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Abstract

Many important industrial processes rely on heterogeneous catalytic systems. How-

ever, given all possible catalysts and conditions of interest it is impractical to optimize

most systems experimentally. Automatically generated microkinetic models can be

used to efficiently consider many catalysts and conditions. However, these microkinetic

models require accurate estimation of many thermochemical and kinetic parameters.

Manually calculating these parameters is tedious and error prone involving many inter-

connected computations. We present Pynta, a workflow software for automating the

calculation of surface and gas-surface reactions. Pynta takes the reactants, products

1Current affiliation: Maciej Gierada Technologies, Krukowskiego 1, 26-600 Radom, Poland
2Current affiliation: Quantum-Si, Guilford 06437, Connecticut, United States
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and atom maps for the reactions of interest, generates sets of initial guesses for all

species and saddle points, runs all optimizations, frequency, and IRC calculations and

computes the associated thermochemistry and rate coefficients. It is able to consider

all unique adsorption configurations for both adsorbates and saddle points allowing it

to handle high index surfaces and bidentate species. Pynta implements a new sad-

dle point guess generation method called harmonically forced saddle point searching

(HFSP). HFSP defines harmonic potentials based on the optimized adsorbate geome-

tries and which bonds are breaking and forming that allow initial placements to be

optimized using the GFN1-xTB semiempirical method to create reliable saddle point

guesses. This method is reaction class agnostic and fast, allowing Pynta to consider

all possible adsorbate site placements efficiently. We demonstrate Pynta on 11 diverse

reactions involving monodenate, bidentate and gas-phase species, many distinct reac-

tion classes and both a low and a high index facet of Cu. Our results suggest that

it is very important to consider reactions between adsorbates adsorbed in all unique

configurations for inter-adsorbate group transfers and reactions on high index surfaces.

Introduction

Heterogeneous catalysis plays a key role in energy technology and in the chemical indus-

try in general.1 Catalysts are widely used to upgrade heavy fossil fuels,2 enable the partial

reduction of bio-derived feedstocks,3,4 and convert small molecules (CO, CO2, CH4, etc.)

into larger and more valuable compounds.5–7 Besides synthesis, heterogeneous catalysis is

also used in pyrolysis and exhaust emissions management8,9 and heterogeneous processes

are also crucial to battery technology.10,11 Typical catalysts used in these processes are met-

als, their alloys, or metal oxides, often in a nanoparticle form. Catalytic reactions of a

gas feedstock over these surfaces are fundamentally complex: they involve many reactions

among gas-phase and adsorbed species and the yields of desired products depend on tem-

perature, pressure, composition and the nature of the exposed catalyst surface. This makes
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it incredibly impractical to optimize heterogeneous systems using experiments alone.

A large body of theoretical work describing catalytic processes on surfaces can be found

in the literature12,13 where the goal is to produce microkinetic models that can be used to

interpret experimental findings as well as for optimizing conditions and catalysts to improve

catalytic efficiency. However, manual exploration of the reaction mechanisms and character-

ization of elementary reaction steps are difficult and slow.14 Automation, taking advantage

of modern computing resources, offers a viable path towards accelerating catalysis research

at the molecular scale.

Automatic microkinetic model generators such as the Reaction Mechanism Generator

(RMG) tool14–18 provide a way to rapidly test catalysts and conditions. Such tools use data

science approaches to estimate unknown thermochemical and kinetic parameters based on ex-

isting information within their databases. However, the reliability of such estimates depends

upon having large quantities of representative training data for generating estimators.17,19

Furthermore, even when relatively accurate estimators are available to use in mechanism gen-

eration, the generation of reliable chemical mechanisms almost always requires the explicit

calculation of a significant number of important reaction parameters.

Manually calculating microkinetic parameters involves many interdependent calculations

and can be tedious and error-prone. Identifying the lowest energy structure of all reactants

and products and then generating saddle point (SP) guesses that can reliably optimize to

the lowest energy saddle points connecting reactants and products is a complex and delicate

task. The most widely used approach in the literature is using chemical intuition and the

energies of the separated reactants, to select a configuration of reactants and products. From

that configuration, the researcher either manually guesses a transition state structure or uses

a relatively expensive and more complex SP guess generation method, such as nudged elastic

band (NEB).20–23 Once the initial SP guess is generated, it must be optimized, hopefully

to the desired SP. The investigator can determine if the optimized SP connects the correct

reactants and products by analyzing its imaginary vibrational mode24 or through the intrinsic
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reaction coordinate (IRC) method.25 A systematic approach to all of this, especially when

the surface has multiple possible minima, demands meticulous care from the kineticist. In

addition to all of the manual effort, they must correctly guess all of the unique placements of

the adsorbates, of the SP, and either guess a good SP structure themselves or run what can

often be a computationally expensive calculation to generate a good SP guess. Our goal is to

develop a new computational workflow tool that is comprehensive, cheaper, and eliminates

most of the manual labor from this process.

Similar challenges posed in the exploration of gas-phase systems have led to the devel-

opment of many workflow tools that automate quantum chemistry calculations. Software

for computing thermochemistry and rate coefficients for gas-phase kinetic systems include

ARC,26,27 Automech,28,29 and KinBot.30–32 The Automat33,34 package can automate the

calculation of the energies of adsorbed species. However, we are not aware of any widely

distributed software able to automate kinetics calculations for surface reactions.

In this work we present Pynta (https://github.com/zadorlab/pynta), a workflow code

that automatically calculates thermochemistry and rate coefficients of surface and gas-surface

reactions from a simple 2D molecular graph representation of the reactants and products.

Pynta implements a novel TS guess technique we call harmonically forced saddle point

(HFSP) search to efficiently generate many saddle point guesses that can be filtered down to a

tractable set of geometries to optimize. With this technique in hand, Pynta is able to generate

initial guesses for adsorbates, to optimize adsorbate geometries, calculate frequencies for

adsorbates, use the adsorbate geometries to generate saddle point guesses, optimize the best

guesses and calculate frequencies and run intrinsic reaction coordinate (IRC) calculations

for successful saddle point optimizations. The results can then be post-processed to give

thermochemistry, barriers, and rate coefficients for each reaction. Pynta is designed to be

able to take advantage of current petascale and upcoming exascale computing resources.
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Workflow

Figure 1: Diagram of Pynta’s workflow. Symmetrical geometries are filtered out after every
optimization operation. Gray arrows represent postprocessing steps. For steps involving
quantum chemistry calculations the level of theory and any optimizers used are noted.

