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Abstract: A catalyst selection method for the optimization of an asymmetric, vinylogous 

Mukaiyama aldol reaction is described. A large library of commercially available and synthetically 

accessible copper-bis(oxazoline) catalysts was constructed in silico. Conformer-dependent, grid-

based descriptors were calculated for each catalyst, defining a chemical feature space suitable for 

machine learning. Selection of a diverse subset of catalyst space produced an initial training set of 

26 novel bis(oxazoline) ligands which were synthesized and tested for stereoselectivity in the 

copper-catalyzed, vinylogous Mukaiyama aldol reaction for five substrate combinations. One 

ligand in the training set provided 88% average enantiomeric excess, exceeding the performance 

of catalysts identified through an initial optimization campaign. Supervised and semi-supervised 

catalyst selection methods, including quantitative structure-selectivity relationship modelling, 

nearest neighbors analysis, and a focused analogue clustering strategy, were employed to identify 

an additional 12 novel bis(oxazoline) ligands. The selected ligands outperformed the initial 

training set hit in four out of five product classes, and in some cases demonstrated excellent 

enantiocontrol exceeding 95% ee. The effectiveness of the unsupervised training set selection 

process is discussed, and the expediency of the nearest neighbor and focused analogue approaches 

are contrasted with the supervised quantitative structure-selectivity relationship modelling 

approach. 
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Introduction 

 The development of asymmetric catalysis using chiral, small molecules represents one of 

the most important advances in chemical synthesis over the past four decades as reflected in the 

2001 and 2021 Nobel Prizes in Chemistry.1 The most common strategy to identify and optimize a 

catalyst for an asymmetric, chemical transformation has traditionally involved a combination of 

expert knowledge, human intuition, and serendipity. Although this approach has yielded many 

successes, it is still often inefficient and plagued by uncertainty when selectivity plateaus are 

encountered. Recent applications of informatics-driven approaches to catalyst identification and 

optimization have opened new avenues for algorithmically-guided selection of optimal, chiral, 

small-molecule catalysts.2 Coupled with technological advances in high throughput 

experimentation (HTE), chemoinformatic methods can aid an experimentalist in identifying highly 

selective catalysts for challenging transformations that may not have been discoverable by the 

traditional approach.  

Ever-increasing pressures to accelerate drug development and shorten timelines have 

resulted in rapid uptake of multiwell plate-based HTE techniques in the pharmaceutical industry 

over the past decade.3 HTE approaches have seen significant development for the optimization of 

chemocatalytic transformations, with Suzuki-Miyaura4 and Buchwald-Hartwig5 cross-coupling 

methods emerging as the most popular.3a,3b Asymmetric, chemocatalytic transformations mediated 

by chiral, small molecules are less explored. This area is particularly challenging for the discovery 

of new chiral catalysts beyond the optimization of other reaction variables (e.g. solvent, 

temperature, additives). The current trend to incorporate three-dimensional molecular structure in 

drug design6 and the push for greener, more atom economical asymmetric processes7 continue to 

motivate HTE-driven optimization and discovery of chiral, small-molecule catalysts.  
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 Soluble, transition-metal complexes derived from chiral ligand scaffolds encompass a 

diverse chemical space affecting tunable, catalytic stereoinduction well-suited for exploration by 

HTE approaches.8 Enantioselective hydrogenation has emerged as the primary area of industrial 

focus in this respect,3b and several reports demonstrate the success of current HTE design 

principles in discovering new, optimal catalysts. Chirik et al. have elegantly demonstrated the 

HTE-driven development of cobalt-bisphosphine catalysts for enantioselective alkene  

 

Figure 1: (A) Successful HTE-driven optimization of phosphine ligand identity in enantioselective 
hydrogenation of α,β-unsaturated esters. (B) Iridium-catalyzed hydrogenation of pyridinium salts. 
(C) Enantioconvergent Buchwald-Hartwig amination. (D) Attempted catalytic enantioselective 
cyclopropanation toward QPX7728. 
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hydrogenation, achieving good-to-excellent enantioselectivities by evaluating a 192-member 

chiral, bidentate phosphine ligand library.9 This approach was later leveraged for the discovery 

and optimization of the nickel-bisphosphine-catalyzed hydrogenation of α,β-unsaturated esters 

