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Abstract

The efficiency of machine learning algorithms for electronically excited states is far

behind ground-state applications. One of the underlying problems is the insufficient

smoothness of the fitted potential energy surfaces and other properties in the vicinity of

state crossings and conical intersections, which is a prerequisite for an efficient regres-

sion. Smooth surfaces can be obtained by switching to the diabatic basis. However,

diabatization itself is still an outstanding problem. We overcome these limitations

by solving both problems at once. We use a machine learning approach combining

clustering and regression techniques to correct for the deficiencies of property-based

diabatization which, in return, provides us with smooth surfaces that can be easily

fitted. Our approach extends the applicability of property-based diabatization to mul-

tidimensional systems. We show the performance of the proposed methodology by

reconstructing global potential energy surfaces of excited states of nitrosyl fluoride

and formaldehyde. While the proposed methodology is independent of the specific

property-based diabatization and regression algorithm, we show its performance for

kernel ridge regression and a very simple diabatization based on transition multipoles.

Compared to most other algorithms based on machine learning, our approach needs

only a small amount of training data.

Introduction

Machine learning (ML) has been recently experiencing tremendous expansion in various fields

of science and computational chemistry is not an exception.1 The motivation for using ML

approaches is the high computational cost of quantum chemical calculations. We usually

know how to obtain accurate results; however, such calculations are often computationally

intractable and we have to settle with less accurate methods. ML can help us to shift the

balance in favour of accuracy.

The applications of ML methods to electronically excited states have not yet reached the
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level of accuracy as the more common problem of dealing with ground-state properties.2 At

the same time, excited states are part of many fundamental processes such as photosynthesis3

light-induced reactions4 or photovoltaics.5 The fact that excited states are still an outstand-

ing problem for ML is due to the high complexity of reference quantum calculations, high

densities of states, and the fact that the predicted properties are not smooth in the vicinity

of state crossings and conical intersections.6 However, some research in this area has been

performed just over the last few years and has brought indications that the problems can

be tackled.2 The majority of these studies deal with photodynamical simulations including

predictions of electronic energies, atomic forces, and nonadiabatic or spin-orbit couplings.7–9

Regarding excited states, ML has been also applied to multireference character estimation,10

active space selection,11 quantum yields prediction,12 and also to diabatization.13

We tackle here the problem of the low smoothness of excited-state properties in the

vicinity of state crossings and conical intersections. Adiabatic representation is what we

usually get from electronic structure calculations, that is, eigenfunctions and eigenvalues of

the electronic Hamiltonian. The states are then ordered by their electronic energy for each

nuclear configuration, resulting in non-crossing potential energy surfaces (PESs). While the

states might become degenerate, they never truly cross if they have the same multiplicity.

Electronic energies and other properties are then highly curved and non-differentiable. Low

smoothness of the adiabatic basis represents a major problem for ML regression.

Using a smooth diabatic basis, which allows for state crossings, seems like a natural solu-

tion how to improve ML efficiency. The two representations are connected through a unitary

transformation. Unfortunately, finding the diabatic basis is an outstanding problem itself.

While the adiabatic basis can be obtained from a diabatic basis simply by diagonalization,

the inverse procedure is highly complex: the diabatic basis is not unique, it usually needs to

be determined from the adiabatic basis and it most often requires expert knowledge about

the system.14 To date, only small systems have been accurately represented in a diabatic

basis. However, several works emerged during the last few years which try to solve the
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problem of automatic data-driven determination of the diabatic basis.13,15–19 While classical

diabatization schemes usually need lots of expert knowledge, manual work, and expensive

calculations, ML-based approaches usually require lots of training data and often a manual

selection of reference geometries where adiabatic and diabatic bases coincide. We aim to

combine the best of both worlds: we augment simple property-based diabatization schemes

with an ML algorithm that corrects their deficiencies.

Property-based diabatization is arguably the simplest category of diabatization tech-

niques. It is based on the observation that the adiabatic states are nonsmooth as a conse-

quence of the rapid change of the wavefunction character near conical intersections where

the states mix. If the transformed diabatic wavefunctions change slowly as functions of ge-

ometry then their properties are expected to change slowly as well and vice versa. This can

be achieved by maximizing the differences between properties of the transformed diabatic

states and, therefore, suppressing the mixing of the states. In practice, a matrix of pairwise

properties, such as for example (transition) dipole moments, is formed for the adiabatic

states and the transformation matrix is obtained by diagonalization of the property matrix

or a similar procedure, which ensures the separation of the properties in the diabatic basis.14

Unfortunately, there are some problems connected with this category of diabatization meth-

ods, which prevent their widespread application to larger molecules with multiple electronic

states involved. First, we need to select the property matrix in a way that allows discrim-

ination of different electronic states. If we manage to do so, there are still two technical

problems specific to property-based diabatization. First, the order of the diabatic states

might not be consistent throughout the whole configuration space. In other words, we get a

set of diabatic energies and couplings (off-diagonal elements) in the diabatic basis for a given

nuclear geometry, and we have to decide to which global diabatic states they belong (see

figure 2c). The second issue arises from random signs of wavefunctions which lead to random

signs of the off-diagonal elements of the property matrix and further to random signs of the

diabatic couplings (see figure 2d). While both these issues can be easily resolved manually by
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inspection in one or two dimensions, it is impossible for a general multidimensional system.