A diagram of Pynta’s full workflow is presented in Figure 1. We provide details on in-

dividual steps in later sections. Overall, provided a list of reactions and a surface, Pynta

starts by extracting the unique adsorbates from the list. If the slab geometry is not already

available, it is generated and optimized. Initial adsorbate geometries are generated, placed

on the surface, and optimized using the GFN1-xTB semiempirical method35 augmented with

harmonic potentials to generate a set of adsorbate guesses. The unique filtered guesses are
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optimized at the user-specified level of theory (usually DFT) first using ASE’s MDMin36

method (an adaptive gradient descent optimizer) until fmax ≤ 0.5, and then ASE’s BFGSLi-

neSearch37 implementation for the rest of the optimization. This two staged approach uses a

weak gradient based optimizer followed with an aggressive Newton optimizer for robustness.

Starting with the weak optimization helps ensure the adsorbate relaxes to the site it is placed

on provided it can bind to that site.

Once the adsorbates are optimized using ASE, the workflow starts two processes. In one,

we calculate frequencies by evaluating the Hessian of the energy with respect to the adsorbate

atom positions for all unique successfully optimized structures. In the other, Pynta uses

these adsorbate structures to generate placements of adsorbates for saddle points, run the

HFSP search and then optimize the chosen saddle point guesses using Sella.38–40 Frequency

and IRC calculations38–40 are then run for the unique successfully optimized saddle point

structures. With optimized reactant, product, and saddle-point geometries and frequencies,

thermodynamic and kinetic parameters can be calculated in our postprocessor provided

with the code. The correctness of the saddle points can be verified based on the imaginary

mode and/or IRC calculations also using the postprocessing tool. After each step redundant

structures are identified and removed using ASE’s SymmetryEquivalenceCheck tool.

The slab calculations and the adsorbate xTB optimizations are calculated serially at the

start. The FireWorks workflow management software41 is then used to handle all of the

time-consuming DFT optimizations, frequency calculations, IRC calculations, and the SP

placement, and HFSP operations.

The workflow takes advantage of already available computational tools. The Atomic Sim-

ulation Environment (ASE)36 provides a way to run many kinds of quantum chemistry cal-

culations using a wide range of quantum chemistry codes through a unified Python interface.

Sella38–40 provides a powerful ASE-compatible algorithm for saddle point optimization, con-

strained minimization and IRC calculations. We use the Alloy Catalysis Automated Toolkit

(ACAT)42 to identify and place adsorption sites on catalytic surfaces (an analogous tool to
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CatKit43). Furthermore, for initial guess generation for both adsorbates and saddle points,

Pynta makes significant use of the semiempirical GFN1-xTB method.35,44,45 Lastly, we use

FireWorks41 to manage the large number of calculations on high-performance computing

platforms.

Reaction Encoding

In order to initiate calculations for a surface reaction, Pynta needs to know the chemical

nature of the reactants and the products and a mapping from reactants to products of all

atoms participating in bonds that are formed or broken during the reaction. This mapping,

called the atom mapping, indicates which atoms in the reactant correspond to which atoms in

the product. This information is encoded as an adjacency list of the reactants and products

as defined in the RMG package,15–17 illustrated in Figure 2.

This reaction information is included in the reactions.yml file, and an example is given

in Figure 2. All reactant and product connections are described within respective adjacency

lists, and each atom that breaks or forms bonds in the reaction is assigned a unique label

such as *1 that identifies it in both the reactants and the product structures. Note that

the validity of an adjacency list can be easily tested on the RMG website molecule tool

https://rmg.mit.edu/molecule_search. Pynta’s saddle point guess generation algorithm,

HFSP, is reaction class agnostic, so within the workflow the reaction and reaction_family

parameters are used for labeling only.

Slab Optimization

In order to calculate reaction properties on surfaces, Pynta needs a slab, characterized by the

lattice constant, the facet type, and physical dimensions (i.e., number of layers and extent

of each layer). Pynta can read in slab files prepared by the user corresponding to the desired

level of theory provided the slab atoms are ordered from bottom layer to top layer. If not
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- index: 0
reaction: OH* + X <=> O* + H*
reaction_family: Surface_Dissociation
reactant: |
1 *1 O u0 p2 c0 {2,S} {4,S}
2 *2 H u0 p0 c0 {1,S}
3 *3 X u0 p0 c0
4 X u0 p0 c0 {1,S}

product: |
1 *1 O u0 p2 c0 {4,D}
2 *2 H u0 p0 c0 {3,S}
3 *3 X u0 p0 c0 {2,S}
4 X u0 p0 c0 {1,D}

Figure 2: An example of a reactions.yml file containing adjacency lists representing the
OH∗+∗ −−→←−− O∗+H∗ reaction. The adjacency list format starts with an optional multiplicity
line at the top that defaults to 1 if not present. All subsequent lines first include (1) the
ordered index (starting from 1) of an atom, (2) an optional label for that atom starting with
*, (3) the element name for the atom (adsorption sites are represented as atoms with label
X), then (4) u followed by the number of unpaired electrons on the atom, (5) p followed by the
number of electron pairs on the atom, and (6) c followed by the charge of the atom. Lastly, (7)
the bonds of that atom are specified in the format: {index of the bonded atom, order
of bond}. The order is specified with a letter where vdW corresponds to hydrogen or other
pseudo bonds, S corresponds to single bonds, B corresponds to benzene bonds, D corresponds
to double bonds, T corresponds to triple bonds, and Q corresponds to quadruple bonds. The
labels (*1,*2,*3) identify all atoms that form or break bonds in the reaction in both the
reactants and products. Pynta assumes that the atom labeled as *1 in the reactants is the
atom labeled by *1 in the products and so on.
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provided, however, Pynta can optimize the lattice constant and generate and optimize the

slab as part of the workflow.

Pynta first finds the corresponding experimental lattice constant value within ASE36 and

calculates the energy of the primitive cell between 0.1 Å above and below the experimental

value at 0.01 Å increments. The seven lowest energies are fit to a parabola, and the lattice

constant corresponding to the minimum of the parabola is found. Then the parabolic value

is optimized further using SciPy’s bounded method between 0.01 Å above and below the

parabolic value. Once the lattice constant is known, Pynta will use ASE36 to generate a

slab corresponding to the lattice constant with the requested physical dimensions and facet

specifications. This slab is then optimized while freezing a specified number of layers on

the bottom of the slab to give the final slab geometry for use in the adsorbate and reaction

calculations.

