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Abstract

We used machine learning (ML) to accurately predict eigenvalues of the hybrid

HSE06 functional using eigenvalues computed by the less computationally expensive

PBE and associated electronic features based on the k-point resolved atomic band char-

acter. The ML model was trained using eigenvalues from only one k-point for each of

the 168 compounds in the training set. The HSE06 eigenvalues across all k-points were

then predicted for a separate set of 169 compounds with a mean absolute error (MAE)

of 0.13 eV, representing a significant improvement over the error of PBE-computed
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eigenvalues relative to HSE06 (0.96 eV). These accurately predicted eigenvalues result

in remarkably accurate predictions for the band structures, projected density of states

and band gaps, even though the model was not explicitly trained on these other prop-

erties. Finally, we demonstrate that our ML model has a similar accuracy for both

ternary and quaternary compounds well outside the initial training set and on systems

with 112 and 160 atoms, demonstrating its potential to rapidly predict HSE06-quality

electronic structures of complex materials that are practically unfeasible for HSE06.
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Introduction

The electronic band structure describes several critically important materials properties, such

as the allowed electron energy levels, nature of the band gap (direct/indirect, metallic/non-

metallic), and carrier mobility via the curvature and alignment of the band edges. These

properties are particularly relevant in, for example, the engineering of materials for opto-

electronic1–3 and catalytic4 applications.

The band structure is most commonly calculated using density functional theory (DFT)

with generalized gradient approximation (GGA) functionals.5–7 However, GGA functionals

suffer from known inaccuracies in describing materials due to their lack of derivative discon-

tinuities,8,9 and self-interaction10 and delocalization errors.11,12 These inaccuracies manifest

through GGA functionals’ tendency to underestimate band gap energies13,14 and incorrectly

align band edges.15 Indeed, numerous previous reports have shown that GGAs predict inac-

curate band gaps for diverse classes of materials, including small gap semiconductors, (e.g.,

PbS), semiconductors (e.g., ZnO, AlP), and wide gap semiconductors (e.g., NaF, MgO, AlN),

as one would expect for a ground-state theory such as DFT.16–21 Other important energies
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and energy gaps, such as the energies of adsorbate frontier orbitals relative to catalyst surface

states, can be poorly predicted by GGA functionals16,22 and lead to poor predictions of sur-

face energies, adsorption energies, and reaction barriers. For example, the PBE functional23

incorrectly predicts the CO adsorption site on Pt(111).24

Although some GGA functionals such as DFT-1/2,25,26 mBJ,27 GLLB-SC,28 TASK,29

and, mTASK30 have been specifically parameterized to improve band gap prediction accu-

racy, it remains difficult for a single approach to perform consistently well for a wide variety

of materials. Alternatively, accuracy in predicted band gaps and adsorption energies can

be improved by applying an on-site Coulomb term, the Hubbard U correction, to specific

orbitals within the GGA+U framework.31,32 However, these calculations may have limited

transferability because there is no universally accepted approach to determine the magni-

tude of the +U correction. Moreover, the use of a different value chosen to more accurately

predict one property may greatly affect other predicted properties. Additionally, because

+U corrections are conventionally only applied to states with d or f character, such as

those in strongly correlated materials, states with s and p character could still be described

poorly.33,34

Ab-initio methods can be used to correct the issues observed for GGA functionals, e.g.,

through the use of hybrid DFT functionals (e.g., HSE0635) or through many-body perturba-

tion theory via the GW approximation,36 which remains the favored approach for predicting

eigenvalues and band gaps with greater accuracy across various material classes.17,18,21,37

Both approaches require a significantly higher computational cost compared to GGAs. This

has traditionally limited their use in modeling systems that contain a large number of atoms

or in high-throughput screening studies.