(Figure 1A).10 A 240-member chiral phosphine library was evaluated by Zhang et al. for the 

iridium-catalyzed, enantioselective hydrogenation of 2-substituted pyridinium salts (Figure 1B),11 

which was then extended to 3-substituted substrates by adapting a rhodium-based catalyst 

system.12 Enantioselective carbon-carbon bond forming reactions have received less attention, and 

notable examples include the enantioconvergent Buchwald-Hartwig amination disclosed by 

Campos et al. for forging the benzoxazinoindole core of the antiviral drug elbasvir (Figure 1C),13 

and the development of a palladium-catalyzed, enantioselective cyclopropanation reaction on route 

to β‑lactamase inhibitor QPX7728.14  

 In these examples, the chiral ligands considered for HTE design were either commercially 

available, or readily prepared from commercial sources. Designing HTE campaigns around ligand 

availability is a sensible starting point for optimization, yet this approach necessarily biases the 

domain of stereodifferentiating reaction components toward commercially available entities.8 In 

many cases, highly stereoselective catalyst systems derived from commercially available ligands 

can be created and this remains a fruitful area of investigation. However, for particularly 

challenging transformations or if commercial sources are limited, this approach may not lead to 

the discovery of an optimal catalyst. For example, a catalytic, enantioselective route to QPX7728 

was pursued initially, but evaluation of commercially available bis(oxazoline), pyridine-

bis(oxazoline), and salen-derived chiral ligands in combination with palladium or copper sources 

did not lead to adequate enantioselectivity (Figure 1D).13 Instead, the final conditions incorporated 

a chiral auxiliary that delivered the product in 78% ee, incurring a penalty in mass efficiency with 
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only moderate enantioselectivity.15 Although the chiral auxiliary was a readily-available, chiral 

pool material, one must consider the possibility that a highly stereoselective, catalytic method 

could have been discovered had a broader domain of stereodifferentiating reaction components 

been considered. Furthermore, these examples illustrate an important trade-off in experimental 

design between intensive optimization of a single substrate, versus optimization of a general class 

of substrates. HTE applications toward substrate generality have seen increasing interest,16 while 

many industrial applications remain highly specific for the relevant process development. 

 The success of an HTE campaign is fundamentally dependent on the reaction parameter 

spaces defined by the experimentalist for empirical exploration.17 Catalyst identity is a discrete 

reaction parameter, which presents a unique challenge when defining suitable parameter domains. 

Whereas well-defined continuous domains (e.g. temperature or concentration) necessarily contain 

locally optimal parameters and are inherently suitable for statistically designed, experimental 

exploration (i.e. Design of Experiments, DoE),3a,18 discrete parameter domains are not associated 

with a chemically-meaningful distance metric  (i.e. measure of similarity) a priori, complicating 

their rational exploration. Expert knowledge is required to define a suitable mapping from each 

discrete catalyst into a continuous vector space in which locality can be assessed mathematically. 

A continuous vector description (or “featurization”) of a catalyst in this manner19 provides a 

representation that is suitable for DoE20 and statistical modelling of a quantitative structure-

selectivity relationship (QSSR) between catalyst identity and empirical stereoselectivity.2a,21 In 

practice, catalyst featurization can be constructed on the basis of empirical data (e.g. linear free 

energy relationships)22 or calculated properties intended to capture the relevant chemical 

characteristics of the species. Within the realm of transition-metal catalysis, phosphine ligand 

space featurization has been extensively developed, spurred initially by the foundational 



Denmark et al. page 7 

calculation of Tolman cone angles,23 progressing through computed properties of various 

phosphine-metal complexes,24 and ultimately leading to the recent disclosure of the large kraken 

database of quantum-mechanically described monodentate phosphines.25 Sigman et al. have 

identified a representative, mostly achiral ligand subset in this database,26 and recently disclosed 

chiral bisphosphine ligand QSSR models for Hayashi-Heck reactions.27 Whereas the featurization, 

exploration, and modelling of phosphine ligand space has received significant attention, we believe 

that data-driven workflows with a general form of: (1) featurizing broad chemical spaces, (2) 

selecting diverse representative subsets, (3) acquiring empirical data in some reaction manifold, 

and (4) constructing QSSR models for the potential prediction of new optimal catalysts,28 should 

find application to myriad ligand classes and reactions. 