Within our framework, we diabatize each geometry separately using property-based di-

abatization, and correct for inconsistent signs and ordering of diabatic states with the ML

approach. The general idea of our approach is simple: properties in the diabatic basis should

be smooth and smooth properties are easy to fit so we change the ordering and signs so that

the properties are well-fitted with our ML model based on a combination of kernel ridge

regression (KRR) and clustering. As a result, our methodology can extend the applica-

bility of the whole category of property-based diabatization schemes to multidimensional

systems with multiple states with as little as dozens of training samples. At the same time,

we get an efficient way how to predict adiabatic energies, which can be obtained from the

fitted diabatic states and couplings simply by diagonalization, and therefore save time on

expensive ab initio calculations. While our ML algorithm can be in principle applied to any

property-based diabatization, we propose here a series of simple diabatization methods based

on transition multipole moments from the ground state as a byproduct. We also test the

direct application of our ML algorithm without prior property-based diabatization, that is,

testing whether ML prediction capabilities can be improved by simple reordering of adiabatic

states. For example, recent research showed on the prediction of the energy gap between the

highest occupied and the lowest unoccupied molecular orbital that prior classification can

improve the smoothness of the fitted property and therefore ML performance.20

We focus here on the prediction of PESs but other properties can be treated in the same

fashion. We show the performance of the proposed methodology by reconstructing global

PESs of excited states of nitrosyl fluoride and formaldehyde in thermally reachable regions at

300 K. While this is just a simple example, an analogous approach can be used to efficiently

model electronic spectra using the nuclear ensemble method or any other property reflecting

the ground-state geometry distribution.21–23 Using these small molecules for testing purposes

allows us to use overlaps between all the states of all the sampled geometries for analysis,

visualization, and benchmarking.
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Computational methods

Property-based diabatization

Within the Born-Oppenheimer approximation, the total Hamiltonian is separated into the

nuclear kinetic energy and the rest called the electronic Hamiltonian. The eigenvectors of

the electronic Hamiltonian for fixed positions of nuclei are called electronically adiabatic

states and the eigenvalues are called adiabatic PESs. Nuclear geometries with degenerate

adiabatic energies of two interacting states form a seam, a conical intersection. For two

states of the same spin multiplicity, the dimensionality of the seam space is smaller by two

than the dimensionality of the system represented in internal coordinates, that is, N − 8 for

a nonlinear molecule with N atoms.24 It might seem that such a small subspace cannot play

a significant role but the Born-Oppenheimer approximation breaks already for geometries

in the vicinity of conical intersections and this is where radiationless transitions between

electronic states take place. What we usually call an avoided crossing when following a

trajectory, is nothing but a shoulder of a conical intersection.25

When we aim to describe photochemical processes or processes involving excited states

in general, we usually have to go beyond the Born-Oppenheimer approximation. To do so,

we need to calculate the probabilities of radiationless transitions which are usually expressed

via nonadiabatic couplings (NACs) for states of the same spin multiplicity and via spin-

orbit couplings (SOCs) for states of different multiplicity. However, these couplings are

often expensive to compute and difficult to converge. Another problem is that NACs exhibit

singularities at conical intersection seams.26

Since the adiabatic representation shows cuspidal ridges in PESs and singularities in

NACs in the vicinity of conical intersections, it might be advantageous to switch to a different

representation by applying a geometry-dependent unitary transformation matrix T(R).27

Ψd
i (r;R) =

∑
j

Tji(R)Ψad
j (r;R) (1)
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U(R) = T(R)TV(R)T(R) (2)

where Ψad
j (r;R) are the original adiabatic wavefunctions, Ψd

i (r;R) are the transformed

diabatic wavefunctions, V(R) is the diagonal matrix of adiabatic PESs and U(R) is the

transformed potential energy matrix (PEM) which is not diagonal anymore.

The so-called strict diabatic basis would be obtained by such a transformation which

would completely remove NACs. However, Mead and Truhlar 28 showed in 1982 that strictly

diabatic electronic basis cannot, in general, exist for polyatomic molecules with three or more

atoms. Therefore, we have to settle with a basis that provides smooth elements of PEM and

sufficiently small NACs. We call this basis diabatic even though, strictly speaking, we should

use the term pseudo-diabatic basis.

The diabatic basis is very convenient for ML applications as the diabatic PEM and

also other properties are supposed to evolve smoothly with geometrical coordinates. At

the same time, we can switch back to the adiabatic basis at any time simply by diago-

nalization. However, the non-existence of the strictly diabatic basis also means that the

diabatic basis is not uniquely defined. There are dozens of various diabatization schemes

based on NACs elimination, wavefunction smoothness, or properties smoothness.14,29–39 Un-

fortunately, the current schemes are usually limited to low-dimensional systems or a specific

wavefunction-based method, require expert knowledge about the system and lots of man-

ual work or computational resources. Lately, another category of ML-based diabatization

schemes emerged.13,15–19 These approaches are usually based on neural networks with implicit

diabatizaton layer and they learn the diabatization globally from a large training dataset.

Also, a manual selection of reference geometries is often necessary.

Property-based diabatization schemes based on property unblending are the simplest

and cheapest to apply. However, they have several problems which prevent their wider

use. First of all, it is necessary to select such properties that can distinguish between

all the included states. One can assume that a sufficiently large set of properties should
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be able to identify the states and a large variety of different methods have been actually

proposed.33,35,40–43 Another problem is connected with random signs of properties arising

from two different states as mentioned earlier. This is a general problem present also for

other diabatization schemes. Here, it results in random sign changes of the obtained diabatic

couplings, that is, the off-diagonal elements of diabatic PEM. There is also a third problem

specific to property-unblending diabatization: since each nuclear geometry is diabatized

separately via diagonalization or a similar procedure, the order of diabatic states is not

consistent throughout the configuration space. The latter two problems can be easily solved

manually by inspection in one dimension. However, they present a sore issue for a general

multidimensional system. Here, we combine property-based diabatization with ML-based

clustering to overcome these limitations.