Machine learning (ML) can accelerate traditional computational materials discovery by

rapidly estimating properties of some arbitrarily large chemical space using an ML model

trained on a set of reference data (i.e., the training set) at orders of magnitude lower com-

putational cost than QM methods. ML has recently been applied to learn various electronic
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properties of materials, such as the nature of the band gap (direct/indirect, metallic/non-

metallic),38–40 band gap energies,21,39–48 and the positions of the band edges.48 ∆-learning49

has been used to predict high-fidelity band gaps (e.g., HSE06, GW, or experiment) using

lower-fidelity, less computationally demanding methods (typically semilocal DFT calcula-

tions).21,44–48

However, the majority of these studies used ML to predict a single property per sam-

ple, while high-fidelity quasi-particle GW eigenvalue shifts applied as corrections to DFT

eigenvalues are not constant across all k- and band-indices.22 This motivates ∆-learning the

complete band structure by understanding how the k- and band-resolved eigenvalues of high-

fidelity calculations shift from lower-fidelity calculations. A recent study in this direction

explored applying the ∆-learning approach to predict G0W0@PBE band-structures for 286

non-magnetic 2D semiconductors using 3300 features that represent the local energy and

radial distance between eigenstates.50

For periodic materials however, the need for detailed spatial information may not be as

crucial, particularly for materials with few symmetrically unique atom sites. In this work, we

show that it is possible to achieve accurate ∆-learning for the prediction of HSE06 band- and

k-point resolved eigenvalues using only 14 features of the atomic band character (determined

from nl -resolved projectors as defined in Methods section), 3 materials-specific features, and

the PBE eigenvalues generated at one k-point per material, which do not explicitly include

structure-based information. We demonstrate this approach on a diverse set of 337 bulk

semiconducting/insulating binary compounds with a wide range of chemical compositions

and show that it enables accurate electronic structure prediction and evidence that it can

generalize to more complex materials, thus enabling faster materials discovery.
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Table 1: Features used as inputs into our ML models

Type Label Definition Unit

Eigenvalues ϵik,PBE PBE energy eigenvalue associated with ψik eV

Orbital-projections based features
1sPBE, 2sPBE, 2pPBE, 3sPBE, 3pPBE,

nl-projectors of the PBE wavefunctions onto the spherical harmonics -3dPBE, 4sPBE, 4pPBE, 4dPBE, 5sPBE,
5pPBE, 5dPBE, 6sPBE, 6pPBE

Bader-based features
δPBE average charge transfer, from Bader analysis on PBE charge density e−/at.
PPBE dipole moment per unit volume, from Bader analysis on PBE charge density e−/Å2

Atom-based features Zpet

a compound index based on modified Pettifor values51

defined for constituent elements
-

Results and discussion

Model design and overall performance

For the “∆” learning scheme, 18 features were used (Table 1), and three types of regression

models were trained: linear (Linear) and kernel ridge regression using a Laplacian kernel

(KRR), and a stacked Linear+KRR model (see Table 2) ). We attempted the Linear+KRR

model based on the observation that the Linear model alone reduces the MAE consider-

ably relative to PBE. To establish a baseline for comparison, we trained two distinct linear

models for unoccupied and occupied bands using PBE eigenvalues as the only feature. This

technique, commonly known as a Scissors operator, is prevalent in GW calculations. The

ML models were trained separately for the valence and conduction bands across all materials

in the training set (50% of the 337 total compounds (Table S1); see Methods for a detailed

description and learning curves). The mean absolute error (MAE) between the predicted

and HSE06 eigenvalues was used in all cases as the loss function.

Eigenvalue accuracy across materials classes

The eigenvalue errors obtained from the PBE calculations exhibit a multi-modal distribution

with a wide range of errors (MAE = 0.96 eV), particularly for the valence bands. This is

attributed to the significant self-interaction error present in PBE calculations. The most

significant errors in PBE calculations are predominantly associated with transition metals,

chalcogenides, and halides (Figure S1 (a)). These materials constitute the majority of the
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test set (out of a total of 169 compounds in the test set, 48, 67 and 51 compounds containing

transition metals, halides, and chalcogenides). Despite its simple form, the Scissors model

effectively corrects the approximately bimodal distribution observed in the PBE eigenvalue

errors (Figure 1), thereby significantly improving the MAE (0.30 eV), and the 5th and 95th

percentiles (Table 2).