 The Denmark group has a long-standing interest in the behavior of privileged oxazoline-

containing ligand scaffolds, particularly the bis(oxazoline) (BOX) class.29 Encouraged by our 

success in applying conformer-averaged grid-based (CAGB) descriptors for catalyst featurization, 

subset selection, and QSSR modelling of chiral, Bronsted acid-catalyzed enantioselective N-acyl 

imine addition reactions30 and atroposelective iodination reactions,16c we next sought to apply 

these methods to the optimization of enantioselectivity in a copper-BOX-catalyzed, vinylogous, 

Mukaiyama aldol reaction (VMA). This academic-industrial collaboration describes an effective 

workflow for optimizing catalyst identity in a challenging reaction manifold and originated as a 

response to the failure of an initial HTE design that considered commercial or commercially-

derived catalysts only. Herein we describe CAGB average steric occupancy (ASO) descriptors for 

the featurization of a large in silico library of BOX ligands, disclose a diverse subset of BOX 

ligands for empirical evaluation, and demonstrate a semi-supervised modification of our 

previously-described chemoinformatic workflow for the optimization of the VMA reaction 
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between silyloxyfuran 1 and aldehydes 2a – 2e toward PRMT5 inhibitor analogues (Figure 2). 

 

Figure 2: (A) Access to PRMT5 inhibitor by enantioselective vinylogous Mukaiyama aldol 
reaction. (B) Reaction conditions and substrate scope for optimization of copper-bis(oxazoline)-
catalyzed vinylogous Mukaiyama aldol reaction. 
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emerged as potential antineoplastic agents.37 
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butenolides are important intermediates in the synthesis of natural products38 and medicinal 

compounds.39 Butenolides are commonly accessed in an enantioenriched form by the VMA 

reaction of a 2-siloxyfuran with an aldehyde, which can be stereochemically controlled using an 

appropriate chiral catalyst.40 Enantioselective VMA reactions to forge chiral butenolides have been 

investigated with a variety of chiral organic-41 and transition-metal based catalysts with various 

ligands, including those derived from oxazoline,42 salen,43 and binaphthol (BINOL)44 scaffolds. 

However, challenges remain in realizing a general method that provides high diastereo- and 

enantioselectivity while accommodating variable substitution patterns on the 2-siloxyfuran and 

aldehyde reactants.  

Catalyst Featurization and QSSR Modelling in the Cu-BOX Manifold. The BOX 

ligand scaffold is privileged for a variety of organic transformations and presents multiple points 

of combinatorial diversity permitting access to extensive analogue generation.45 Early approaches 

to modelling Cu-BOX catalysis in enantioselective Diels-Alder reactions used a comparative 

molecular field analysis (CoMFA) approach,46 which is conceptually related to CAGB descriptors, 

but which requires more computationally expensive probe calculations. It was also shown that 

simple, linear correlations can be drawn between the continuous chirality measure of a BOX ligand 

and the corresponding enantioselectivity in the Diels-Alder reaction.47 More recently, linear 

regression models employing DFT descriptors have been developed to predict enantioselectivity 

in several different Cu-BOX-catalyzed, reaction manifolds.48  

Failure of Commercial Catalysts in the HTE Optimization of a VMA Reaction on 

Route to a Class of PRMT5 Inhibitors. In the course of developing a scalable route to access 

stereochemical analogues of PRMT5 inhibitor therapeutic targets (Figure 2A),49 we encountered 

a VMA reaction particularly refractory to optimization of stereoselectivity in the synthesis of chiral 
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butenolide product syn-3a from 4-methyl substituted 2-siloxyfuran 1 and aldehyde 2a (Figure 3A). 

Initial high-throughput screening campaigns considered 147 different chiral catalysts, including 

organocatalysts of various classes (squaramides, thioureas, ureas, diols, phosphoric acids, and bis-

triflimides) and chiral titanium-BINOL catalysts. A squaramide catalyst that provided syn-3a with 

82% ee and a 3.6:1 syn/anti ratio was discovered (Figure 3B). 

  

Figure 3: (A) Vinylogous Mukaiyama aldol reaction between 1 and 2a and summary of HTE 
catalyst screen. (B) Optimal catalysts discovered in initial HTE campaigns testing commercial 
catalysts. (C) Box-and-whiskers plots showing selected data acquired in initial HTE campaign. 
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the copper-BOX system suggested that a more extensive evaluation of this platform was 

warranted. Furthermore, the reaction enantioselectivity displayed significant response to changes 

in BOX ligand structure (Figure 3C), suggesting that this scaffold could be tuned to affect higher 

enantioselectivity. However, further optimization of the copper-BOX catalyzed VMA reaction was 

limited by the commercial availability of testable ligands (see the Supporting Information). 