Harmonic Potentials

For initial guess generation for both adsorbates and saddle points Pynta makes significant use

of the GFN1-xTB35,44,45 method combined with specific harmonic potentials. This combina-

tion allows Pynta to efficiently optimize structures while softly enforcing certain constraints.

In Pynta, harmonic potentials can be defined between an atom and a point, or between

two atoms:

Eharm =
∑
b

kb(db − deq,b)
2 (1)

Fharm,j = 2
∑
b ifj∈b

kbnb,j(db − deq,b) (2)

where b corresponds to a single harmonic potential/bond, j corresponds to an atom, j ∈ b

indicates that atom j is a part of harmonic potential b, Eharm is the total harmonic energy,

kb is the force constant of the bth potential, deq,b is the equilibrium (i.e., desired) distance

of the bth potential, Fharm,j is the harmonic force vector associated with the jth atom, and

nb,j is the component of the unit vector associated with atom j in the direction from atom j
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along harmonic bond b to the other atom or point. These harmonic potentials allow Pynta

to keep atoms approximately at a specified distance from each other or from a point during

geometry optimization.

Adsorbate Initial Guess Generation

The use of harmonic potentials to generate initial adsorbate guess geometries for monoden-

tate and bidentate species is illustrated in Figure 3. We first use the ACAT package42 to

analyze the surface and identify all unique sites and all unique pairs of sites. For each ad-

sorbate, we use RDKit46 to generate an initial desorbed gas-phase structure. Then, for each

unique site or pair of sites, we define harmonic potentials with kb = 100 eV/Å2, which we

will refer to as khard, and deq = 0 Å between the adsorbate atoms that are directly bonded

to the surface and the estimated position for each of these atoms. The latter are defined as

the nominal ACAT site location translated along the z coordinate by ∆z above the surface.

The distance, ∆z, is determined based on the site type (bridge, hollow, etc.) and element

identity of the binding atom. These potentials keep the adsorbates from desorbing from

the surface when we optimize with the GFN1-xTB method. For monodentate adsorbates,

we also add a harmonic potential between all atoms not bonded to the surface and a point

8.5 Å above the binding site with ksoft = 0.1 eV/Å2 and deq = 0 Å. This potential prevents

initial monodentate adsorbates from optimizing into bidentate structures in the initial guess-

generation step. We optimize the geometries using the GFN1-xTB potential combined with

the harmonic potentials while freezing the length of all bonds between atoms (as defined by

the adjacency list) to generate an initial guess geometry. For bidentate adsorbates, we also

perform a second optimization with the same combined potential, but the bond lengths are

allowed to relax. The geometry minimizations for the guess generation stage are done using

Sella with a maximum force (fmax) convergence criterion of 0.02 eV/Å .

However, in the bidentate case, this procedure can generate hundreds of adsorbate

guesses, far more than it is usually practical or necessary to compute. This occurs because of
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(a) (b)

Figure 3: Schematic representation of initial guess optimizations for (a) monodentate and (b)
bidentate adsorbates. The metal atoms are dark red, oxygen atoms are bright red, carbon
atoms are dark grey and hydrogens are white. Green circles represent fixed points in space
towards which atoms are pulled by harmonic potentials shown as springs.

the large number of site combinations, many of which represent unphysical scenarios: sites

can be too close straining the ring the bidentate adsorbate forms with the surface, or sites

can be too far apart, straining and eventually breaking bonds in the bidentate adsorbate.

Note that this challenge also occurs for many saddle point guesses as will be discussed later,

because many saddle points involve multiple sites. Unfortunately, it is difficult to reliably

resolve this problem by restricting the pairs of sites considered using geometrical or simi-

lar arguments, because many bidentate adsorbates (and saddle points) involve non-adjacent

sites in non-intuitive ways. In both cases we solve this problem using what we refer to as a

harmonic filter. When a system has at least two (hard) harmonic potentials, the harmonic

energy Eharm is a measure of how hard the springs are pulling against each other and how

strained the system is. We, therefore, use Eharm to filter out overly strained systems at the

guess generation stage using the following criteria. First, we demand that Pynta include all

guesses such that

Eharm < τ1Eharm,min (3)

where Eharm,min is the energy of the guess with the lowest harmonic energy and τ1 is a set
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tolerance with a default value of 3.0. Second, we exclude all guesses such that

Eharm > τ2 · Eharm,min (4)

where τ2 is a set tolerance with a default value of 30.0 – these are highly strained structures.

Finally, we add the remaining lowest harmonic energy guesses until we have NTSmin (defaults

to 5) guesses or until we run out of guesses. A plot showing how this filter works for the

OH∗ + ∗ −−→←−− O∗ + H∗ reaction is shown in Figure 4. These tolerances τ1 and τ2 can be

adjusted as desired to control how comprehensively the user wishes to search the space of

bidentate adsorbates and saddle points.

Figure 4: Illustration of the harmonic filter for the OH∗ + ∗ −−→←−− O∗ + H∗ reaction. Below
the blue (lower) line all guesses are selected and above the orange (upper) line no guesses are
selected for DFT optimization. In this case, there are more than NTSmin = 5 guesses already
under the orange line, so no guesses are drawn from between the two limits. However, in
cases where there are fewer than NTSmin = 5 guesses under the blue line, guesses between
the blue and orange lines are included up to NTSmin = 5.

Harmonically Forced Saddle Point (HFSP) Guess Generation

Most reactions of interest on surfaces involve more than one site. As was the case with

bidentate adsorbates, even on a 3 × 3 surface there are often hundreds of unique ways to

position the reactants and products (including participating vacant sites) in the unit cell,
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and it is far from trivial to determine a priori what placements can or cannot lead to saddle

points for arbitrary reactions, especially considering the variety of catalytic surfaces.

Many popular methods for generating saddle point guesses typically require either signif-

icant computational expense such as in the NEB,20–23 GSM47–49 and AFIR50–53 methods, or

significant amounts of heuristics or data such as in KinBot,30–32 AutoTST54,55 or TS-GCN.56

Naturally, we need to avoid the cost of running hundreds of NEB, GSM or AFIR calculations

per reaction. At the same time, there are only a limited number of saddle point structures

from databases available to build guess estimators like KinBot, AutoTST, and TS-GCN. For

instance, the Catalysis Hub database57 is able to store saddle point geometries for reactions,

but only a small fraction of reactions have barriers heights and only a small fraction of those

reactions include saddle point geometries. The Open Catalyst dataset58 does not include

any transition state structures.