However, the error distribution of the Scissors model remains non-uniform and exhibits

long tails, which is primarily attributed to the same problematic material classes observed

in the PBE error histogram (as depicted in Figure 1 and Figure S2). Indeed, the Scissors

model results in an MAE > 0.5 eV for 14 compounds (Table S2), 12 of which are either

chalcogenides or halides. Figure 2 provides further confirmation that the eigenstates with a

dominant d -orbital character exhibit significant errors in both the PBE and Scissors models.

These results suggest that although the Scissors operator can mostly improve the errors in

the PBE eigenvalues compared with HSE06, this approach cannot account for the bias that

may occur due to different materials classes and types of bonding.

Figure 1: Violin plots showing the error distribution in the predicted PBE, Scissors, KRR,
Linear, and Linear+KRR eigenvalues relative to the HSE06 eigenvalues. The shape of each
violin displays the distribution of errors, while the thick lines and white circles inside each
violin represent the range of the 25th and 75th percentiles and the 50th percentile of the

distribution, respectively.

The Linear, KRR and Linear+KRR models have significantly lower MAEs compared
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Figure 2: The left column shows the PBE (top left) or ML (bottom left) eigenvalue errors
relative to HSE06 eigenvalues (|∆ϵik|) as a function of the maximum value of the PBE s
(red), p (blue), and d (gold) orbital projectors for a given eigenvalue. The PBE eigenvalues
are inaccurate for all orbitals while the ML model eigenvalues exhibits similar accuracy for
all orbitals. Plots of eigenvalue errors for all models considered in this work are shown in
Figure S4. The right column shows the Wasserstein distances of the PDOSs generated using
PBE and ML eigenvalues with PBE projectors as compared to HSE06 eigenvalues with PBE
projectors. The compounds are sorted by average (black) error across their s (red), p (blue),
and d (gold) orbitals. The PBE PDOSs are inaccurate for all orbitals while the ML model
eigenvalues produce PDOS plots with similar accuracy for all orbitals. Plots of Wasserstein

distances for all models considered in this work are shown in Figure S5.
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Table 2: Comparison of errors in the eigenvalues predicted from the ∆-learning ML model
types (KRR, Linear, Linear+KRR) and the Scissors operator. Each model type was re-
trained 21 times using different random seeds. The standard deviations for the 21 models
are shown in parentheses. The summary statistics (i.e., fifth (Q5) and ninety-fifth percentile
(Q95) MAEs, all in eV, and R2-scores) are shown for the model with the median error out of
21 models. The MAEs of the model-predicted band gaps (Eg) (in eV) are also shown, which
were computed as the difference between the predicted eigenvalues at the same k-point/band
indices as the conduction band minimum (CBM) and valance band maximum (VBM) in the

PBE calculation.

Model Eigenvalue predictions (eV) Eg prediction (eV)

MAE R2-score Q5 Q95 MAE

PBE 0.96 0.970 -1.99 0.77 1.20
Scissors 0.30 (0.01) 0.996 -0.54 0.59 0.62
Linear 0.17 (0.01) 0.999 -0.41 0.37 0.25
KRR 0.14 (0.01) 0.999 -0.31 0.33 0.25

Linear+KRR 0.13 (0.01) 0.999 -0.27 0.33 0.25

with PBE eigenvalues relative to HSE06 (0.17 eV, 0.14 eV, and 0.13 eV respectively, for the

test set; see Table 2). Note that the subsequent discussion primarily centers on the results

from the Linear+KRR model alone. The marked decrease in the MAEs is clearly evident

in the violin plot (Figure 1) representing the distribution of eigenvalues across all material

classes. Notably, the range of eigenvalue errors is significantly narrower than that observed

for PBE, with the width of the 5th and 95th percentile errors being reduced by a factor of

approximately 5 (as illustrated in Table 2). In contrast to the multimodal distribution of

the PBE eigenvalue errors with a long tail in the valence states (Figure 1), all these models

show a unimodal distribution centered around 0 eV (see Figure S1(b)). Moreover, the errors

in eigenstates characterized by projectors with high d character are comparable to those of

eigenvalues with high s or p character. This result indicates that the ML model improves

the bias in the PBE and Scissors eigenvalue errors in the eigenstates with particular orbital

characters (see Figure 2, left column).