Because the BOX scaffold has multiple points of diversification, it was clearly amenable to 

extensive analogue generation including 4,4’-substitution, 5,5’-substitution, bridging methylene 

substitution, and relative stereochemical arrangements which permit an enormous collection of 

possible catalysts (Figure 4). This feature provided the opportunity to explore reactivity and 

selectivity in a large chemical space of synthetically accessible copper-BOX catalysts. 

Additionally, multistep syntheses (7-9 steps) are required to access more challenging ligands, so 

an informatics-guided approach is desirable to rationally identify ligand candidates in silico prior 

to their synthesis and testing. In considering the synthetic challenges and inherent combinatorial 

complexity of the BOX scaffold, we sought to apply our chemoinformatic catalyst optimization 

workflow that had previously been successful in a proof-of-principle optimization of chiral 

Bronsted acid-catalyzed synthesis of N,S-acetals.27  

 First, a large in silico library of BOX ligands was constructed that captured the breadth of 

possible catalyst structures accessible by a given robust synthetic route. Conformer-averaged grid-

based (CAGB) average steric occupancy (ASO) descriptors were calculated to capture the steric 

effects of each catalyst. Whole-molecule featurization with ASO provides granularity in 

representing the potentially subtle differences in three-dimensional catalyst shapes. The catalyst 

chemical space was analyzed by unsupervised clustering analysis to identify diverse ligands, which 

were further triaged for synthetic accessibility (Figure 4A). The catalysts were synthesized, and 
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data was collected over various substrate combinations with this universal training set (UTS), to 

provide labelled, catalyst-substrate-enantioselectivity data points that can be used for machine 

learning methods (Figure 4B, 4C).   

 
 

Figure 4: Chemoinformatic workflow for this work. (A) Universal training set selection from 
bis(oxazoline) in silico library. (B) Supervised QSSR modelling approach. (C) Semi-supervised 
nearest neighbors and focused analogues approaches. 
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heterodisubstituted combinations at the oxazoline 5,5’-positions including syn/anti stereochemical 

arrangements relative to the 4,4’-position, and 40 geminal bridging group substituents. This was 

supplemented with 40 indenyl BOX ligands with variable bridging group substitution. Structures 

that could not be automatically checked for stereochemical configuration were omitted, producing 

a final in silico library of 96,110 members. Conformers were generated for each catalyst using the 

distance geometry method implemented in RDKit and ASO descriptors were calculated from each 

conformer distribution. A subset of the in silico library was selected by a k-means analysis. The 

cluster medoids were triaged for synthetic considerations and substitutes were chosen with a focus 

on chemical diversity while maintaining adequate coverage of the ASO chemical space (see the 

Supporting Information, Figure 5A, 5C). Twenty six ligands were identified by this approach and 

synthesized using the methods recently described by these laboratories (L1a-L1z, Figure 5A).50 

These ligands were tested for enantioselectivity in the VMA reaction between 4-methyl-2-

siloxyfuran 1 and five different aldehyde electrophiles in parallel with a supplementary set of 21 

BOX ligands that are either commercially available or accessible from commercial ligands in one 

step (see the Supporting Information, referred to henceforth as ‘commercial ligands’). 

Data Acquisition and Analysis of Results in the Vinylogous Mukaiyama Aldol 

Reaction. Reactions were run in duplicate in a Para-dox® 96-well photoredox aluminum reaction 

block. Enantiomeric excesses were assessed by chiral SFC following quench of the crude reaction 

mixture. Duplicate data were averaged, providing 234 trustworthy data points over five different 

substrate combinations. To directly compare the magnitude of enantioinduction from ligands with 

different stereochemical configurations, enantiomeric excesses were normalized based on the 

configuration at the oxazoline 4,4’-positions of the corresponding BOX ligand. Enantiomeric 

excesses corresponding to ligands with 4,4’-(S,S) configuration were inverted, while those 
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Figure 5: (A) 26-member BOX training set synthesized and tested in the VMA reaction. (B) Box-
and-whiskers plots of enantiomeric excesses for BOX training set ligands versus commercially 
available BOX ligands for each product. (C) t-SNE plots of BOX training set versus commercial 
ligands in ASO chemical space. 
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from 4,4’-(R,R) ligands were left unchanged (see the Supporting Information). BOX ligand L1m, 

a UTS member, was identified as a new optimal ligand for each of the five products, achieving 

88% average enantiomeric excess. It is worth noting that syn/anti diastereoselectivity was also 

determined for each ligand (see the Supporting Information), however optimization of 

enantioselectivity for the syn diastereomer was the primary focus of this work. L1m afforded 

product 3a with excellent 22:1 syn/anti diastereoselectivity. 

