent 

hydrogen abstraction reactions in combustion, in the condition that, on one hand, the 

descriptors don’t require extra quantum chemistry calculations, and on the other hand, 

the prediction accuracy of machine learning methods based on the new descriptors 

archives the accuracy with the activation energy as a descriptor. Concretely speaking, 

the rate constants of hydrogen abstraction reactions between alkanes and radicals (CH3, 

H and O) will be independently trained by combining different machine learning 

models with newly designed descriptors and then these models are applied to predict 

rate constants of combustion reactions with the number of involved carbon atoms in 
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alkanes up to 16. It is noteworthy that fuels with a carbon chain length of C8-C16 are 

the main constituent of aviation kerosene.35  

2. METHODOLOGY 

2.1 Data Collection 

The prediction performance of machine learning models depends largely on the 

size and representativeness of the labeled dataset. In this study, the rate constants of 

site-specific H-abstraction reactions of alkanes by the radicals CH3, H and O are 

collected from the National Institute of Standards and Technology (NIST) website 

(https://kinetics.nist.gov/kinetics/). Data cleaning follows the rules that experimental 

records take precedence over theoretical records and the recorded rate constants are 

averaged when there exist multiple experimental or theoretical records.  

To enforce data self-consistency, the reserved rate constants for each reaction are 

fitted into a modified three-parameter Arrhenius equation: 

                    𝑘 = 𝐴𝑇𝑚𝑒𝑥𝑝(−𝐸/𝑅𝑇),                  (1) 

in which A is the pre-exponential factor, T refers to the temperature, m is the additional 

temperature exponent coefficient, E is the exponential temperature coefficient and R is 

the universal gas constant. The fitted Arrhenius equation is then used to regenerate the 

dataset at intervals of 5 K in temperature, which increases the size of the dataset and 

helps models learn about the temperature dependence of rate constants. To prevent 

https://www.nist.gov/).
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over-fitting, the dataset is randomly divided into 90% as the training set and 10% as the 

validation set. The logarithms of rate constants are used in the training. Moreover, the 

reactions with only one or few recorded rate constants are devoted to assess the 

prediction accuracy.  

2.2 Chemical Representation and Feature Selection  

Molecular representation in machine-readable formats has becoming an important 

and active research field in computational chemistry, especially with the reviving of 

machine learning.36, 37 The key to developing machine learning models is the 

designment of chemical representation, since no representation is perfect for every 

scenario. In this work, chemical reactions are represented by two types of descriptors: 

one describing different reactant alkanes and the other one characterizing different 

branches from the reaction.  

 To describe the reactant alkane, the open-source software Mordred38 is applied to 

calculate the topological indices based on their SMILES representation as the input. 

The SMILES representations of alkanes are taken from the website of PubChem 

(https://pubchem.ncbi.nlm.nih.gov).  

Chemical reactions definitely require more descriptors due to the possible existence 

of multiple reaction branches. The properties such as activation energy and reaction 

enthalpy may be appropriate, but are impractical due to time-consuming quantum 

chemical calculations. The reaction fingerprints, which are calculated by the difference 

https://pubchem.ncbi.nlm.nih.gov/
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of the molecular fingerprints of reactants and products, have been successfully applied 

in reaction classification and similarity assessment.39, 40 In the same spirit, the molecular 

similarity based on molecular fingerprints is used in this work as a reaction descriptor 

to represent different branches from a reaction. Molecular fingerprints are bit string 

representations of chemical structures originally designed for chemical database 

substructure searching and analysis.41 The Morgan molecular fingerprints, which are 

widely utilized as binary features for the quantification of structural similarity of 

chemical compounds in two dimension,41, 42 are employed to calculate the molecular 

similarity to describe H-abstraction reactions at different sites. The cosine similarity is 

used in this work and calculated by43  

𝑠𝑖𝑚(𝐴, 𝐵)  =  
∑ 𝐴𝑖 × 𝐵𝑖 

𝑛
𝑖=1

√∑ (𝐴𝑖)2𝑛
𝑖=1  × √∑ (𝐵𝑖)2𝑛

𝑖=1

,          (2) 

where A and B are the values of the bits (0 or 1) for the reactant and product molecular 

fingerprints, respectively, and i refers to the bit. 