As diabatic wavefunctions are supposed to be smooth functions of geometry, we expect

their properties to change smoothly as well. While enforcing global smoothness is a difficult

problem, we can redefine the problem locally. Two crossing states become blended in the

vicinity of a conical intersection and so do their properties. Property-unblending diabatiza-

tion methods use this observation and make properties of the transformed diabatic states

as different as possible which corresponds to the maximization of the following objective

function:14

f =
∑
i,j

∣∣⟨Ψd
i (r;R)|P̂ |Ψd

i (r;R)⟩ − ⟨Ψd
j (r;R)|P̂ |Ψd

j (r;R)⟩
∣∣2 (3)

where P̂ is the property operator and the objective function includes squared differences

between its expectation values.

It has been shown that the maximization in the eq. 3 is equivalent to the maximization

of the sum of expectation values of the diabatic states:40

f =
∑
i

∣∣⟨Ψd
i (r;R)|P̂ |Ψd

i (r;R)⟩
∣∣2 (4)
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which can be in turn expressed in the adiabatic basis using the expansion from eq. 1:

f(T) =
∑
i

∣∣∣∑
j,k

Tji(R)Tki(R)⟨Ψad
j (r;R)|P̂ |Ψad

k (r;R)⟩
∣∣∣2 (5)

It is important to note that the separation of matrix eigenvalues can be achieved by di-

agonalization.14 Therefore, the matrix formed by the eigenvectors of the property matrix

corresponding to the P̂ operator in the adiabatic basis can be used for the diabatization.

The methodology proposed in this paper can be in principle connected with an arbi-

trary property-based diabatization method to extend its applicability to multidimensional

problems. Nevertheless, we also propose here a series of simple and pragmatic property-

based diabatization methods. The reasoning behind our methods is similar to the dipole-

quadrupole40 (DQ) diabatization: we want to distinguish the electronic states based on

their transition multipole moments. However, the DQ and similar methods require transi-

tion multipole moments between all pairs of states, which are not always easily available

from electronic-structure calculations.33,35,40–42 For example, the popular TDDFT method

based on the linear-response theory does not usually even yield the full matrix of (transition)

dipole moments. One has to usually perform a separate calculation for each electronic state,

which is both computationally demanding and laborious. It is even more problematic for

higher multipole moments. We instead propose to form the property matrix based on inner

products between transition multipoles from the ground electronic state, which is usually

readily available.

This way, we form a series of methods, which we call transition dipole (tD), transition

dipole and quadrupole (tDQ), and transition dipole, quadrupole and octupole (tDQO) di-

abatization depending on the highest multipole included. The property matrix P is then

formed according to the following formulas, respectively:

P tD
ab = µ0a · µ0b (6)
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P tDQ
ab = µ0a · µ0b + wQ⟨Q0a,Q0b⟩F (7)

P tDQO
ab = µ0a · µ0b + wQ⟨Q0a,Q0b⟩F + wO⟨O0a,O0b⟩F (8)

where µ0a, Q0a and O0a are the transition dipole, transition quadrupole and transition

octupole moments, respectively, as implemented in the PySCF44,45 code, version 2.0.1. ⟨·, ·⟩F

is the Frobenius inner product, that is, the sum over the element-wise product. The weights

wQ and wO can be set by hand or optimized within cross-validation or a similar procedure.

However, we do not use here this flexibility and set all weights to 1.

We do not claim these methods to be universal but they are pragmatic as they can be

employed and tested very quickly. We can simply form the property matrix P, calculate the

matrix of eigenvectors, and use it as the transformation matrix in eq. 2. The employment

of these methods is reasonable as long as the ground is sufficiently separated from the other

electronic states within the sampled configuration space.

A separate problem for diabatization in general is the selection of the excited-state man-

ifold which does not interact with other lower or higher-lying states. While this issue is not

sufficiently discussed in the community, only small archetypal systems are often used to test

diabatization schemes. However, we now know that conical intersections are not rare at all,

on the contrary.24 It is, therefore, very often difficult or even impossible to select a reason-

able manifold of states for the given configuration space of interest. While the number of

interacting states might be decreased by the reduction of the active space for multireference

methods, it doesn’t really solve the problem. The selections of the excited-state manifold

and the active space are indeed analogical and interconnected. While we do not solve here

this separate problem, our ML algorithm might be a first step toward this goal as we might

fit more diabatic states than the number of input adiabatic states in the future. Implicitly

fitting a larger number of diabatic states within neural network architecture has been already

shown to improve prediction accuracy.19
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ML-based reordering

Eventually, we want to correct the deficiencies of property-based diabatization but we start

with a simpler problem: can we reorder the adiabatic energies for each geometry so that

they form smoother surfaces than the original adiabatic PESs (see figure 2a and 2b for

a real 1D example)? We simply want to reorder the adiabatic electronic energies of each

nuclear configuration so that they form new PESs that can cross where it is advantageous

for learning. If the answer was positive, then we would be able to get better ML predictions

without any underlying property-based diabatization. Also, such an algorithm can directly

diabatize states of different symmetry since they cross without mixing, that is with zero

NACs. Yet another motivation is the benchmark of our optimization procedure because we

devised an alternative approach to solving this problem based on wavefunctions overlaps as

described below, to which we can compare the results.

Direct optimization of the state ordering by the minimization of the prediction error

is problematic as the variable state order introduces too much variability to the model,

resulting in difficult optimization and overfitting problems. Overfitting might be reduced by

introducing a regularization term penalizing the higher roughness/curvature of the predicted

PESs. Nevertheless, we propose here a simpler clustering approach based on the expectation-

maximization (EM) algorithm on which many common clustering algorithms such as k-means

are based as well. By clustering, we refer here to the assignment of adiabatic energies of

individual geometries to global states and their PESs. The main difference between our

clustering and k-means is that we cluster the data by minimizing the prediction errors for

each geometry instead of the distance to the centroid. Also, we impose the restriction that

each adiabatic energy of a single geometry is assigned to a different global PES.