The selectivity spread of the UTS ligands exceeded that of the 21 commercially available 

ligands for all products (Figure 5B) and provided more even coverage of BOX ASO chemical 

space (Figure 5C). A broader UTS interquartile range was observed for products 3c, 3d, and 3e. 

The normality of the distributions of enantiomeric excesses were assessed by Anderson-Darling 

tests51 at a 95% confidence level (CL), indicating that the UTS data were approximately normally 

distributed for products 3a, 3b, 3c, and 3d, whereas product 3e was non-normal. The commercial 

ligand set produced approximately normal data for only products 3d and 3e. The variance of the 

data obtained from the UTS ligands was compared to those obtained from commercial ligands by 

a one-tailed F-test. The UTS data was significantly more varied than the commercial data for 

product 3e only (90% CL, p = 0.08).  

Supervised Model Development and Validation. Supervised models for ligand- and 

substrate-dependent QSSR relationships were constructed using all acquired data and employing 

leave-one-catalyst-out validation (LOCO). Attempts at featurizing substrate combinations and 

products with CAGB ASO and average electronic indicator field (AEIF), sterimol descriptors, and 

various DFT descriptors did not result in more predictive models compared to simple one-hot 

encoded substrate descriptors (see the Supporting Information). A substrate-agnostic feature 

selection protocol was used to identify and aggregate catalyst CAGB descriptors relevant to 
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catalyst-dependent QSSR. The resulting models had modest predictive performance with high 

absolute errors (> 0.2 kcal/mol) and suffered from significant underprediction of the most selective 

ligand L1m (Figure 6). In view of the low reliability of the supervised models, only one ligand 

was synthesized from the model prediction (L2). Given the relative lack of high selectivity data 

for model training and considering the limited size of the dataset overall, it was expected that 

acquiring additional training data with more selective ligands might provide models with more 

accuracy in the range of high enantioselectivities. In silico ligands proximal to the UTS hit L1m 

in ASO feature space should engender similar steric enantiocontrol in the reaction and would likely 

provide similarly high enantioselectivity. L1m therefore served as a starting point for a nearest 

neighbors analysis in the ASO feature space.  

 

Figure 6: Underprediction of highly selective ligands for supervised model and ligand selected for 
out-of-sample model testing. 

Nearest Neighbors and Focused Analogue Ligand Selection. Two, simple, semi-

supervised, catalyst selection approaches were pursued: a nearest neighbors (NN) analysis and a 

focused analogue (FA) method. In the NN approach, ligands were selected based on their 

proximity in chemical feature space to the UTS hit L1m (Figure 7A). The Euclidean distance in 

ASO chemical space from L1m to each member of the in silico library was calculated. Ligands 

proximal to L1m with unique 4- and 5- position substitution were triaged, and five new BOX cores 

were selected for synthesis and testing (Figure 7A, L3a-L3e). Two analogues with variation at the 
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methylene bridging position were also synthesized for the first two nearest neighbors (L3a’, L3b’). 

  

Figure 7. (A) Nearest neighbors approach and analogues selected for synthesis and testing. (B) 
Focused analogues approach, elbow plot from k-means clustering, and cluster exemplars selected 
for synthesis and testing. 
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In the FA approach, a new in silico library was constructed containing focused variation 

around the oxazoline 4-positions of L1p and the first nearest neighbor L3a (Figure 7B). Synthetic 

concerns and commercial availability were considered to construct a 320-member combinatorial 

library comprising 64 options for 4,4’-BOX substitution and five options for 5,5’-BOX 

substitution, while conserving the 4-tolylmethyl bridging substituent present in L1m. The focused 

analogue library was then clustered using a k-means clustering algorithm with six clusters. 