Feature selection is usually necessary in machine learning, as it identifies the 

optimal relevant features and removes irrelevant ones.44, 45 The imbalance between the 

dimensions of the feature space and the data points in the space can negatively affect 

the performance of machine learning models.46 Ineffective descriptors with constant, 

reduplicative and/or missing values are first removed. The remaining descriptors are 
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then screened by the Pearson correlation analysis, implemented by the psych R 

package,47 which guarantee a low correlation coefficient for the chosen descriptors.  

2.3 Machine Learning Model Development and Evaluation 

Three different machine learning algorithms are applied in this work, including 

feedforward neural networks (FNN), eXtreme gradient boosting (XGB) and hybrid 

FNN-XGB. Artificial neural network has been widely used in the field of nonlinear 

fitting. A simple type of acritical neural work is FNN, which are trained by error 

backpropagation. The information in FNN moves in only one direction, forward, from 

the input nodes to the output nodes. XGB is a tree-based ensemble machine learning 

algorithm,48 which provides some advantages over the FNN, such as high tolerance, 

high efficiency and fast calculation speed. 

The FNN model often converges slowly due to the error backpropagation 

algorithm, but a good weight initialization scheme can overcome this issue to some 

extent.26, 49 To take advantages of both ANN and decision tree-based algorithms, a 

hybrid model, namely XGB-FNN, was designed in our previous work.34 In the XGB-

FNN model, a one-dimensional vector (1 × N), representing the mean relative 

importance of descriptors, is generated by the trained XGB model. The sign (±) of the 

importance for each descriptor is determined by the correlation coefficient between the 

descriptor and the rate constants. Then, a new matrix (M×N) is constructed by 

multiplying the one-dimensional vector of the mean relative importance by a randomly 
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generated Kaiming uniform distribution matrix (M×1). The input weights of the FNN 

model are initialized by the newly constructed matrix. In the training, the XGB-FNN 

model uses the same hyperparameters as the FNN model. 

The FNN model is constructed with an architecture of 1-3-1, i. e., one input layer, 

three hidden layers, and one output layer, using the PyTorch framework (version 

1.4.0).50 The XGB model is built by XGBoost python package (version 0.80) under the 

scikit-learn framework (version 0.20.2).51 The hyperparameters, such as the number of 

hidden neurons and the learning rate, have to be tested before training. Grid search is 

used to choose suitable hyperparameters.22  

To assess the accuracy and robustness of the machine learning models, The Leave-

One-Out (LOO) cross validations are firstly applied. The “one” left out in the cross 

validations denotes the rate constants of a reaction at different temperatures，which are 

taken as the test set. The rate constants of the remaining n-1 reactions are randomly 

divided into a training set and a validation set by a ratio of 9:1. Therefore, there are 

three datasets in the LOO cross validations: training, validation and test. For simplicity, 

the dataset group is labeled as “DGLOO”.  

To build reliable prediction models, the generated data points are also divided into 

a training set and a validation set using the hierarchical random sampling by a ratio of 

9:1, i.e., the ratio of the two datasets in each of the specified temperature interval keeps 
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unchanged. The reactions with only one or few raw rate constants are taken as the 

prediction set. The three datasets are labelled as “DGALL”.  

The mean square error loss function and Adam optimizer are used in the model 

training. The root mean square error (RMSE) is used to evaluate the performance of the 

developed models, which is defined as 

RMSE = √
1

𝑁
∑ (log10

𝑘𝑝𝑟𝑒𝑑

𝑘𝑜𝑏𝑠
)𝑁

𝑖=1
𝑖

2

,           (3)        

where kobs denotes the collected rate constant, kpred stands for the predicted rate constant, 

i represents a data point in the dataset, N is the number of sampled rate constants in the 

dataset. Similar to Houston et al.’s definition,19  the deviation δ is calculated by 

    𝛿 =  10RMSE  −  1.                       (4) 

In this work, the predicted rate constant is thought to be “accurate” when the deviation 

is less than 100%, "reasonable" when the deviation is about 300%, and "inaccurate" 

when the deviation is larger than 500%. Houston et al. showed that the calculated rate 

constants by the TST methods were within 330% of the accurate answers on a set of 39 

test reactions.19 Therefore, the “reasonable” level is close to the accuracy of traditional 

TST methods.   