A simplified flowchart of the optimization procedure is depicted in figure 1. We start the

optimization from an initial ordering/clusters corresponding to some PESs, that is, either

original energy-ordered adiabatic states or randomly shuffled states. The order of states for

individual geometries can be seen as model parameters and we can use the EM algorithm
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Figure 1: Flowchart of the proposed ML-based reordering algorithm.

to optimize them. We fix the state clusters and set KRR model hyperparameters in the

expectation step and we use these fixed state clusters to estimate new ordering for each

geometry separately in the maximization step. The excited states of each geometry are

iteratively reassigned to the clusters in the maximization step by training a KRR model for

each cluster corresponding to a single PES with the fixed ordering and hyperparameters but

without the geometry which is currently being assigned. A distance matrix for the left-out

geometry is then formed by calculating the prediction errors for its states using all the cluster

KRR models. So we have a distance matrix between the energies of a single molecule and

the state clusters and we want to find the best assignment so that the total prediction error

is minimized. This is a common linear sum assignment problem, also known as the minimum

(here maximum) weight matching. We solved this matching problem by the modified Jonker–

Volgenant algorithm46 minimizing the mean squared error as implemented in the SciPy47

python package. We repeat this process of fixing the clusters, setting hyperparameters and

estimating new state orders geometry by geometry until the clusters do not change anymore.

Note that we observed better convergence by updating the clusters after the assignment of

each geometry, a modification also applicable to k-means.48

Since the proposed clustering algorithm is stochastic and does not guarantee the global

minimum, we start the optimization procedure many times from the original and also dif-
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ferent randomly generated initial orderings. The number of initial conditions for the ML

reordering optimization procedure was selected to obtain reasonably converged results and

also to approximately match the results of the wavefunction-based reordering described be-

low, that is, 1000 optimization runs. Since the results for different initial conditions are

independent, the whole procedure can be efficiently parallelized. The obtained solutions are

then compared by using cross-validation prediction errors and the best one is selected. How-

ever, the performance evaluated simply by the cross-validation prediction errors from KRR

hyperparameters tuning (described below) is optimistically biased. The problem is when the

same data are used to both select the model and tune the hyperparameters. We overcome

this limitation by using nested (double) cross-validation, that is, the hyperparameters are

optimized for each ordering in inner nested cross-validation. This way, we avoid the leakage

of information from the training set to the test set.

Note that the proposed clustering algorithm is just one of the possibilities for how to

perform the optimization. Alternatively, it is possible to optimize the ordering for instance

by some metaheuristics such as simulated annealing or genetic algorithms. The advantage

of the proposed ordering is its simplicity.

ML for property-based diabatization

The ML framework for state assignment outlined above is directly applicable to crossings

between states of different symmetry which do not form conical intersections. Such states do

not mix and the couplings are zero by definition. The seam has then the dimensionality of

Nint−1 with Nint being the number of internal coordinates and simple reordering of states is

the optimal solution. The proposed algorithm, as defined in the previous section, can even

improve the learning of states forming conical intersections with Nint − 2 dimensional seam

as the algorithm can find a route through the conical intersections which provides smoother

surfaces with more slowly changing characters of the involved states. In one dimension, for

example, when following a trajectory or a scan, it simply decides whether it is advantageous
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for the learning to switch adiabatic states in the vicinity of the conical intersection depending

on the number of training nuclear geometries. Nevertheless, the most efficient learning for

conical intersections can be achieved in a diabatic basis.

We first apply a property-based diabatization yielding adiabatic PEMs with inconsistent

state ordering and couplings’ signs. We now want to modify the assignment step of the

ML-based algorithm described above to obtain consistent order of states and signs based

not only on diabatic PESs (diagonal elements) but also on diabatic couplings (off-diagonal

elements). Mathematically speaking, for each iteration and nuclear geometry, we want to

find such an assignment of its PEM B represented by a signed permutation matrix S, which

minimizes the Frobenius norm to the predicted PEM A from ML models trained without

that particular geometry:

min
SϵS

∥A− SBST∥F = max
SϵS

Tr(ATSBST) (9)

where ∥ · ∥F is the Frobenius norm and S is the set of all signed permutation matrices.

Unfortunately, this is not a linear sum assignment problem anymore because of the off-

diagonal elements which couple the rows and columns together. This problem corresponds

to the quadratic assignment problem (except the permutation matrices are signed) which is

an NP-complete problem so there is no known algorithm for solving it in polynomial time.

In fact, there are 2n−1n! signed permutational matrices for n states.

We can get an approximate solution by neglecting the arguably small diabatic couplings

and using only the diagonal PESs; the problem then reduces to the linear assignment problem

described in the previous section. However, we still need to correct the signs of diabatic

couplings. The simplest approach is to compare all 2n−1 possible sign combinations for n

states of each geometry and select the combination with the minimum error, an approach

similar to phase-free learning of spin-orbit and nonadiabatic couplings by Westermayr et

al.8 The assumption that the diabatic couplings are completely negligible compared to the
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diagonal terms is unnecessarily strict. We can use the result from such simplified optimization

as a starting point for further optimization taking into account even the diabatic couplings.

We use here an exhaustive search: we iteratively test all permutations of states and signs

for every single nuclear configuration and choose the best-performing permutation with the

smallest loss function. Note, that the search is exhaustive only in terms of states but it is

iterative in terms of nuclear configurations. Also, the exhaustive search can be replaced by

a 2-opt optimization if too many states were included.

Note again that different optimization procedures can be used. However, the main advan-

tage of the iterative assignment on the leave-one-out basis is its simplicity and its reasonable

resistance to overfitting.

Wavefunction-based reordering

To benchmark the ML algorithm and analyze the test cases, we propose yet another re-

ordering algorithm based on wavefunctions, yet it is applicable only to direct reordering of

adiabatic states and it cannot be used for the diabatic basis. The proposed wavefunction-

based ordering is based on the assumption that the states preserve, at least to some extent,

their character through the state crossings and conical intersections. As a result, wavefunc-

tion descriptors can be used to reorder the excited states of the sampled nuclear geometries

in order to obtain states most preserving their characters. The most natural criterion for the

similarity of electronic states is their overlap. Using wavefunction overlaps, we can define

distances between all the electronic states of all the nuclear configurations representing the

nuclear density.