Exemplars of the four clusters not represented by L1m or L3a were selected for synthesis and 

testing in the reaction (Figure 7B, L4a-L4d).  

Altogether, one ligand was identified by supervised QSSR modelling (L2), seven ligands 

were identified by the semi-supervised NN approach (L3a-L3e, L3a’, L3b’) and four ligands were 

identified by the semi-supervised FA approach (L4a-L4d). All 12 ligands were tested in duplicate 

with the five substrate combinations of interest (Figure 8). The ligand from supervised modeling, 

L2, performed less selectively than predicted, providing a modest 82% ee for product 3a with an 

absolute error of 2.06 kcal/mol.  

 

Figure 8. Box-and-whiskers plots of enantioselectivity data for model prediction, nearest 
neighbors, and focused analogue selections over five products.  

 Training Data vs. (Semi-)Supervised Ligand Selection
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Figure 9. Improvement in reaction enantioselectivity from initial commercial ligand screen to 
final optimal ligands for each product. 
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The semi-supervised approaches were more fruitful.Focused analog exemplars L4c and 

L4d emerged as new optimal ligands for substrate combinations 3b and 3c, delivering 88% ee and 

98% ee, respectively. Nearest neighbor ligands L3d and L3a were new optima for 3d and 3e at 

81% ee and 96% ee, respectively (Figure 9). Nearest neighbor bridging group analogues performed 

well for 3b and 3e, but underperformed the actual nearest neighbors for products 3a, 3c, and 3d 

and in no cases emerged as new optimal ligands. Overall, four out of five substrate combinations 

were optimized past the initial UTS hit by the semi-supervised approaches. All substrates were 

delivered in good to excellent enantioselectivity (81 – 98% ee) following UTS selection and one 

iteration of the semi-supervised selection methods (Figure 9). 

 

DISCUSSION 

 Steric Diversity of BOX UTS and Limitations of Commercially Available BOX 

Ligands. The BOX ligand UTS was selected with the intention of capturing more chemical 

diversity in the ASO chemical space than would be provided by ligands that are currently 

commercially available. The subset selection was informed by a k-means analysis and the elbow 

method, although expert triaging for synthetic considerations led to some deviation from the 

optimal k-means solution (see the Supporting Information). Even so, when compared with a 

representative subset of ligands that are commercially available or accessible from a commercial 

ligand in one step, the selected UTS displayed greater total variance in ASO chemical feature 

space. Although synthetic methods to access BOX ligands have improved in recent years,45b, 50 the 

number of commercial ligands is still rather limited in their representation of the steric space 

accessible with the BOX ligand scaffold. Indeed, as of submission of this work the diversity of 

4,4’-substitution displayed in commercially available BOX ligands is limited primarily to simple 
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alkyl- and aryl- substituted ligands and their corresponding methylene homologues, with 4,4’-

phenyl substitution being the most common (Figure 10A). Diversity in 5,5’-substitution is even 

more limited, with most examples displaying unsubstituted, non-stereogenic 5,5’- substitution. 

Substitution at the methylene bridging position in commercial ligands is somewhat more diverse, 

but mostly limited to benzylic arene substituents and some spirocycles (for full details of 

commercial search, see the Supporting Information). Rational in silico library construction 

considering synthetic accessibility ensures that the breadth of accessible BOX ligand steric effects 

is represented in the ASO chemical feature space. Coupled with a selection method emphasizing 

diversity, the BOX UTS represents unique steric contributions that are not captured in 

commercially available ligands alone (Figure 10B). It is worth noting that owing to the sparse 

sampling of the very large BOX in silico library, one might expect a random selection of 26 ligands 

 

Figure 10. (A) Summary of SciFinder search results for commercial, enantiopure C2-symmetric 
BOX ligands. (B) All commercial BOX ligands versus BOX UTS in ASO feature space. 
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to be as diverse as the ligands presented herein. Empirical analysis of 1,000 different random 

subsets from the BOX ligand in silico library demonstrates that random selection tends to be less 

diverse than an informed selection, although representation of the space is quite similar, a 

consequence of the deviation from the optimal k-means solution due to synthetic considerations 

(see the Supporting Information).  