The hyperparameters of these machine learning models are re-optimized by the 

grid search method. Finally, the so-called ensemble approach is used to diminish 
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random errors. In other words, a batch of NN models are trained under the same 

hyperparameters and the average of the three optimal models are employed to predict 

rate constants.  

3. APPLICATIONS AND DISCUSSION 

3.1 Description of Datasets, Input Features and Hyperparameters 

In the dataset, 12 reactions are collected for the hydrogen abstraction of alkanes 

by CH3 (labeled as CH3Rs and listed in Table S1), in which two of them are taken as 

the prediction set in the DGALL. 12 reactions are included for the hydrogen abstraction 

by H (labeled as HRs and listed in Table S2) with three of them as the prediction set in 

the DGALL. In addition, 20 reactions are collected for the hydrogen abstraction by O 

(labeled as ORs and listed in Table S3) with one of them as the prediction set in the 

DGALL. By sampling rate constants at every 5 K interval of temperature using the fitted 

Arrhenius equation, there are 3026 data points in the DGLOO (2 more in the DGALL for 

prediction) of CH3Rs, 3424 date points in the DGLOO (18 more in the DGALL) of HRs, 

and 7079 data points in the DGLOO (17 more in the DGALL) of ORs. The compositions 

of the dataset groups DGLOO and DGALL for CH3Rs, HRs and ORs are listed in Tables 

S4, S5 and S6, respectively.  

Feature selection is necessary since the molecular descriptors generated by the 

open-source software Mordred are often highly correlated. Our previous work  

demonstrated that the number of six descriptors performed well in training the rate 
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constants of CH3Rs.34 In this work, the descriptors are selected using the pair-wise 

linear correlation analysis and the hierarchical clustering heat-map analysis.52 Four 

descriptors are screened out from the Mordred generated descriptors to describe the 

reactants. Different from our previous work,34 the molecular similarity, instead of the 

activation energy, is taken as a descriptor to represent different reaction branches. 

Together with temperature, there are totally six descriptors. Table 1 provides the 

selected descriptors for the three kinds of reactions, CH3Rs, HRs and ORs, and their 

physical meanings.  

Molecular similarity is calculated using the reactant and product molecular 

fingerprints. However, the value of each bit in fingerprint depends on the length of the 

bit string and the cut-off radius, resulting in different values of molecular similarity. It 

is thus necessary to choose a suitable bit string length and the cut-off radius to yield 

one-to-one molecular similarity for each branch reaction. The reactant alkanes with the 

number of involving carbon atoms up to 16 are interested in this work due to their 

importance in combustion reactions.35 Therefore, all the alkanes and their isomers (less 

than 17 carbon atoms) with their SMILESs available from PubChem are collected and 

used to test the length and the cut-off radius. As a result, the length of the bit string is 

taken as 433 and the radius is taken as 8. Table 2 shows the calculated similarities for 

the reactions with the reactant alkanes involving less than 6 carbon atoms. Clearly, the 

different branches for the reactions can be well distinguished. A full list of generated 

similarities is given in Tables S7-S17. 
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The hyperparameters of the XGB and FNN models are selected using the grid 

search method on the DGLOO and DGALL, respectively. Table S18 shows the optimal 

hyperparameters on the DGLOO and Table S19 gives the optimal hyperparameters on 

the DGALL. Note that the hybrid XGB-FNN model uses the same hyperparameters as 

the FNN model for both the DGLOO and DGALL. 

3.2 Evaluation of Machine Learning Models 

Figure 1 compares the deviations of the XGB, FNN and XGB-FNN models on the 

DGLOO test sets with either the similarity or the activation energy as a descriptor. The 

activation energy-based results are taken from our previous work.34, 53 The boxplot 

consists of the most extreme values in the data set (the green lines), the lower and upper 

quartiles (the black box), the median (the red line), the mean (the blue dashed line) and 

potential outliers (discrete red dots). The top three panels show the deviations with the 

similarity as the descriptor while the bottom three panels refer to previous results from 

the activation energy. Note that the reactions involving the reactant CH4 are excluded 

from the LOO test dataset since the similarity between the reactant CH4 and the product 