The consistent performance of the ML model yields comparable accuracy for a diverse

range of chemistries and bonding environments. This includes compounds containing transi-
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tion metals (MAE = 0.14 eV), alkali metals (MAE = 0.11 eV), alkaline earth metals (MAE

= 0.13 eV), or other elements primarily belonging to groups 13 and 14 of the periodic table

(MAE = 0.13 eV), where the MAEs for these specific groups of compounds are similar to

the overall test set MAE (0.13 eV), as shown in Figure S3. Similarly, consistent errors are

calculated when grouping compounds by their anion, such as for halides (MAE = 0.11 eV)

and chalcogenides (MAE = 0.11 eV), which represent the most common materials classes in

the test set, constituting 67 and 51 out of 169 compounds, respectively (Figure S3). The

largest eigenvalue MAEs for the ML model are for nitrides (MAE = 0.20 eV) and oxides

(MAE = 0.20 eV), respectively. The larger errors for nitrides are attributed to the fact that

the dataset itself contains fewer nitrides overall (9/168 training compounds and 6/69 test

compounds). The relatively higher errors observed for oxides (e.g., ZnO MAE = 0.35 eV,

OsO4 MAE = 0.43 eV, WO3 MAE = 0.45 eV) is not surprising, considering that provid-

ing accurate depictions of transition metal oxide electronic structures remains a persistent

obstacle for computational methods, and ∆-learned corrections will inherit those challenges.

Because the feature set used in this work does not explicitly include structure-based

information, a key question is the generalizability of the ML models to other compositions

or polymorphs (i.e., different structures not included in the original training set). To test

the generalizability of the ML models, we generated three distinct test sets, each comprising:

(a) unique stoichiometries that are in the test set only, (b) polymorphs with at least one

compound in the training set, or (c) polymorphs within the test set only. The ML model

exhibits similar performance (within ±0.02 eV of the overall test set eigenvalue MAE) for

each of the three categories (Figure S6). The exceptional performance of the ML model in

predicting eigenvalues for categories featuring previously unseen data is noteworthy given

that the model did not employ any structure-based features (such as density, bond distances,

nearest neighbors, etc.), which are typically more effective in discriminating polymorphs

during model training. This observation indicates that the feature set utilized in this study

facilitates the development of a robust ML model capable of accurately describing various
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chemistries and bonding environments in different polymorphs.

Prediction of electronic structures using ML eigenvalues

After confirming our ML model’s capability to accurately predict HSE06 eigenvalues, we

use the model to generate band structures at essentially HSE06 for every compound in the

dataset.

In order to guarantee that all samples were included in the test set, the initial training

and test sets, each representing ∼50% of the dataset, were swapped and a new model was

re-trained (see the SI for details, the zipped folder is provided via a link below). We selected

6 systems and compared them with the results from HSE06 calculations (Figure 3 (a) and

S7). The choice of these selected compounds was based on the following criteria: (a) repre-

sentation of the diversity of cations and anions in our dataset, (b) coverage of a wide range

of band gaps (including low to typical ranges for compounds such as ZnO, AlP, and GaSe,

as well as wide band gaps for MgO and AlN), and (c) prior literature reports indicating

significant underestimation of band gaps by PBE. The highest accuracies in ML-predicted

band structures occur in materials with minimal d orbital contributions to the bands (eg.

AlP, AlN, NaH, GaSe, PbI2, Figures 3(a) and S7). In a small amount of cases (eg. ZnO,

Figure S7), that involve dominant d orbital contributions to the bands, occasional kinks

are observed in ML-predicted band structures where multiple bands from PBE are nearly

degenerate. Overall these results demonstrate that ML can effectively produce band struc-

tures with a level of accuracy comparable to HSE06 irrespective of materials class, band gap

ranges, and method of k-space sampling.

Unsurprisingly, the high accuracies achieved by ML-predicted eigenvalues and band struc-

tures lead to more accurate electronic properties, such as the band gaps, regardless of the

material class. Compared with HSE06 band gaps, the MAE for the ML model is 0.25 eV,

which is a factor of ∼5 lower error than PBE band gaps (MAE = 1.20 eV) (see Table 2, Fig.