In short, for Pynta to be an efficient kinetics code for heterogeneous catalysis, it requires

a saddle point guess method that is fast and uses minimal data. Additionally, it would be

desirable for this method to be reaction class agnostic and able to handle a wide range of

surface reactions. To this end, we developed our Harmonically Forced Saddle Point (HFSP)

search algorithm, a method with all of the aforementioned properties, which borrows and

fuses ideas from KinBot and AFIR.

Figure 5: Harmonically forced saddle point search. The notation is the same as in Figure 3.

HFSP defines harmonic potentials for a saddle point based on the breaking and forming

bonds as prescribed in the reaction’s adjacency list (see Figure 2). These harmonic potentials
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pull target structures into saddle point guess structures as illustrated in Figure 5. For a

given set of site placements, as was done for adsorbates, we define harmonic potentials

(khard = 100 eV/Å2, deq = 0 Å) that keep surface-bound atoms bonded to the surface close

to their associated site for each surface bond that does not break in the reaction. For

bonds that break or form in the reaction we define harmonic potentials either between the

adsorbate atoms or for surface bonds between an atom and a point above the site. Each of

these harmonic potentials also has khard = 100 eV/Å2. Since we have the optimized structures

for both the reactants and products, we are able to find the length of each broken/formed

bond, dwell.i, in either the reactants or the products. The target point for site bonds is set

so that ∆zi = dwell,i above the site location. Lastly, we define deq,i with

deq,i = fbdwell,i (5)

where fb is a bond stretch factor, which is applied to all bonds that are broken or formed,

relative to the bond length in the structure where this bond exists. We define fb based on

a small set of heuristics

fb =



0.2 if X− R

1.25 if R− R intramolecular

1.4 if R!H− R!H intermolecular

1.6 if R− H intermolecular

(6)

where X denotes a surface site, R denotes any adsorbate atom, R!H denotes an adsorbate

atom that is not a hydrogen, and H denotes a hydrogen. Intramolecular bonds are bonds that

connect two atoms on the same adsorbate when formed. Bonds that are not intramolecular

are considered intermolecular. Importantly, these heuristics are all reaction class indepen-

dent. However, estimates of the bond stretch factor fb likely can be improved in the future

by learning based on data, for instance, using a machine-learning-based predictor based on
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the subgraph isomorphic decision tree (SIDT) technique.19 However, we will demonstrate in

this work that these simple heuristics are sufficient by themselves to handle most reactions.

Similarly to the treatment of the adsorbates, GFN1-xTB augmented with the harmonic

potentials is used for the optimization of these structures. The optimization is carried out

by Sella with fmax = 0.02 eV/Å. Note that here we are using Sella as an energy minimizer

rather than a saddle point optimizer. We then apply the harmonic filter (see Figure 4) to

obtain a tractable set of saddle point guess geometries.

Statistical Mechanics

Pynta currently computes thermochemistry and kinetics based on the rigid rotor harmonic

oscillator model for all gas-phase species and based on the 2D lattice gas model for adsorbed

structures. Thermochemistry is calculated using ASE’s36 thermochemistry module. We

assume that the located saddle point is a transition state.

We currently calculate rate coefficients based on the work in Campbell et al.59 An alter-

native formulation is available in Hermes et al.60 We start from the equation

R

A
=

kBT

h
· NTS

A
· 1

qTS,rc

(7)

where R
A

is the reactive flux per unit area, kB is the Boltzmann constant, T is temperature,

NTS

A
is the number of transition state complexes present per unit area, and qTS,rc is the

partition function associated with the reaction coordinate in the transition state. Assuming

that the transition state is an ideal 2D lattice gas we have

NTS

A
= θTS

M

A
= Keq,TS(1− θtot)

M

A

∏
i

ai (8)

where M
A

is the number of sites per unit area, θTS is the coverage fraction of the transition

state on the surface, Keq,TS is the equilibrium constant between the reactants and the tran-
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sition state, and
∏

i ai is the product of the activities of the reactants. For ideal 2D lattice

gas adsorbates

ai =
ci(1− θ0)

θ0(1− θtot)

A

M
(9)

where θ0 = 0.5,59 ci is the concentration of reactant i, and θtot is the total coverage fraction

of all the reactants. For gas-phase species we have

ai = (ci/c0) (10)

where c0 = 2.4282 ∗ 1022molecules
L

. With the partition functions and energies we can obtain

Keq,TS

Keq,TS =
qTS∏
i qi

e−
(ETS−

∑
i Ei)

RT (11)

where qTS is the partition function of the transition state, qi is the partition function of the

ith reactant, ETS is the energy of the transition state, Ei is the energy of the ith adsorbate

and R is the gas constant. Substituting Equation 11 into Equation 8, and then Equation 8

into Equation 7 gives

R

A
=

kBT

h

qTS

qTS,rc

∏
i qi

e−
(ETS−

∑
i Ei)

RT (1− θtot)
M

A

∏
i

ai (12)

a tractable equation for computing rate coefficients. Plugging in Equations 9 and 10 we have

R

A
=

kBT

h

qTS

qTS,rc

∏
i qi

e−
(ETS−

∑
i Ei)

RT

(M
A

)1−Nads 1

c
Ngas

0

∏
i ci

(1− θtot)1−Nad
(13)

and

k =
kBT

h

qTS

qTS,rc

∏
i qi

e−
(ETS−

∑
i Ei)

RT

(M
A

)1−Nads 1

c
Ngas

0

(14)

where Nads is the number of adsorbates in the reactants, Ngas is the number of gas-phase

species in the reactants and k is the computed rate coefficient.
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Results

Table 1: Reactions on copper computed with Pynta in this work. NSP denotes the number
of saddle points found by Pynta, Ea,min denotes the lowest energy barrier in eV, Ea,max

denotes the highest energy barrier in eV and A (m,molecule,s), n and Ea (kJ/mol) denote
the Arrhenius parameters for the forward rate coefficient in appropriate units.

Reaction Reaction Image Facet NSP Ea,min Ea,max A n Ea Fig.