As we have distances not only between nuclear configurations but also between the excited

states, we can directly cluster the states. We propose here a clustering procedure based on

the direct maximization of the silhouette coefficient. However, note that other clustering

techniques can be applied as well; one has to only incorporate the condition that each state

of a single nuclear configuration is assigned to a different cluster. The silhouette coefficient
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measures how similar are data points to other points within their own cluster compared to

data points in other clusters. The silhouette coefficient can be calculated with any distance

metric. In contrast, the most popular k-means algorithm cannot be used to cluster states

based on overlaps as it requires the calculation of cluster centres.

We first define the distance of point i to its own cluster CI and the closest different

cluster, respectively:

a(i) =
1

|CI | − 1

∑
j∈CI

d(i, j) (10)

b(i) = min
J ̸=I

1

|CJ |
∑
j∈CJ

d(i, j) (11)

where d(i, j) is the distance between points i and j and |CI | is the size of the cluster CI .

The silhouette for the given point is then given by these two quantities:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(12)

The mean silhouette over all states of all the sampled nuclear configurations represents our

objective function to be maximized. Since the wavefunction overlap is a similarity metric,

we define the distance by its complement to one:

dol(i, j) = 1−
∣∣⟨Ψi|Ψ′

j⟩
∣∣ (13)

where Ψi and Ψ′
j are the wavefunctions of the two electronic states of two possibly different

nuclear configurations. As wavefunctions can have arbitrary signs, we use the absolute value

of the overlap. Alternatively, it is possible to use squared values or apply a phase correction.

We work here with CI-type wavefunctions which can be expressed as an expansion into

Slater determinants:

Ψi =
∑
k

cikΦk (14)

where cik are the CI expansion coefficients into Slater determinants Φk. Note that this group
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of methods includes also popular time-dependent density functional theory (TDDFT), which

can be written in the form of CI singles (CIS) expansion. The overlap is then given by the

overlaps between the two sets of Slater determinants:

⟨Ψi|Ψ′
j⟩ =

∑
k

∑
l

cikc
′
jl⟨Φk|Φ′

l⟩ (15)

The overlap between two Slater determinants can be in turn expressed as a determinant

containing overlaps between the constituting molecular orbitals (MOs):49,50

⟨Φk|Φ′
l⟩ =

∣∣∣∣∣∣∣∣∣∣
⟨ϕk1|ϕ′

l1⟩ . . . ⟨ϕk1|ϕ′
ln⟩

...
. . .

...

⟨ϕkn|ϕ′
l1⟩ . . . ⟨ϕkn|ϕ′

ln⟩

∣∣∣∣∣∣∣∣∣∣
(16)

The calculation of wavefunction overlaps can be quite laborious and we need overlaps

between all the states of all the geometries but this procedure serves here only to provide

insight and validate the ML algorithm. Also, the geometries have to be aligned first in order

to obtain meaningful values.

We start the optimization from the initial ordering/clusters, that is, the energy-ordered

adiabatic states. Analogically to the ML reordering, we iteratively calculate the silhouette

coefficient for each possible cluster assignment of each state separately for the selected ge-

ometry given the fixed clusters from the previous iteration. This way, we obtain a square

matrix of silhouette coefficients between the states of the given geometry and the clusters

and we select the best assignment again by solving the linear sum assignment problem. We

iteratively repeat this procedure geometry by geometry until the clusters do not change

anymore.
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Regression model

Our ML model serves two purposes: we want to reconstruct diabatic PEMs and we want

to predict adiabatic energies to reduce the number of expensive ab initio calculations. We

make our models reasonably simple mainly for two different reasons: we want to keep our

methodology clear and reproducible, and we need to perform the training many times during

the correction procedure of the property-based diabatization so it has to be cheap. Therefore,

we train a separate ML model for each adiabatic PES or each element of the diabatic PEM.

We can identify two major categories of ML algorithms for nonlinear regression in the

field.2,51 One category consists of kernel methods.52 Kernel methods use the so-called kernel

trick, which allows using linear regression algorithms to model nonlinear problems through

an implicit transformation of the input data into a higher-dimensional space.53 Among these

methods, the KRR method is quite simple and frequently used in quantum chemistry.53,54

Neural networks, popularized due to their versatility and amenability for GPU hardware,

represent another valid category.2 However, the design of their architecture as well as the

identification of proper training protocols is more complicated and requires substantial expe-

rience and time investment.55 Also, kernel methods are often more suitable for small datasets

and we want to work with as few as hundreds of samples.

A crucial ingredient for the prediction of molecular properties is a molecular represen-

tation or molecular descriptors, that is, a feature vector encoding the system, usually via

the molecular structure.55,56 It should fulfil some basic requirements for ML to be efficient:

it should be efficient to calculate (i.e. compact) and devoid of redundant information: it

should possess translational, rotational, and permutational invariance.57,58 We usually want

it to be also differentiable, unique, and universal. When possible, constant size descriptors

are desirable as they offer improved scalability throughout the chemical space.59

Molecular representations typically encode either the entire system or each atom in its

chemical environment.57 One of the simplest representations from the first category is the

Coulomb matrix60 and the bag of bonds.61 Popular representations from the second cat-
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egory are, for example, the smooth overlap of atomic positions,62 atom-centre symmetry

functions,63 or the Faber–Christensen–Huang–Lilienfeld56 representation. Note that these

are just examples as many alternatives have been presented.58,64,65 One can even gener-

ate functional descriptors automatically via deep learning during the training process66 or

separately by using a special type of neural network called autoencoder.67

In our case, the KRR method is the favourable choice because of its simplicity and

efficiency for small training samples. We create a separate KRR model for each PES or

PEM element separately. In KRR, the quantity of interest is predicted for feature vector x

(molecular representation) using training samples xi in the following way:68

f(x) =
n∑

i=1

αik(xi,x) (17)

where k(xi,x) is a kernel function providing a similarity measure between the two vectors and

αi are the regression coefficients. The Gaussian and Laplace kernels are especially popular

in chemistry.53 We use here the Gaussian kernel which has the following form:

k(xi,xj) = exp

(
− 1

2σ2
||xi − xj||22

)
(18)

where ||x||2 is the Euclidean norm and σ is a model parameter.