3 (b)). Despite being trained on a different target property these results are comparable to
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the performance of an ML model trained directly to predict the HSE06 band gaps (MAE

= 0.23 eV) for the same train-test split and using the same features (Fig. 3 (b), band gaps

predicted from all models are reported in Table S2 (see Table S1 for PBE and HSE06 band

gaps across the whole dataset).

(a) (b)

Figure 3: Figures showing (a) the PBE (black), HSE06 (red), and ML (blue) band struc-
tures of AlP (mp-8880), and (b) the HSE06 band gaps (black diagonal line), and band gaps
predicted by PBE (gray), Scissors (green), and ML model (Linear+KRR, blue). The band
gap MAEs for the KRR (0.25 eV) and Linear models (0.25 eV) are similar to that of Lin-
ear+KRR (0.25 eV) model. For reference, a KRR model trained explicitly for band gaps
using the same compounds in training and test set predicts the HSE06 band gaps with an

MAE of 0.23 eV. The band gaps predicted by all models are provided in Table S2.

In addition to the band gap and band structure, we also evaluated the accuracy of the

model-predicted eigenvalues for reproducing HSE06 projected density of states (PDOS) using

HSE06 eigenvalues and PBE nl -resolved projectors, which are used to calculate the atomic

band character (as defined in Methods section). We quantified the similarity between the ML-

predicted PDOS curves and their HSE06 counterparts for all compounds in the test set using

the first Wasserstein distances (WD). This metric estimates the minimum “work” needed to

transform one curve into another, with smaller distances indicating greater similarity between

the curves. In order to ensure fair comparison between different models, we utilized PBE

projectors for all plots because none of the models were designed to predict new projectors
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in addition to new eigenvalues.

The plot of WD as a function of orbital type suggests that the ML models exhibit

approximately three times higher accuracy in predicting HSE06 PDOS curves compared to

PBE (Figure 2 right column, Figure S5). The low WD observed across all orbital types

and compounds indicates that the ML models have a consistent accuracy across different

material classes and can reliably predict the PDOS of diverse materials, regardless of their

composition. The significant improvement of the ML model’s WD for PDOS curves of d

states as compared to PBE and the Scissors model shows that these models excel even for

compounds known to be poorly described by PBE.

Model performance for systems with a large number of atoms/compositions

Although the dataset used for training/testing of the ML model encompasses a variety of

chemical families, we restricted our dataset to only binary compositions that include ≤ 6

atoms per unit cell for convenience. To deploy our ML model to more complicated systems,

we selected five ternary and quaternary systems from the Materials Project database of

widely studied perovskites (CaTiO3 (mp-5827), CsPbI3 (mp-1069538, mp-540839)), materi-

als relevant for battery applications (VCoO4 (mp-771137), LiVCoO4 (mp-753151)) and two

binary systems that contain a large number of atoms per unit cell for which HSE06 is imprac-

tical (Nb2O5 (mp-556048, 112 atoms), and Tl2Cl3 (mp-680294, 160 atoms). These systems

were downloaded from the Materials Project and the HSE06 eigenvalues were calculated.

The ML model effectively corrects the errors in the eigenvalues obtained from PBE cal-

culations (MAE = 1.02 eV) to more accurately compare with HSE06 eigenvalues (MAE =

0.27 eV), see Fig. 4 (a). The results for these systems (Table S3) are consistent with our

other results described above. Thus, despite the complexity in the band structures of these

additional systems, the ML model eigenvalues show a consistent four-fold improvement over

PBE, which is remarkable considering that these systems were completely unknown during

the model training/testing. The accuracies achieved in the ML model’s prediction of the
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(a)

(b) (c)

Figure 4: Figures showing (a) the violin plots of the PBE (gray) and ML (blue) eigenvalue
errors relative to the HSE06 eigenvalues for CaTiO3 (mp-5827), α-CsPbI3 (mp-1069538),
δ-CsPbI3 (mp-540839), LiVCoO4 (mp-753151), and VCoO4 (mp-771137), and PBE and ML
(Linear+KRR) projected density of states (PDOS) of (b) Nb2O5 (mp-556048), and (c) Tl2Cl3

(mp-680294).
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HSE06 eigenvalues are also apparent in the band structures of CaTiO3 (Fig. S8 (a)) and

CsPbI3 (Fig. S8 (b)).