H∗ + O∗ ←−→ HO∗ + ∗ fcc111 4 0.882 0.912 2.452e-7 0.335 88.36 6

HO∗ + ∗ ←−→ H∗ + O∗ fcc111 4 1.661 1.692 3.631e-9 0.638 159.22 6

OCH∗ + ∗ ←−→ OC∗ + H∗ fcc111 2 0.158 0.168 3.557e-6 -0.381 18.26 7

OC∗ + H∗ ←−→ OCH∗ + ∗ fcc111 2 0.969 0.979 2.402e-5 -0.793 97.60 7

H∗ + ∗ ←−→ H∗ + ∗ fcc111 3 0.103 0.111 8.660e-7 0.019 12.44 8

OC∗ + O∗ ←−→ CO2 + 2∗ fcc111 2 0.441 0.441 6.289e-8 0.027 42.99 9

CO2 + 2∗ ←−→ OC∗ + O∗ fcc111 2 1.639 1.640 3.014e-46 1.907 155.47 9

HO∗ + H∗ ←−→ H2O + 2∗ fcc111 4 1.026 1.043 1.412e-4 -0.634 104.21 10

H2O + 2∗ ←−→ HO∗ + H∗ fcc111 4 1.095 1.111 4.183e-46 1.899 99.69 10

HOCH2
∗ + ∗ ←−→ CH3O∗ + ∗ fcc111 2 2.140 2.150 1.124e-4 -0.322 210.76 11

CH3O∗ + ∗ ←−→ HOCH2
∗ + ∗ fcc111 2 3.159 3.168 3.584e-10 1.991 307.60 11

OCHO∗ + ∗ ←−→ CO2 + H∗ + ∗ fcc111 3 0.522 0.539 1.608e-9 0.678 50.40 12

CO2 + H∗ + ∗ ←−→ OCHO∗ + ∗ fcc111 3 0.840 0.858 5.379e-43 0.753 80.39 12

H∗ + OCH2O∗∗ ←−→ HOCH2O∗ + 2∗ fcc111 3 0.740 0.762 1.315e-07 0.265 73.73 13

HOCH2O∗ + 2∗ ←−→ H∗ + OCH2O∗∗ fcc111 3 1.258 1.281 3.654e-30 0.948 120.34 13

N∗ + CH3O∗ ←−→ CH2O + NH∗ + ∗ fcc111 11 0.576 0.802 5.218e-14 2.674 53.39 14

CH2O + NH∗ + ∗ ←−→ N∗ + CH3O∗ fcc111 11 1.058 1.284 1.280e-48 2.326 95.09 14

OCH∗ + ∗ ←−→ OC∗ + H∗ fcc211 1 0.382 0.382 2.603e-8 0.589 38.13 15

OC∗ + H∗ ←−→ OCH∗ + ∗ fcc211 1 1.147 1.147 6.887e-10 1.059 110.47 15

H∗ + O∗ ←−→ HO∗ + ∗ fcc211 4 1.195 1.556 4.730e-7 0.280 118.92 16

HO∗ + ∗ ←−→ H∗ + O∗ fcc211 4 1.836 2.196 2.404e-9 0.740 177.18 16

In order to demonstrate Pynta’s effectiveness, we ran Pynta on a diverse set of reac-

tions. The eleven chosen examples shown in Table 1 in both forward and reverse directions,

involve many different reaction classes, monodentate, bidentate, and gas-phase chemical
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species (with elements C, O, N, and H), and low and high index facets (fcc111 and fcc211

respectively) of copper. Note that there are 4 symmetrically unique sites on the fcc111 facet

and 14 on the fcc211 facet. All DFT calculations were run on a 3×3×4 slab with a (3x3x1)

k-point grid using the BEEF-vdW61 functional with PBE-KJPAW pseudopotentials62,63 and

a kinetic energy cutoff of 40 Ry as implemented in Quantum Espresso.64 All geometry opti-

mizations were run until the maximum force on each atom was smaller than 0.02 eV/Å and

all IRCs were run until the force was smaller than 0.1 eV/Å. The harmonic filter was run

with default tolerances. Further details are available in the supporting information. All

saddle points were validated visually using normal mode analysis and the IRCs through the

postprocessing tool. In the following sections we will discuss each reaction individually. The

accompanying saddle point images are positioned for best visibility, and the exact geometries

are available in the supporting information. The barriers in Table 1 are always given relative

to the lowest energy structure(s) of the reactant(s), and include the zero-point energy (ZPE).

When there are more than one reactants we calculate the reactant energies as the sum of the

energies of the isolated adsorbates rather than the coadsorbed structure. This is also how

the postprocessing module determines barrier heights and calculates rate coefficients.

H∗ + O∗ ←−→ HO∗ + ∗ on Cu111

This is one of the simplest reactions one can imagine on a surface, a simple bond fission

of a diatomic adsorbate. The four saddle points for H∗ + O∗ ←−→ HO∗ + ∗ on Cu111 are

available in Figure 6. All of the identified unique and valid barriers are similar for this

reaction. Pynta also finds an additional, fifth higher energy saddle point that puts the

hydrogen over a top site. The IRC indicates this supposed saddle point leads to the correct

reactants and products, however, frequency analysis shows that it is a higher order saddle

with a relatively large (219 cm−1) second imaginary frequency.
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Figure 6: Saddle points for H∗ + O∗ ←−→ HO∗ + ∗. From left to right barriers are: Top:
0.909 eV, 0.912 eV and 0.884 eV and Bottom: 0.882 eV.

Figure 7: Saddle points for OCH∗ + ∗ ←−→ OC∗ + H∗ on Cu111. From left to right barriers
are: 0.969 eV and 0.979 eV.
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OCH∗ + ∗ ←−→ OC∗ + H∗ on Cu111

The two saddle points found by Pynta for the simple adsorbate dissociation reaction, OCH∗ + ∗ ←−→

OC∗ + H∗, are available in Figure 7. The two reactions have very similar barriers and pri-

marily differ on what specific hollow site type the saddle point hovers over.

H∗ + ∗ ←−→ H∗ + ∗ Cu111

Figure 8: Saddle points for H∗ + ∗ ←−→ H∗ + ∗ on Cu111. From left to right barriers are:
0.104 eV, 0.103 eV and 0.111 eV.

The three saddle points for H∗ + ∗ ←−→ H∗ + ∗ diffusion on Cu111 are available in Figure

8. All of the barriers and geometries are similar and correspond to the same diffusion from

an fcc hollow to an hcp hollow. Using a tighter or more sophisticated Sella convergence

criteria would likely collapse these structures into a unique saddle. Since H∗ is only stable

adsorbed to the hollow sites on Cu111, this is the only possible diffusion reaction for H∗ on

the Cu111 surface. While we were able to calculate valid IRCs for this particular reaction,

running IRCs for diffusions at fmax = 0.1 does not usually generate useful IRCs. However,

visualizing the imaginary mode is usually sufficient to validate diffusion saddle points.