CH3 is 0. For the reactions between alkanes and CH3 (the first column), the deviations 

with the similarity as a descriptor are mostly distributed in between 75% and 225% for 

the three models, slightly smaller than those obtained using the activation energy as a 

descriptor, which are largely located in between 75% and 300%. For the reactions 

between alkanes and H (the middle column), the deviations with the similarity as a 

descriptor are mainly distributed in between 75% (75%, 75%) and 150% (225%, 200%) 
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for the XGB (FNN, XGB-FNN) model, which is larger than the deviations with the 

activation energy as a descriptor, which are mostly lower than 100%. For the reactions 

between alkanes and O (the third column), the deviations for the XGB model are largely 

smaller than 100% with the similarity as a descriptor while they are mostly in between 

50% and 150% when using the activation energy as one of the descriptors. For the FNN 

and XGB-FNN models, most of the deviations with the similarity as a descriptor are 

slightly larger than those with the activation energy as a descriptor. Overall, all three 

machine learning models provide reasonable descriptions of the thermal rate constants 

and the performance of the activation energy is slightly better than that of the similarity. 

The LOO cross validations presented above show that the machine learning 

combined with the similarity input provide a good alternative to predict thermal rate 

constants of combustion reactions. To improve the robustness of the models, the models 

are re-trained on the DGALL generated by the hierarchical random sampling. Three best 

models are selected and averaged for each algorithm to reduce random errors. The 

average deviations of the models on the DGALL are given in Figure 2. Note that the 

models using the activation energy as one of the descriptors are re-trained as well to 

make the comparison on an equal footing. Clearly, the three machine learning models 

using the activation energy as a descriptor all yield small deviations on the training and 

validation sets while produce relatively large deviations on the prediction set. In 

contrast, the FNN and XGB-FNN models with similarity as a descriptor generally 

provide comparable deviations across the three data sets. For the reactions between 
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alkanes and CH3, the averaged deviations on the prediction set for the three models with 

the similarity as a descriptor are less than 60%, which is visibly smaller than those using 

the activation energy as a descriptor (about 90%). The FNN and XGB-FNN models 

with similarity as a descriptor also perform better than those with activation energy as 

a descriptor for the reaction between alkanes and H/O. However, the XGB model using 

the activation energy as a descriptor behaves better than that of similarity for the 

reactions between alkanes and O. In conclusion, the models developed in this work are 

“accurate” or close to “accurate”.  

 The above assessments demonstrate that the performance of the three models using 

similarity as one of the descriptors is comparable to the corresponding activation 

energy-based models. However, in sharp contrast to the activation energy, the similarity 

can be easily generated from the reactant and product fingerprints and thus doesn’t 

require extra quantum chemistry calculations, endowing great potential in practical 

applications. By comparing the three machine learning models that use similarity as a 

descriptor, the XGB-FNN model achieves a good balance between the accuracy and the 

stability in prediction. In addition, the predicted rate constant by the XGB model may 

exhibit discontinuous behavior with temperature, as shown in Fig. S1 for the reaction 

between n-C8H18 and CH3 as an example. By contrast, the predicted rate constant by the 

XGB-FNN model has a relatively smooth temperature dependence. Therefore, the rate 

constants will be predicted by the XGB-FNN model with similarity as a descriptor 

hereafter.  
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For the reactions listed in the DGALL prediction set, the rate constants are predicted 

in the temperature range from 300 to 2500 K for the reactions between alkanes and 

CH3/H and from 300 to 2000 K for the reaction between 1-C6H14 and O, as shown in 

Fig. 3. They are very close to the available observed values. Since the measured rate 

constants for prediction are mostly distributed in a very narrow temperature range, it is 

infeasible to assess the performance of the models over the temperature range of 

combustion. In this respect, we use the three-parameter Arrhenius equation to assess 

the performance based on the following considerations. On one hand, the training 

dataset is generated by the fitted three-parameter Arrhenius equation, which should be 

learned by the XGB-FNN model. On the other hand, the three reactions interested in 

this work are believed to follow the Arrhenius behavior in the temperature range of 

combustion due to the existence of well-defined barriers. Thus, the predicted rate 

constants for each reaction are fitted by the three-parameter Arrhenius equation. As 

expected, the predicted values closely align with the fitted curve, implying the good 

performance of the models over the temperature range of combustion. 