However, unlike the results for the ML model applied to binary compounds, we observe

that the eigenvalue error distribution of the ML model remains multimodal in CaTiO3,

LiVCoO4, and VCoO4 (Fig. 4 (a)). We attribute this to the averaging of the orbital projec-

tors across various atom types, which is done to maintain a compact 14-value representation.

Hence, in ternary and quaternary compounds, the model only perceives an "effective" cation,

unlike in binary compounds where a single unique cation is present.

Finally, the ML model was applied to two systems, Nb2O5 and Tl2Cl3, which contain

112 and 160 atoms per unit cell, respectively. Rather than showing the complicated band

structures for these compounds, the HSE06-quality PDOS are generated using the eigenval-

ues predicted from our ML model (Fig. 4 (b and c)). This result is especially noteworthy

as the ML model prediction has essentially no computational cost while performing HSE06

calculations on such large systems necessitates running calculations on the largest existing

supercomputers.

Conclusions

In this work, we used ML to accurately predict the HSE06 eigenvalues for a dataset of 337

semiconducting/insulating bulk solids. ∆-learning for the prediction of HSE06 band- and

k-resolved eigenvalues was performed using only 18 features per k-resolved eigenvalue and

training on only data at one k-point for each material. The MAE of the ML model is 0.13 eV

across all k-points (i.e., the entire band structure) for a test set of 169 compounds previously

unseen to the model. This error is a factor of 7 lower than PBE eigenvalues relative to

HSE06 (0.96 eV). The features used in the ML model are primarily related to the atomic

character of given electronic states. Our results indicate that the ML model developed here

consistently predicts accurate eigenvalues across materials classes, indicating that the feature
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set is robust and describes many different chemistries and bonding environments. Indeed,

the need for data only at one k-point for each compound shows that electronic structure

information is largely redundant across k-space.

Additionally, we show that these accurately predicted eigenvalues translate to more accu-

rate band gaps and projected densities of states, for which the ML model was not explicitly

trained. For example, the ML model band gap MAE is 0.25 eV relative to HSE06 band gaps,

which is a factor of ∼5 lower error than the PBE band gaps (MAE = 1.20 eV)

Finally, the ML model is shown to perform accurately for more complex ternary and

quaternary systems such as VCoO4, LiVCoO4, CaTiO3, and CsPbI3 compared to HSE06.

Because of the computational efficiency of the ML model, it was also applied to predict the

band structures and PDOS of Nb2O5 and Tl2Cl3, which contain 112 and 160 atoms per unit

cell, respectively. At these large system sizes, HSE06 calculations would be impractical.

Future models using these features should be generalized in order to predict eigenvalue

shifts for metallic/near-metallic compounds for which higher fidelity methods could change

the occupancy of a KS orbital. These models could also incorporate more explicit structural

features that can generalize into more complex compounds and potentially surface structures

as well.

Methods

DFT calculations

DFT calculations were performed using the Vienna Ab initio Simulation Package (VASP)52,53

version 5.4.4 with periodic boundary conditions. Standard projector augmented wave (PAW)

pseudopotentials54,55were used for all elements. We performed geometry optimizations using

the PBE23 GGA functional and planewave cutoffs equal to 30% higher than the largest

recommended cutoff of any pseudopotential within a material. One-shot HSE0635 (which we

refer to as HSE06 throughout this letter) was performed using the PBE-optimized geometries
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and electron densities. The Γ-centered Monkhorst-Pack k-point grids used contained at least

1000 k-points per reciprocal atom. Band structure k-paths were generated using the SeeK-

path Python package.56,57

Model training and selection

scikit-learn58 version 1.1.1 was used to train the linear and kernel ridge regression, KRR,