OC∗ + O∗ ←−→ CO2 + 2∗ on Cu111

The two saddle points for OC∗ + O∗ ←−→ CO2 + 2∗ on Cu111 are available in Figure 9.

These two saddle points look similar both in terms of barrier and geometry, however, they
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Figure 9: Saddle points for OC∗ + O∗ ←−→ CO2 + 2∗ on Cu111. From left to right barriers
are: 0.441 eV and 0.441 eV.

are different enough to be labeled as distinct: the breaking C-O bond length differs by about

0.04 Å between the two saddles.

HO∗ + H∗ ←−→ H2O + 2∗ on Cu111

The four saddle points for the dissociative adsorption reaction, HO∗ +H∗ ←−→ H2O+ 2∗ on

Cu111 are available in Figure 10. All of these saddle points are fairly similar in energy. Half

of them put the HO∗ on a fcc hollow and half on a hcp hollow. While three of them point the

hydrogen directly up, one distinctly tilts the H to the side. In that particular reaction the

HO∗ adsorbate drifts away from the hollow it hovers over and the H∗ relaxes to the hollow

it is over. In all of the other cases the reverse happens along the reaction path.

HOCH2
∗ + ∗ ←−→ CH3O∗ + ∗ on Cu111

In this reaction, an internal hydrogen migration is accompanied by an overall migration on

the surface and a change in the atom through which the adsorbate binds to the surface. The

two saddle points for HOCH2
∗ + ∗ ←−→ CH3O∗ + ∗ on Cu111 are presented in Figure 11.

The two pathways have very similar barriers and primarily differ on what specific hollow site

types the saddle point hovers over.
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Figure 10: Saddle points for HO∗ +H∗ ←−→ H2O+ 2∗ on Cu111. From left to right barriers
are: Top: 1.043 eV, 1.026 eV, and 1.034 eV, Bottom: 1.033 eV.

Figure 11: Saddle points for HOCH2
∗ + ∗ ←−→ CH3O∗ + ∗ on Cu111. From left to right

barriers are: 2.150 eV and 2.140 eV.
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OCHO∗ + ∗ ←−→ CO2 + H∗ + ∗ on Cu111

Figure 12: Saddle points for OCHO∗ + ∗ ←−→ CO2 + H∗ + ∗ on Cu111. From left to right
barriers are: 0.539 eV, 0.537 eV and 0.522 eV.

In this reaction the gas-phase CO2 lands on an adsorbed H atom, binds to it, and the

formed HCO2 stays adsorbed to the surface through one of the oxygen atoms. The three

saddle points for CO2 +H∗ + ∗ ←−→ OCHO∗ + ∗ on Cu111 are available in Figure 12. All of

these saddle points have similar barriers, and geometries. While the structures are distinct

geometrically, we believe they all represent the same saddle point. The optimization with

Sella has difficulty optimizing these structures because in the saddle CO2 has a very low

frequency (∼65 cm−1) motion associated with CO2 rotating relative to the the rest of the

saddle. This very flat dimension of the potential energy surface likely contributes very little

force to the structure making it difficult to optimize out when convergence is determined

based on forces. Using a more sophisticated set of convergence criteria, a possibility through

Sella’s custom convergence mode, may collapse all of these saddles into one.

H∗ + OCH2O∗∗ ←−→ HOCH2O∗ + 2 ∗ on Cu111

While this seems to be a relatively simple surface association/dissociation reaction, here,

a bidentate adsorbate associates with a hydrogen atom in the forward direction producing

two empty sites. Pynta found three unique and valid saddle points for H∗ + OCH2O∗∗ ←−→

HOCH2O∗ + 2∗ on Cu111, which are depicted in Figure 13. The associated barriers are all
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Figure 13: Saddle points for H∗ + OCH2O∗∗ ←−→ HOCH2O∗ + 2∗ on Cu111. From left to
right barriers are: 0.762 eV, 0.761 eV and 0.740 eV.

relatively similar. Interestingly, the IRCs reveal that the hydrogen does not relax to the

closest hollow site, usually drifting one site further out from the one it hovers over at the

saddle point.

N∗ + CH3O∗ ←−→ CH2O + NH∗ + ∗ on Cu111

This reaction involves a hydrogen transfer between two adsorbates, and the simultaneous

desorption of the donor. The identified saddle points for N∗ +CH3O∗ ←−→ CH2O+NH∗ + ∗

on Cu111 are presented in Figure 14. For this reaction, there were many similar harmonic

energy saddle point guesses and the harmonic filter only limited the number of saddle point

guesses to about 60. This is likely a result of the fact that this reaction is able to occur

between farther apart sites. 25 of those guesses converged to a saddle point, out of which 11

were unique and valid. Unlike the previous example, the barrier heights differ by as much as

0.23 eV between saddle points, justifying the computational cost associated with the large

number of trial calculations. We posit that a manual search is unlikely to yield the lowest

energy structure in this case.
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Figure 14: Saddle points for N∗+CH3O∗ ←−→ CH2O+NH∗ + ∗ on Cu111. From left to right
barriers in eV are: first row: 0.728, 0.635 and 0.802, second row: 0.626, 0.735 and 0.582,
third row: 0.768, 0.633 and 0.738, fourth row: 0.580 and 0.576.
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Figure 15: Saddle point for OCH∗ + ∗ ←−→ OC∗ + H∗ on Cu211. The barrier is 0.382 eV.

OCH∗ + ∗ ←−→ OC∗ + H∗ on Cu211

The saddle point for OCH∗ + ∗ ←−→ OC∗+H∗ on Cu211 is available in Figure 15. Following

the IRC the hydrogen moves downhill on the surface, while the OC∗ drifts to a site uphill.

For this reaction Pynta selected 6 saddle point guesses only one of which converged to a

valid saddle point. The saddle point guess that converged was one of the two lowest energy

saddle point guesses that had virtually the same harmonic energy. We suspect that improved

estimates of the bond stretch factor taking into account the local surface structures may allow

more of the chosen guesses to converge. However, one of the lowest harmonic energy guesses

converged and the barrier Pynta calculates for this transition state is actually lower in energy

than values in literature as we will note in detail later.