The regression coefficients can be obtained from the training data by the following min-

imization:68

α = argmin
α

(
n∑

i=1

(yi − f(xi))
2 + λ

n∑
i=1,j=1

αik(xi,xj)αj

)
(19)

The first term is a common residual sum of squares. The second term including another

model parameter λ is responsible for the regularization: it is supposed to prevent overfitting

of the training data. This minimization has a closed-form solution:

α = (K+ λI)−1y (20)
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where y is the vector of known solutions for the training data and K is a kernel matrix with

elements Kij = k(xi,xj). This equation is in practice solved by the Cholesky decomposition.

Within our approach, we need to solve this equation a lot of times, very often for the same or

slightly modified kernel but with different y. This can be done efficiently by caching and/or

updating the intermediate results of the Cholesky decomposition, effectively reducing the

formal O(n3) scaling with the number of samples up to quadratic dependence.

The parameters σ and λ are called hyperparameters and they are usually tuned on a

grid using either the cross-validation or a separate validation set.54 If we have enough data,

we can use a separate validation set (different from the training set) on which we evaluate

KRR models trained with different combinations of hyperparameters. The combination

which provides the smallest error is then selected. Alternatively, it is possible to divide the

training set into k subsets, use (k−1) subsets for the training, and evaluate the performance

for the last one.68 By repeating this process k times, each time leaving out a different subset,

we get the k-fold cross-validation. We select the combination of parameters that provides

the smallest average error over the left-out subsets. The 10-fold cross-validation is used here.

The crucial part of chemical applications of ML algorithms is the selection of molecular

representation.54 By working with nuclear configurations of a single molecular entity, some of

its desired properties are automatically fulfilled. Namely, the number of atoms is constant,

resulting in a constant-size molecular representation. Also, we can simply choose a fixed

order of atoms when sampling the configuration space, ensuring permutational invariance

with respect to different elements. With fixed atomic order, permutations do not play any

role in the FNO molecule. The results for the formaldehyde molecule could be slightly better

when taking into account two possible permutations of the hydrogen atoms using for example

the permutationally invariant kernel69 but we opted here for simplicity. We used a simple

vector of normalized inverted internuclear distances:70,71

x =

(
rrefi,j

ri,j
for 1 < i ≤ N for j < i

)
(21)
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where ri,j is the Euclidean distance between atoms i and j and rrefi,j is the reference value.

The reference values are usually taken from the minimal geometry but we used here average

values sampled in the nuclear ensemble. This representation is simple yet efficient for our

small molecules.

Computational details

The molecules were optimized at the B3LYP/6-31g* level with subsequent vibrational anal-

ysis on the same level using Gaussian G09,72 revision D.01. 1000 nuclear configurations

for each molecule were subsequently sampled using the harmonic approximation and the

temperature-dependent Wigner quasiprobability distribution:73,74

PW(q,p, T ) =
∏
i

1

πh̄
tanh

(
h̄ωi

2kBT

)
exp

(
tanh

(
h̄ωi

2kBT

)(
− p2i
µih̄ωi

− µiωiq
2
i

h̄

))
, (22)

where qi is the deviation along the i-th normal mode and pi, ωi and µi are the corresponding

momentum, angular frequency, and reduced mass, respectively. T is the temperature set to

300 K and kB is the Boltzmann constant.

All the nuclear configurations for each molecule were geometrically aligned to one refer-

ence minimizing the mean square error between atomic centres via translation and rotation

in order to obtain reasonable wavefunction overlaps which are needed for the analysis. Subse-

quently, the excited-state calculations for the sampled geometries were performed again at the

B3LYP/6-31g* level of theory within the Tamm-Dancoff approximation in the PySCF44,45

code, version 2.0.1. Note that this level of theory does not provide quantitative results and

the present calculations serve only to show the performance of the proposed algorithms.

However, this level of theory combined with small test molecules allows us to calculate over-

laps between all pairs of states of all sampled geometries, which is vital for the analysis and

tuning of the optimization procedure.
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Results and discussion

We chose nitrosyl fluoride (FNO) as the first example to show how the proposed methodology

works. The first reason is that it is small so it can be easily analyzed but it is already a 3D

problem that cannot be simply corrected by hand. The second reason is its Cs point group

resulting in two sets of electronic states with either A’ or A” symmetry. We can therefore

examine the behaviour of the algorithm both when two states of different symmetry cross

without mixing and when states of the same symmetry form conical intersections. The

second test case is the formaldehyde molecule which represents already a 6D problem but

it is still possible to calculate pairwise wavefunction overlaps for analytical and benchmark

purposes. Also, both molecules contain a set of singlet states which do not interact with

other higher or lower-lying states at the employed level of theory.