 The diversity of the BOX ligand UTS in ASO feature space is mirrored in the wide range 

of empirically observed enantiomeric excesses in the VMA reaction (Figure 5B). This outcome is 

expected given the high variance of the ligands in ASO feature space. The identity of the aldehyde 

and the corresponding butenolide product can bias selectivity across all catalysts. Product 3d 

bearing 3,5-difluoro substitution on the arene ring tended to be less selective with all catalysts and 

did not show selectivities > 80% in the initial UTS screening. Product 3e with 2,4-difluoro 

substitution tended to be more selective, as evidenced by the observed highest median UTS 

selectivity compared to the other products (Figure 5B). It is worthy of note that 4-methyl 

substitution on the 2-siloxyfuran starting material 1 had a significant impact on stereoselectivity. 

Omitting this substituent led to racemic products for most catalysts (see the Supporting 

Information). Finally, ligand L1o tended to show a generally inverted sense of stereoinduction 

compared to the other catalysts for all products. This ligand, containing a 3-pyridyl substituent at 

the stereogenic oxazoline 4,4’ positions, could permit a different ligand binding mode than the 

other UTS members, leading to an inverted sense of stereoinduction.  

 Motivation for Semi-Supervised Selection Methods and Considerations for Substrate-

Catalyst Interactions. Given that L1m was the most selective UTS ligand for all five products, 

the nearest neighbors and focused analogues approaches emerged as logical next steps to explore 

the space around this selective ligand. Initially, it seemed sensible to explore the local space around 
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L1m to understand the limitations encountered with supervised QSSR modelling. Very few 

ligands in the initial screening campaign exceeded 80% ee, so there were few labelled examples 

for model training in the range of selectivities of interest for further ligand optimization. The 

nearest neighbors and focused analogues approaches were intended to provide more data within 

this region to improve the robustness of the models. Furthermore, given that the nearest neighbors 

and focused analogues are rather similar in feature space to the highly selective ligand (see the 

Supporting Information), these approaches serve to probe the continuity of the selectivity-response 

surface within the chemical feature space. A continuous selectivity-response surface is appropriate 

for predictive modelling, and large discrepancies in observed data between a given catalyst and its 

nearest neighbor (‘activity cliffs,’ or in this case, ‘selectivity cliffs’)52 indicate that the choice of 

catalyst featurization may be inadequate for regression model development (Figure 11A). In our 

approach, the distance in chemical space to L1m was used to prioritize ligands for synthesis, which 

were further triaged on the basis of structural considerations by the experimentalist. The resulting 

selection deviates from an exact nearest neighbors approach, but the response surface is still 

generally conserved for products 3a, 3b, and 3e, where L1m and the closest nearest neighbor 

ligand L3a emerge as the first or second-most selective ligands when focused analogues are 

omitted. Products 3c and 3e have a discontinuous response surface, as optimal nearest neighbor 

enantioselectivities are achieved with more distal ligands L3d or L3o. 

The nearest neighbors, selected from the larger in silico library, tended to be more proximal 

to L1m in ASO chemical space than the focused analogues (Figure 11B and 11C). For substrates 

2a, 2b, and 2c, the focused analogue ligands generally outperformed the nearest neighbors, 

indicating that at the BOX 4,4’-positions, 4-(1-naphthyl)phenyl and 4-benzylphenyl-substitution  
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Figure 11. (A) Graphical representation of discontinuous versus continuous structure-selectivity 
response surfaces. Location of nearest neighbors (B) and focused analogues (C) in ASO chemical 
space.  
 

is especially advantageous for these substrates and some continuity exists in the structure-

selectivity response surface around ligand L1m. Indeed, 3c is produced with excellent 
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enantioselectivity with all the focused analogues. This outcome indicates that the focused analogue 

scaffold engenders significant steric control in the stereo-determining step of this reaction, perhaps 

owing to favorable p-stacking interactions between the pendant arenes of the ligand and the 

electron-deficient p system of aldehyde 2c. In contrast, optimal stereoselectivities for products 3d 

and 3e were achieved with nearest neighbors. Aldehydes 2d and 2e are more p-rich than 2a, 2b, 

or 2c, so it is not surprising that a more significant deviation from the L1m scaffold is necessary 

to achieve higher selectivities with these products. Overall, these results demonstrate that multiple 

‘islands’ of high selectivity exist within the ASO feature space. Products 3a – 3c tend to reach 

optima in a more similar region to the UTS hit L1m, whereas the more dissimilar products 3d and 

3e require more dissimilar ligands from L1m. Therefore, it can be concluded that selectivity in 

this reaction is determined not only by ligand effects, but also by significant substrate-ligand 

interactions. New descriptors capturing ligand electronic and dispersion effects could provide a 

more meaningful feature space for examining these effects, and efforts in this area are underway. 