H∗ + O∗ ←−→ HO∗ + ∗ on Cu211

The four saddle points for H∗ + O∗ ←−→ HO∗ + ∗ on Cu211 are available in Figure 16. The

barriers vary quite significantly by as much as 0.36 eV. Interestingly, the the lowest barrier

saddle point has the hydrogen drifting along the contour of the “hill” of the facet. The

highest barrier occurs when the hydrogen drifts up the wall at the bottom of the hill that

occurs on the Cu211 facet.
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Figure 16: Saddle points for H∗ + O∗ ←−→ HO∗ + ∗ on Cu211. From left to right barriers
are: Top: 1.312 eV, 1.366 eV and 1.556 eV, Bottom: 1.195 eV.

Discussion

Comparison with Literature

Table 2: Comparison of Pynta calculated barriers with literature barriers. These reactions
were identified by searching Catalysis Hub.57 The monodentate OCHO∗ reaction calculated
by Pynta was not within Catalysis Hub, but similar reactions from the Yoo et al. 201468

paper enabled us to find a calculated barrier within that paper. All energies are in eV.

Reaction Reaction Image Facet Pynta Ea,min Lit. Ea,min Lit. DFT Lit. Source

OCH∗ + ∗ ←−→ OC∗ + H∗ fcc111 0.158 0.29 BEEF-vdW61 Schumann et al. 201865

HO∗ + ∗ ←−→ H∗ + O∗ fcc111 1.661 1.73 RPBE/DACAPO66 Wang et al. 201167

OCHO∗ + ∗ ←−→ CO2 + H∗ + ∗ fcc111 0.522 0.67 RPBE/DACAPO Yoo et al. 201468

CO2 + 2∗ ←−→ OC∗ + O∗ fcc111 1.639 1.82 RPBE/DACAPO66 Falsig et al. 200869

H2O + 2∗ ←−→ HO∗ + H∗ fcc111 1.095 1.33 BEEF-vdW61 Schumann et al. 201865

HO∗ + ∗ ←−→ H∗ + O∗ fcc211 1.836 1.67 RPBE/DACAPO66 Wang et al. 201167

In a literature search, aided by Catalysis Hub57 we found reported barriers for six of the
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reactions computed in this work. For each we selected the lowest energy barrier calculated

with BEEF-vdW (the level of theory used in this work), or, if BEEF-vdW was not available,

simply the lowest energy barrier. The compiled results are available in Table 2.

Comparing a limited number of quantum chemistry calculations, particularly at different

levels of theory, requires a significant amount of care. One would first like to see that our

calculations are not dramatically different from literature calculations. Second, one would

like to see that the barriers are close to or lower than literature values, particularly when

comparing with calculations at the same level of theory. It is worth recalling that we have

confirmed each of our saddle points with IRC calculations, so we are confident that our

saddles lead to the correct reactants and products.

All of the compared barriers agree within 0.24 eV, confirming the general validity of our

approach. Of the six reactions, Pynta calculated appreciably lower barriers for five reactions,

including both of the reactions calculated using the BEEF-vdW functional. The exception is

the HO∗ dissociation reaction on Cu211, but because different density functionals were used,

it is difficult to draw meaningful conclusions from the difference. Conversely, one should not

read too much into other comparisons where Pynta found a lower barrier, but the used DFT

functionals were different.

Interestingly, the largest difference between our calculations and the literature occurs for

the H2O + 2∗ ←−→ HO∗ + H∗ reaction on fcc111. The Pynta barrier is 0.235 eV lower than

the calculated value in Schumann et al. 65 Notably, the literature barrier was calculated using

the same DFT method as in this work (BEEF-vdW). Catalysis Hub provides a saddle point

geometry for this reaction. That saddle looks similar to the saddle point Pynta found with

the OH∗ tilted (Figure 10 upper left), signaling that the underlying reaction path in the

literature and in our work are the same. However, a closer inspection reveals a significant

difference in the geometries: the breaking H∗–O∗ bond distance is 0.114 shorter in the similar

looking saddle point found by Pynta. It is possible that these differences occur because their

work used an fmax of 0.05 eV/Å rather than 0.02 eV/Å used in this work.
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Figure 17: Schematic energy landscapes (a) of a reaction with a submerged barrier and (b)
of a barrierless reaction on a catalyst surface.

Submerged Barrier Reactions

Formally, submerged barrier reactions can occur on surfaces when the lateral interactions

of the reactants sufficiently lower their energy upon association before reacting. Since the

reactants move to the saddle point from a lower energy well, it is possible to have a saddle

point that has an energy below that of the fully separated reactants, resulting in a negative

barrier, as shown schematically in Figure 17a. This is a well-understood phenomenon in the

gas phase and has been studied in detail.70,71 Between two adsorbed species in contact with

the surface this process is likely to occur at thermal equilibrium and be well represented by the

rate coefficient generated by Pynta. However, gas-phase reactants may not be thermalized

with the surface. In this case it is debatable whether the process occurs closer to thermal

equilibrium or more adiabatically, however, the Pynta rate coefficient should be a reasonable

value especially at higher temperatures. In general, most negative barriers observed in Pynta
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are associated with either invalid saddle points that do not connect to the correct reactants

and products, or occasionally due to missed lower energy adsorbate configurations. A valid

submerged barrier case can be identified by first confirming that the IRC connects to the

correct reactants and products. Then, one should see that the reactants at the end of the

IRC are lower in energy than the separated reactants. To confirm that the barrier is truly

submerged due to strong lateral interactions, it is important to confirm that the individual

reactant geometries at the end of the IRC were previously found in the associated adsorbate

optimizations. If not, it is possible that the apparent negative barrier is present simply

because the lowest energy conformer of the reactant was missed in the reactant calculation

phase. Note that this problem is neither unique to submerged barriers nor to Pynta: if the

lowest energy structure of the reactant is missed, the barriers appear lower. This can happen

both in an automated and in a manual exploration. However, automated searches inherently

reduce the chance of this happening.

Barrierless Reactions

Barrierless reactions are reactions where there is no saddle point separating the reactants

from products. Such reactions cannot be characterized using conventional transition state

theory, and require variational techniques to calculate rate coefficients.72 Detecting that a

reaction is barrierless is a nontrivial task. In the gas phase, barrierless reactions often involve

the homolytic scission of a bond in closed shell species, which require multireference methods.

Single reference methods often produce a spurious barrier along the reaction coordinate.

When Pynta is run on a likely barrierless gas-surface reaction like H + ∗ ←−→ H∗, we find

that using our level of theory, no valid saddles are found. However, when a barrierless

process occurs between adsorbates, such as in O∗ + HOCH∗ ←−→ OCH∗ + HO∗, recognizing

the process is barrierless requires significantly more care.