3.3 Generalization Ability of the XGB-FNN Models 

The alkanes containing up to 16 carbon atoms are regarded to be important in the 

combustion circumstance.35 It is thus of great significance for developing accurate 

combustion models that could predict thermal rate constants of hydrogen abstraction 

reactions involving these reactants. Although Machine learning is widely perceived to 

have very limited extrapolation capabilities, this work built a machine learning model 
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for each kind of combustion reactions and the reactions in each kind should have similar 

reaction characteristics. If the designed descriptors take hold of the inherent features, 

we can expect good generalizability for machine learning models.  

The rate constants of hydrogen abstraction reactions between alkanes and 

CH3/H/O at different sites are predicted by the XGB-FNN models. The results are given 

in the supporting material (Figs. S2-S67). We will provide some predicted rate 

constants for the reactions between alkanes and CH3 as examples to show the 

generalization abilities of the XGB-FNN models. Figure 4 displays the predicted rate 

constants of the primary hydrogen abstraction reaction with the normal alkanes 

involving 5-16 carbon atoms, namely n-C5H12, n-C6H14, n-C7H16, n-C9H20, n-C10H22, n-

C11H24, n-C12H26, n-C13H28, n-C14H30, n-C15H32 and n-C16H34. The predicted rate 

constants of each reaction are further fitted by the three-parameter Arrhenius equation 

to assess the reliability of the prediction. It can be seen that the temperature dependence 

of rate constants is reasonably predicted by the XGB-FNN model. The predicted rate 

constants for each reaction follow well the Arrhenius equation. However, the accuracy 

of the predicted values cannot be definitely assessed without corresponding observed 

values for comparison.   

The hydrogen atom can be abstracted from various sites of alkanes in the reactions. 

The reaction mechanism can be in-depth understood if one can determine the rate 

constants from different sites. Figure 5 shows the predicted rate constants of hydrogen 
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abstraction reactions at different sites of n-C12H26. The different sites of alkane are 

labeled as CnH2n+2-i, in which i is a positive integer representing the position of 

abstracted hydrogen atom from the end to the middle of CnH2n+2. The predicted rate 

constants from different sites of n-C12H26 are obviously distinct at low temperatures and 

the difference diminishes as the temperature rises up. In the temperature range from 

300 to 1000 K, the predicted rate constants follow the order of n-C12H26-1 (the end) < 

n-C12H26-2 < n-C12H26-3 < n-C12H26-4 < n-C12H26-5 < n-C12H26-6 (the middle). The 

predicted thermal rate constants for other hydrogen abstraction reactions of alkanes 

with CH3/H/O are carefully checked as well. We observed that the primary alkane site 

always has the lowest reactivity. The reactivity of the secondary site gradually 

diminishes from the last but one to the middle and becomes close to each other for large 

alkanes. It is widely recognized that the abstraction of secondary hydrogen atoms is 

easier than primary ones due to their lower bond dissociation energy.6 Diego Troya 

investigated the barriers of hydrogen abstractions from primary, secondary, and tertiary 

sites of acyclic alkanes by ground-state oxygen atoms by high-level ab initio 

calculations.54 The calculated thermal rate constants via the transition-state theory 

indicate that the room-temperature relative reactivities of primary, secondary, and 

tertiary alkane sites are 1, 29 and 422, following the order of primary < secondary < 

tertiary, in agreement with our findings. This gives us more confidence on the capability 

of generalization.   
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Figure 6 shows the predicted rate constants of the hydrogen abstraction reactions 

between CH3 and several isomers of C12H26. The predicted rate constants increase 

monotonically with temperature. The reactivities for different C12H26 isomers are 

visibly different, indicating the influence of the molecular structure on the reactivity.  

A web application is available at the following link - mlrate.apm.ac.cn. This 

application predicts the thermal rate constants of combustion reactions between alkanes 

and free radicals CH3, H, and O by the constructed XGB-FNN models. Detailed 

instructions on how to use the web application to generate rate constants can be found 

on the homepage of the website. 