Nitrosyl fluoride: 1D scan

Let us first look at the 1D scan of the FNO molecule along the NO bond to demonstrate how

the proposed methodology works. The first three excited singlet states are all energetically

well separated and do not mix or cross. We, therefore, focus on the next three states S4-S6

which cross and mix within the sampled configuration space. Note that these three states

actually include the brightest states of the FNO molecule. We can see that while two states of

the same A” symmetry form an avoided crossing, the third state has a different A’ symmetry a

crosses them without any interaction (see figure 2a). We can directly apply the ML reordering

algorithm without prior diabatization (see figure 2b). Such treatment correctly reconstructs

the non-mixing diabatic state of different symmetry as the off-diagonal elements are zero and

reordering actually represents the exact diabatization. The two states of the same symmetry

switch their order in the centre of the avoided crossing resulting in two almost linear curves

only with a small disruption located at the avoided crossing. While these states are not

properly diabatic, they are much easier to fit than the original ones. Such a result looks
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Figure 2: Excited states of the FNO molecule along the NO bond in the a) adiabatic basis, b)
reordered adiabatic basis, c-d) diabatic basis, and e-f) reordered and sign-corrected diabatic
basis.
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encouraging; however, note that the 1D picture might be a bit misleading. The avoided

crossing is caused by a conical intersection which cannot be displayed in one dimension. The

reordering based on wavefunction overlaps is not plotted separately as it provides here the

same result as the ML-based reordering but their agreement shows that the clustering works

properly.

As a next step, we apply a simple tD diabatization scheme as outlined in section . In

this case, we need to distinguish only two states of the same symmetry along one coordinate

so the property-unblending diabatization using just the transition dipole moments from the

ground state is sufficient. Figure 2c displays the diagonal elements of the diabatic PEM while

figure 2d displays the off-diagonal elements, that is, the diabatic couplings. We can directly

see the two problems of property-based diabatization: the ordering of the diabatic states is

not consistent along the coordinate and the diabatic couplings have random signs. By the

subsequent application of our algorithm, we get both smooth diabatic PESs and couplings

(see figures 2e and 2f). One might point out that the correct ordering and signs are obvious.

This is true in one dimension but the ordering and signs cannot be easily corrected by hand

in a multidimensional space. Our algorithm allows applying property-based diabatization to

multidimensional problems as shown below.

Nitrosyl fluoride: 3D case

Let us now move to the full 3D space of the FNO molecule. In the full space, we have

to include another two higher-lying states which interact with the three already included

states. There are now two states of A’ symmetry and three states of A” symmetry. Figure

3a presents a 2D multidimensional scaling projection of the five excited states for 100 nuclear

configurations. Multidimensional scaling forms a low-dimensional representation of the data,

in which the distances respect the distances in the original high-dimensional space as well

as possible.75 We defined the distances the same way as in eq. 13 so the overlaps are also

reasonably preserved given the limitations of a 2D plot. The excited states form five clusters
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corresponding to five diabatic states and none of them coincides with a single adiabatic state

plotted with different colours. It can be clearly seen that the three states of A” symmetry

mix together as there are samples connecting these clusters. On the contrary, the two A’

states do not mix suggesting that they are well separated within the sampled space.

Figure 3: Multidimensional scaling projection of excited state clusters before and after re-
ordering based on wavefunction overlaps for 100 nuclear configurations and 5 excited states.
The projection corresponds to a 2D space in which the wavefunction overlaps are preserved
as well as possible.

To provide insight, let us first look at wavefunction-based clustering which serves here

for visualization and benchmark purposes. Figure 3b shows the same projection after we

applied the wavefunction-based clustering described in section . The adiabatic states of each

geometry are now assigned to the clusters as well as possible. We can now create an ML

model for each of these clusters instead of the original adiabatic states. The geometrical

topologies of conical intersections are of course still present but we might hope that the new

clusters present a better way through them. Nevertheless, these models serve mainly as a

benchmark to test our ML reordering on an adiabatic basis before switching to a diabatic

basis. Similarly, we reordered the adiabatic states using our ML approach to see whether

such treatment is sufficient.

Finally, we applied the property-based diabatization and corrected the signs and order-

ing with our ML approach. The tD diabatization is not sufficient anymore as we need to

differentiate 5 states. Therefore, we use here the tDQ diabatization. Let us now compare the

accuracy of the ML prediction before and after applying all these methods, that is, original
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Figure 4: The mean absolute error of the kernel ridge regression for the FNO molecule
as a function of training set size for adiabatic basis (AB), adiabatic basis reordered using
wavefunction overlaps (OL), ML-reordered adiabatic basis, and values obtained from the
diagonalization of ML-corrected diabatic basis (DB).

adiabatic states, adiabatic states reordered using wavefunction overlaps, ML-reordered adia-

batic states, and ML-corrected diabatic states. The results are plotted for different training

set sizes in figure 4. We always selected a training set of a given size, reordered/corrected

it with the proposed algorithms, and used it to train a separate KRR model for each PES,

and also each diabatic coupling in the case of the diabatic basis. We subsequently used these

models to predict PESs for the rest of the 1000 geometries, which were not selected for the

training set and evaluated the prediction error by means of the mean absolute error (MAE).

In the case of the diabatic basis, the predicted PEMs are diagonalized and the resulting

adiabatic energies are compared to the other models. Note, that the results are plotted on

the log-log scale.

We can see that the improvement in accuracy is enormous for all the proposed approaches.

Both adiabatic reordering approaches improve learning consistently almost by one order of

magnitude. Also, both reordering approaches provide comparable results which suggest that

our ML reordering procedure is sufficient. By switching to the diabatic basis and correcting

the signs and ordering, we get another significant increase in accuracy. Not only that the

absolute errors are much smaller but also the slope is better. The MAE is smaller by two
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orders of magnitude already with 80 samples.

Figure 5: Potential energy surfaces obtained by the proposed ML approach based on the
tDQ diabatization of the S4-S8 adiabatic states of the FNO molecule. The bond angle is
fixed to 110°. ML models were trained on 320 geometries from the Wigner distribution.

To inspect how the diabatic states look like, we plot their PESs in figure 5 for a fixed

bonding angle using ML models trained on 320 geometries. While it is difficult to plot five

surfaces at once in a clear way, the PESs are clearly smooth and cross each other without

forming conical intersections.