When Pynta was run on O∗+HOCH∗ ←−→ OCH∗+HO∗ on Cu111, the default harmonic

filter selected more than 70 saddle point guesses. 56 of those guesses converged to a first-order
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saddle point, 28 of those were unique, and about 16 unique saddles were valid as confirmed

by the IRCs. These 16 unique valid saddles had a range of energies differing by as much as

0.5 eV. In general, the results looked similar to those in CH2O+NH∗ + ∗ ←−→ N∗ +CH3O∗.

However, the IRC for one of the lowest energy saddles for O∗ + HOCH∗ ←−→ OCH∗ + HO∗

clearly began with HOCH∗ diffusing to a new site and then relaxing into the reaction as

illustrated schematically in Figure 17b. We calculated the diffusion barrier for HOCH∗, and

although that species has some conformational challenges that complicate analysis, we found

the diffusion saddle point energy to be approximately the same as the examined saddle.

The nuance is that unlike in gas-gas and gas-surface barrierless reactions, surface-surface

barrierless reactions depend on the relative positions of the adsorbates on the surface, and

the reaction is only barrierless for certain configurations. In other configurations there can be

valid saddles for the same reaction. However, also unlike gas-gas and gas-surface barrierless

reactions, surface-surface barrierless reactions require the reactants to overcome diffusional

barriers in order to react as shown in Figure 17b. In this light we can argue the barrier

for O∗ + HOCH∗ ←−→ OCH∗ + HO∗ is the diffusional barrier for HOCH∗ (note that the

diffusional barrier for O∗ is significantly higher than that of HOCH∗).

Conformers

One challenging aspect of finding the lowest energy adsorbate geometry is that even the

isolated molecule can have many different energy minima. While Pynta accounts for dif-

ferent minima associated with adsorbates bonding to different sites, it does not currently

perform any conformer search that considers the internal rotors of the adsorbate. For simple

adsorbates on simple surfaces there often are no additional unique conformers. However, for

more complicated adsorbates on less symmetric surfaces there can be many additional unique

conformers. In practice, primarily on Cu111, we have found this to be most problematic for

adsorbates that have conformer-generating internal rotors when desorbed. There is no way

to easily detect if one has the lowest energy conformer even in gas-phase systems. Failure to

31



find the lowest energy conformer may cause reactions to be falsely predicted to have negative

energy barriers if the saddle point is lower in energy than the reactants. In that case one

should follow the IRC from the saddle point to the reactants. If the reactant well does not

experience intermolecular interactions, one should be able to find the lower energy reactant

geometry by taking the adsorbate geometry from the end of the IRC and minimizing it. If

the reactant well does involve intermolecular interactions, the reaction is likely to have a

truly submerged barrier. This particular problem will be addressed in future work with an

option to systematically search for the adsorbate conformers.

Importance of Considering All Possible Saddle Points

A major advantage Pynta has over common workflows for computing rate coefficients on

surfaces is the ability to consider reactions between adsorbates adsorbed in all unique config-

urations on the surface. For most reactions calculated on Cu111 in this work, the differences

in energies for saddle points belonging to a given reaction are between 0.01 and 0.03 eV. It

is notable that these are differences between saddle points generated from the best guesses

Pynta determined based on the harmonic filter, which means that the selection of evaluated

saddles is strongly biased towards low energies. One would therefore expect to find addi-

tional higher barrier reactions if one were to attempt to optimize all of the guesses. While

these differences are chemically meaningful (0.03 eV corresponds to about a factor of 3 error

at 298 K) they are much smaller than typical errors inherent in DFT level calculations.

For N∗ + CH3O∗ ←−→ CH2O + NH∗ + ∗, however, this was not the case. An energy

diagram of this reaction is available in Figure 18. We see enormous energy differences in

the TS, as large as 0.23 eV. We have also observed these large energy differences for other

reactions involving a hydrogen transferred between two adsorbates. We also see differences of

up to 0.36 eV for H∗+O∗ ←−→ HO∗ + ∗ on Cu211. We expect these higher energy differences

to be the case in general for higher index facets where there are more unique and reasonable

site configurations that can lead to more diverse saddle points. 0.24 eV at 298 K corresponds
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Figure 18: Energy diagram for N∗ + CH3O∗ ←−→ CH2O + NH∗ + ∗. Each line represents a
different valid saddle point or different combination of adsorbate geometries. There are 10
saddle point lines, 10 reactant lines and 4 product lines.

to an enormous factor error of about 104 in the rate coefficient, far more than is acceptable

for parameters in a microkinetic model. This suggests that it is highly important to consider

reactions between adsorbates adsorbed in all unique configurations for inter-adsorbate group

transfers and reactions on high index surfaces.

Rate Coefficients for Kinetic Monte Carlo Simulations

In this work we have focused on computing mean-field/phenomenological rate coefficients for

reactions on surfaces. These rate coefficients are suitable for traditional phenomenological

simulators such as ReactionMechanismSimulator.jl,73,74 TChem,75 or Cantera.76 However,

Pynta’s ability to search the entire space of possible saddle points can be used to gener-

ate rate coefficients for kinetic Monte Carlo (KMC) simulations that are able to explicitly

resolve reaction processes in terms of the positioning of the reactants on the lattice. The

comprehensiveness of Pynta’s saddle point search can be easily increased by increasing the

tolerances τ1, τ2, and NTSmin. The IRC calculations already provide a good starting guess

for the reactant configurations. In this view, calculating rate coefficients for KMC should be

as simple as optimizing and calculating frequencies for the complexes at the end of the IRCs

and calculating the unimolecular rate coefficients from those complexes to the saddle point.
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Conclusions

We have presented Pynta, a workflow software for automatically computing the rate coeffi-

cients for surface and gas-surface reactions. Pynta uses ASE,36 Sella,38–40 and Fireworks41

to automate generation and filtering of adsorbate initial guesses and saddle point guesses,

optimization of adsorbates and saddle points, frequency calculations, IRC calculations, and

statistical mechanics calculations. To efficiently generate saddle point guesses considering all

unique adsorbate configurations on the surface, we developed a novel reaction class agnostic

saddle point guess generation technique we call harmonically forced saddle point (HFSP)

search. Pynta is designed to be able to take advantage of current petascale and upcom-

ing exascale computing resources. We have demonstrated Pynta on 11 reactions including

bidentate, monodentate, and gas-phase species, seven different reaction classes, and both a

low index and a high index surface. Based on the saddle points found we are able to con-

clude that considering all possible site configurations when developing saddle point guesses

is important for inter-adsorbate group transfers and reactions on high index surfaces.
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