(using the Laplacian kernel) models. The hyperparameters for KRR were tuned via grid

search using 5-fold cross-validation and the features were normalized using the min-max

technique. Train and test set partition was based on the number of compounds. For example,

if 168 random compounds were selected for training, the remaining 169 compounds were

reserved for testing purposes. All models were initiated with different random seeds and

trained 21 times using randomly selected k-points and compounds for each run. Out of

these 21 runs, the models with the median MAE out of the 21 runs are discussed. The

standard deviation of the calculated errors on the test set of these independent runs is

reported in Table 2. Variations of model accuracy with the number of training compounds

(Figure S9) and k-points (Table S4) were studied to determine their optimal values. Because

most practical applications of accurate electronic structure predictions are concerned with

states near EF, our analysis focused on eigenvalues within EF ± 10 eV, whereas the models

are trained on eigenvalues within EF ± 15 eV. The focus on a narrower range of energies

closer to the Fermi level leads to an MAE ca. 0.01 eV larger compared with the larger range

of EF ± 15 eV in the test set (see SI for details on model training, training set selection, and

learning curves).

Dataset

The dataset for this study consists of 337 binary solids from the Materials Project (MP)

database5 (queried in April 2022) spanning 52 elements across the periodic table. These

compounds were selected based on these criteria: (a) decomposition enthalpies of less than
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50 meV/atom; (b) PBE band gap greater than 0.5 eV; (c) no more than 6 atoms in the unit

cell; and (d) no f -block elements. The dataset spans 52 elements across the periodic table and

incorporates diverse chemical families such as oxides, nitrides, phosphides, halides, chalco-

genides, etc. (Figure 5). The most common cation classes are transition metals (108/337)

followed by alkaline earth metals (72/337) and alkali metals (71/337). Si, Ge, and Sn are

considered to be cations except when bonded with calcium.

The dataset comprises 227 distinct compositions, with 75 of those represented by 2 or

more (average of 2.46) polymorphs. Most of the polymorphs are chalcogenides, featuring

rock salt (RS), zinc blende (ZB), wurtzite (WZ), and Ni-As (NA) structures. A list of all

compounds used in this study along with the corresponding mp-id, number of atoms per

unit cell, PBE and HSE06 bandgaps are available in Table S1.

Figure 5: Distribution and frequency of the various elements in our dataset. Out of 337
compounds, halides (135), chalcogenides (98), and oxides (49) are the three most abundant
chemical families with transition metals (108), alkaline earth metals (72), and alkali metals

(71) the most frequent cations.

Orbital eigenvalues and projector features

For each Kohn-Sham eigenfunction (ψik) associated with a band index i and k-point label

k, we define the projectors, f sa
nl [ψik], onto the spherical harmonics, χsa

nlm, for all atoms, a, of
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a given element type, s, in the system as:

f sa
nl [ψik] ≡

l∑
m=−l

|⟨χsa
nlm|ψik|⟩|2, (1)

where n, l, and m are the valence principal, angular and magnetic/azimuthal quantum

numbers of the atom, respectively. To account for differing numbers of atoms in the unit cell

between materials, the projectors from Eq. 1 were averaged over the total number of atoms

of type s, Ns
a, in the unit cell to produce an averaged projector for each atom type, f s

nl[ψik]:

f s
nl[ψik] ≡

Ns
a∑

a=1

f sa
nl [ψik]

N s
a

. (2)

In this work, Eq. 2 was evaluated for 1 ≤ n ≤ 6 and 0 ≤ l ≤ 2 (excluding 6d, n = 6 and l

= 3) as input features. This results in 14 orbital features for each material and atom type

for that material, namely projectors for the 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 5s, 5p, 5d, 6s,

and 6p orbitals. These projectors and their associated eigenvalues, ϵik were calculated using

the PBE functional.

Charge and stoichiometry-based features

We used the Bader59 charge density partitioning method to compute two charge transfer-

based features, namely, the average charge transfer (δ) and dipole moment per unit volume

(P ), as utilized by Ref.60

To numerically distinguish various cations in the compound, we utilized a modified Petti-

for index51 (Zpet); a unique value assigned to each element in the periodic table that encodes

the extent of its replaceability in the crystal structure.
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