4. CONCLUSION 

In this work, three supervised machine learning algorithms, XGB, FNN and XGB-

FNN, are employed to train and predict thermal rate constants of important combustion 

reactions between alkanes and free radicals (CH3, H, O). The cosine similarity between 

the reactant alkane and the resulting alkyl radical combined with the screened 

topological indices of alkanes are taken as the reaction descriptors to feed the machine 

learning models. The hybrid XGB-FNN algorithm is found to perform better than the 

XGB and FNN algorithms on predicting thermal rate constants. The prediction 

accuracy of the similarity-based XGB-FNN model is comparable to that using the 

activation energy as a descriptor. Different from the activation energy, the similarity 

can be directly generated from the reactant and product fingerprints and doesn’t require 

http://mlrate.apm.ac.cn/
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extra quantum chemistry calculations. The XGB-FNN models have ability to predict 

thermal rate constants of hydrogen abstraction reactions from different sites of alkanes 

and their isomers. The newly designed reaction representations endow machine 

learning with great potential in developing reliable models to predict thermal rate 

constants. It’s our hope that these reaction descriptors can be applied to develop other 

quantitative structure−property relationship models relevant to gas-phase chemical 

reactions. 
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 Table 1: Selected descriptors for the reactions CH3Rs, HRs and ORs, and their 

physical meanings. 

 

Descriptor Physical meaning CH3Rs HRs ORs 

T Temperature √ √ √ 

Similarity 
Structural similarity between alkane and 

alkyl radical 
√ √ √ 

SIC1 1-ordered structural information content √   

IC1 
1-ordered neighborhood information 

content 
√ √  

AATSC2c 

Averaged and centered moreau-broto 

autocorrelation of lag 2 weighted by 

gasteiger charge 

√   

AATS2i 
Averaged moreau-broto autocorrelation 

of lag 2 weighted by ionization potential 
√   

BIC1 1-ordered bonding information content  √  

CIC2 
2-ordered complementary information 

content 
 √  

ATSC1c 
Centered moreau-broto autocorrelation 

of lag 1 weighted by gasteiger charge 
 √  

AATS2Z 
Averaged moreau-broto autocorrelation 

of lag 2 weighted by atomic number 
  √ 

AATSC1c 

Averaged and centered moreau-broto 

autocorrelation of lag 1 weighted by 

gasteiger charge 

  √ 

SIC3 3-ordered structural information content   √ 

VE2_A VE2 of adjacency matrix   √ 
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Table 2:  Calculated similarities for the reactions with the reactant alkanes involving 

less than 6 carbon atoms. 

Reactant chemical 

formula 
Reactant SMILES Product SMILES Similarity 

CH4 C [CH3] 0 

C2H6 CC C[CH2] 0.40825 

C3H8 CCC 
C[CH]C 0.28868 

CC[CH2] 0.51640 

C4H10 

CCCC 
CCC[CH2] 0.56695 

CC[CH]C 0.37796 

CC(C)C 
CC(C)[CH2] 0.61237 

C[C](C)C 0.5 

C5H12 

CCCCC 

CC[CH]CC 0.33333 

CCCC[CH2] 0.68041 

CCC[CH]C 0.38730 

CCC(C)C 

CC[C](C)C 0.28571 

CC(C)C[CH2] 0.53452 

CCC(C)[CH2] 0.62994 

C[CH]C(C)C 0.40089 

CC(C)(C)C CC(C)(C)[CH2] 0.61237 
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Figure captions 

Figure 1: Comparison of deviations of the XGB, FNN and XGB-FNN models with 

either the activation energy or the similarity as reaction descriptor on the DGLOO test 

sets. 

Figure 2: Comparison of average deviations of the XGB, FNN and XGB-FNN models 

with either the activation energy or the similarity as a descriptor on the DGALL. 

Figure 3: Comparison of predicted thermal rate constants with available experimental 

values for the hydrogen abstraction reactions from alkanes by CH3, H and O Radicals.  

Figure 4: Predicted and fitted thermal rate constants for the primary hydrogen 

abstraction reactions between the CH3 radical and (a) n-C5H12, (b) n-C6H14, (c) n-C7H16, 

(d) n-C8H18, (e) n-C9H20, (f) n-C10H22, (g) n-C11H24, (h) n-C12H26, (i) n-C13H28, (j) n-

C14H30, (k) n-C15H32 and (l) n-C16H34. 

Figure 5: Predicted thermal rate constants for hydrogen abstractions at different sites 

between n-C12H26 and CH3. The number i near each circle denotes the position of 

abstracted hydrogen atom from the end to the middle of n-C12H26. 

Figure 6: Predicted thermal rate constants for hydrogen abstraction reactions from 

different isomers of C12H26 by CH3. The circles represent different abstraction sites for 

different isomers of C12H26. 
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Fig. 4 
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Fig. 5 
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