 Considerations for Applying Semi-Supervised and Supervised Catalyst Selection 

Methods. Although respectable QSSR models could be constructed with the BOX UTS training 

data, the models could not be satisfactorily validated in out-of-sample ligand predictions, 

particularly for the highly selective ligand L1m. This behavior was assessed by a leave-one-

catalyst-out validation scheme, both with and without substrate descriptors. The CAGB descriptors 

used for modelling outperformed one-hot and random descriptors in control tests, but the resulting 

QSSR models chronically underpredicted ligands that were empirically demonstrated to have high 

selectivity (see the Supporting Information). This result is likely obtained because: (1) the bias in 

the data set toward ligands that have moderate to low selectivity and (2) discontinuity in the SSR 

surface for these intermediate ligands and the highly selective ligand L1m. QSSR modelling is 
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further complicated by the high dimensionality of the CAGB descriptors which require feature 

selection or dimensionality reduction techniques to produce a lower-dimensional feature space 

amenable to modelling the small dataset generated in this study (see the Supporting Information). 

Efforts to realize effective, unsupervised dimensionality reduction techniques for these descriptors 

are underway with the intention of developing a workflow that is more appropriate for the smaller 

datasets that are typically encountered in catalyst optimization campaigns. 

 The nearest neighbors and focused analogues approaches can be seen as very simple, semi-

supervised catalyst selection techniques. Although these techniques may simply suggest ligands 

that are intuitively similar to the ligand that spurred the semi-supervised exploration (i.e. L1m), 

the additional benefits of these methods are contingent on the composition of the in silico library 

and the choice of catalyst featurization technique both implemented by the designer. The full BOX 

library and the focused analogues library are constructed with attention to synthetic accessibility 

and precursor commercial availability. The libraries are intended to be broadly representative of 

possible BOX ligands, without including intuitive human biases. Therefore, the prospect of 

selecting ligands that are non-intuitive for the experimentalist is bolstered by an unbiased in silico 

library. These semi-supervised methods are also easily actionable. QSSR modelling requires 

significant time, effort, and specialized knowledge, whereas the nearest neighbors and focused 

analogues approaches described herein can be applied by an experimentalist without requiring 

significant troubleshooting and specialist knowledge. In combination with our newly developed 

chemoinformatics package designed for processing large in silico libraries, the entire workflow, 

starting from a CDXML file of combinatorial ligand substituent fragments to ligand 

recommendation, can be accomplished with minimal programming expertise. 
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CONCLUSION AND OUTLOOK 

 Unsupervised subset selection was used to identify a diverse set of 26 BOX ligands from 

a large in silico library of synthetically accessible ligands. The diversity of the BOX UTS led to 

the identification of a highly selective ligand L1m for the VMA reaction between 2-siloxy-4-

methylfuran 1 and five different aldehydes substrates 2a – 2e. The BOX UTS disclosed herein is 

significantly more varied than commercially available ligands and thus represents ligands that have 

unique steric properties compared to those which have been disclosed to date. While initial HTE 

campaigns considering commercial ligands did not reveal highly selective ligands, BOX UTS 

selection provided a subset with a wide range of observed enantiomeric excess and identified a 

ligand with better selectivity than any of the commercial ligands considered in the first round of 

HTE optimization. A nearest neighbors analysis and a focused analogues exemplar selection 

technique applied in the vicinity of the selective ligand L1m led to the identification of 11 new 

BOX ligands. These ligands reached new optimal selectivities for four out of five VMA products, 

including achieving 93% ee and 22:1 syn/anti for 3a, an intermediate in the synthesis of a PRMT5 

inhibitor under development. These approaches are simple, easily actionable, and effective at 

identifying more selective ligands for the VMA reaction. With BOX ligands L1a-L1z on hand, 

future optimization campaigns using this ligand scaffold will be greatly accelerated. Future work 

will leverage the data generated from the semi-supervised approaches for the development of more 

accurate QSSR models. Graph-based dimensionality reduction techniques are being developed to 

produce information-rich lower-dimensional feature spaces from the multidimensional CAGB 

descriptors that may be more appropriate for QSSR modelling in data limited scenarios. 
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