Formaldehyde: 6D case

We repeated the whole procedure for the formaldehyde molecule where we selected the

tDQO property-based diabatization as the tDQ diabatization did not improve the learning.

We could have in principle diabatized states of different symmetries separately for the FNO

molecule but this is not the case for the formaldehyde molecule; while formaldehyde belongs

to the C2v point group in the minimal geometry, the symmetry is broken virtually for all
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the geometries. The MAEs for both adiabatic reordering approaches and the diabatic ML

approach are presented in figure 6. We observe again a major improvement in prediction

accuracy by up to one order of magnitude with 320 training geometries. While the improve-

ment is not as remarkable as for the FNO molecule, one order of magnitude is still a huge

improvement. It is important to realize that the final diabatic ML models are always lim-

ited by the underlying property-based diabatization. Both adiabatic reordering approaches

decrease the prediction errors by up to half an order of magnitude and provide again very

similar results.

Figure 6: The mean absolute error of the kernel ridge regression for the formaldehyde
molecule as a function of training set size for adiabatic basis (AB), adiabatic basis reordered
using wavefunction overlaps (OL), ML-reordered adiabatic basis, and values obtained from
the diagonalization of ML-corrected diabatic basis (DB).

Conclusions

We tackled two different problems at once: efficient machine learning for excited-state prop-

erties and diabatization. We proposed and tested methodology for correcting deficiencies

of property-based diabatization techniques including random signs of the diabatic couplings

and inconsistent ordering of the diabatic states throughout the configuration space, which

prohibited the wider deployment of these methods to multidimensional systems. To this end,
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we developed a stochastic ML optimization procedure based on the combination of KRR and

clustering. The optimization provided us with smooth diabatic states which are also easy to

fit and predict. The set of adiabatic energies can be then easily obtained by diagonalization

of the predicted diabatic PESs and couplings. This way, we were able to improve the predic-

tion accuracy by about 2 orders of magnitude in terms of MAE for the adiabatic energies of

the FNO molecule and almost 1 order of magnitude for the formaldehyde molecule. However,

it is important to note that the quality and performance of the final ML models are heavily

dependent on the underlying property-based diabatization. Our ML approach corrects in-

consistent state ordering and sings but it cannot correct for improperly chosen diabatization

properties or state manifolds. We focused on small training sets including from dozens up

to hundreds of nuclear geometries.

Our ML approach is applicable to any property-based diabatization. However, we also

proposed a series of simple property-based diabatization schemes that are easily applicable

even to single-reference methods such as TDDFT. These schemes are based only on tran-

sition multipoles from the ground state which makes them pragmatic and easily applicable

but also not universal. The direct application of our reordering algorithms without prior

diabatization also improved the learning significantly: up to one order of magnitude for the

FNO molecule and up to half an order of magnitude for the formaldehyde molecule. How-

ever, such behaviour cannot be probably expected for much more complex PESs of large

systems.

Overall, we developed a methodology making diabatization more accessible for quantum-

chemistry practitioners as it is based on the simplest category of diabatization methods,

that is, property-based diabatization. The ML-corrected diabatic basis can also save us many

computationally expensive ab initio calculations as we can use much smaller training samples

to achieve the same prediction accuracy. We also kept our optimization procedure as simple

as possible for the sake of better transferability and reproducibility. Nevertheless, more

efficient optimization procedures based on metaheuristics could be used. The methodology
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can be also in principle used with different ML models instead of KRR. However, the ML

model has to be reasonably efficient as it gets retrained many times during the optimization

procedure.

This work also opens the way to other possible applications. Wrong state ordering was

identified as a possible problem when learning differences between two electronic structure

methods within ∆-ML.6 The basic reordering algorithm could resolve the issue caused by

inconsistent ordering of adiabatic states at the two employed levels of theory. The present

approach might be extended in the future to tackle also the problem with the selection of an

independent excited-state manifold for diabatization by fitting a larger number of diabatic

states than the number of input adiabatic states.
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(30) H. Köppel, Regularized diabatic states and quantum dynamics on intersecting potential

energy surfaces, Faraday Discuss., 2004, 127, 35–47.

(31) X. Zhu and D. R. Yarkony, Toward eliminating the electronic structure bottleneck in

nonadiabatic dynamics on the fly: An algorithm to fit nonlocal, quasidiabatic, coupled

electronic state Hamiltonians based on ab initio electronic structure data, J. Chem.

Phys., 2010, 132, 104101.

(32) Y. Shen and D. R. Yarkony, Construction of Quasi-diabatic Hamiltonians That Accu-

rately Represent ab Initio Determined Adiabatic Electronic States Coupled by Conical

Intersections for Systems on the Order of 15 Atoms. Application to Cyclopentoxide

Photoelectron Detachment in the Ful, J. Phys. Chem. A, 2020, 124, 4539–4548.

(33) C. E. Hoyer, K. Parker, L. Gagliardi and D. G. Truhlar, The DQ and DQΦ electronic

structure diabatization methods: Validation for general applications, J. Chem. Phys.,

2016, 144, 194101.

(34) Z. Varga, K. A. Parker and D. G. Truhlar, Direct diabatization based on nonadiabatic

couplings: the N/D method, Phys. Chem. Chem. Phys., 2018, 20, 26643–26659.

34



(35) J. E. Subotnik, S. Yeganeh, R. J. Cave and M. A. Ratner, Constructing diabatic states

from adiabatic states: Extending generalized Mulliken–Hush to multiple charge centers

with Boys localization, J. Chem. Phys., 2008, 129, 244101.
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sampling and temperature effects on the excited-state dynamics of 2-nitronaphthalene,

Phys. Chem. Chem. Phys., 2019, 21, 13906–13915.

(75) A. Mead, Review of the Development of Multidimensional Scaling Methods, J. R. Stat.

Soc. Ser. D, 1992, 41, 27–39.

40


