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 de novo generated combinatorial library design  

Simon Viet Johansson,*a,b , Morteza Haghir Chehreghanib, Ola Engkvista,b Alexander Schliep b,c 

Artificial intelligence (AI) contributes new methods for designing compounds in drug discovery, ranging from de novo 

design models suggesting new molecular structures or optimizing existing leads to predictive models evaluating their 

toxicological properties. However, a limiting factor for the effectiveness of AI methods in drug discovery is the lack of 

access to high-quality data sets leading to a focus on approaches optimizing data generation. Combinatorial library design 

is a popular approach for bioactivity testing  as a large number of molecules can be synthesized from a limited number of 

building blocks. We propose a framework for designing combinatorial libraries from de novo generated building blocks 

using k-Determinantal Point Processes and Gibbs sampling. We explore optimization  of biological activity, Quantitative 

Estimate of Drug-likeness (QED) and diversity and the trade-offs between them, both in single-objective and in multi-

objective library design settings. Using retrosynthesis models to estimate building block availability, the proposed 

framework is able to explore the prospective benefit from expanding a stock of available building blocks by synthesis or 

purchase the preferred building blocks before designing a library. In simulation experiments with building block collections 

from all available commercial vendors near-optimal libraries could be found without synthesis of additional building 

blocks; in other simulation experiments we showed that even one synthesis step to increase the number of available 

building blocks could improve library designs when starting with an in-house building block collection of reasonable size. 

Introduction 

AI and AI-assisted tools have seen rapidly increased popularity 

in cheminformatics over the past decade. In drug discovery, 

these tools have impacted bioactivity prediction1, 2, de novo 

molecular design3-7, synthesis prediction8-12 and toxicology 

prediction13. In turn, the demand for high-quality data has 

increased beyond the extent of existing data sources 14 and 

there is a need to facilitate a larger number of informative 

experiments to generate data in a standardized format. 

Combinatorial chemistry is a popular method for producing 

large collections of compounds, motivated by material 

efficiency and more sustainable chemistry 15, 16 since synthesis 

of 100 molecules using two building blocks per synthesis could 

in the worst case require 200 different building blocks, whereas 

a library of the same size using combinatorial chemistry would 

use 20 in a 10 × 10 design. 

 

Library design has traditionally aimed to optimize the selection 

of molecules for  either molecular diversity17-19 or  molecular 

properties like high activity towards a target or reduce 

lipophilicity, i.e. a focused library design20-24. A diverse library 

design provides a larger coverage of the chemical space and is 

often viewed as more ‘informative’, since similar molecules 

hypothetically would provide redundancy in the information 

gained17, 25. Focused libraries on the other hand might aim to 

optimize a selected lead compound26, 27 by lowering the 

structural diversity and exploring similar structures to the lead 

compound to improve a specific property.  

 

The space of synthetically feasible molecules is estimated to be 

of size 1060 28, whereas traditional High-throughput screening 

(HTS) has the capability to physically test approximately 

106compounds. Consequently, virtual compound libraries 

became the focus  as the computational resources became large 

enough to store their chemical structures16, 29, 30. The virtual 

library CH/PMUNK31 consists of 95 million compounds by 

enumerating products using common reactions from 

combinatorial chemistry. The virtual library REAL32 has over 

6 × 109 molecules for virtual screening that obey Lipinski’s rule 

of 5 33. The GDB-17 library of small molecules enumerated by 

Ruddigkeit et al.34 contains 160 billion virtual compounds with 

up to 17 heavy atoms. Additionally, compound suppliers also 

offer “synthesis on demand” building blocks of which the largest 

is MADE35, a catalogue of 770 million building blocks that can be 

ordered and made with “over 76% success rate”.   

 

Generative models for de novo design offer an alternative to 

virtual screening or HTS, by instead generating focused 

selections with a smaller size3, 36. Several deep learning models 

have been proposed to generate chemical libraries in a focused 

manner, in particular decorating a scaffold37 by suggesting 

which building blocks to attach to this scaffold. The Mol-GPT 

model showed capability to both optimize a lead, as well as 

decorate a scaffold38. STRIFE emphasized pharmacophore 
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information to decorate and optimize proteins39. Domenico et 

al. adapted the REINVENT3 architecture to create focused 

libraries towards inhibiting NA, AChE and SARS-CoV-240. 

LibINVENT41 uses reinforcement learning to generate reaction-

constrained decorations to input scaffolds. These methods can 

generate building blocks for combinatorial library design, but do 

not inherently offer an optimized combinatorial selection. 

Given a limited experimental budget, there is motivation to 

develop workflows for optimizing combinatorial design for 

novel de novo generated building blocks. 

 

Methods that simultaneously optimize both diversity and 

molecular properties of a library have been used in several 

previous studies, using for example simulated annealing42 (SA) 

or genetic algorithms (GA)43-45. These approaches provide 

optimization over lists of provided building blocks, or virtual 

libraries but cannot determine whether novel generated 

building blocks can be acquired or if they are only hypothetical 

structures impossible to synthesize in practice. As such, a design 

made by these models on de novo generated building blocks is 

limited by the “synthesis on demand” success rate.  

 

A model that has proven to perform well for modelling the 

trade-off between quality and diversity is the Determinantal 

Point Process (DPP)46-48. DPPs are probabilistic models that have 

been argued to represent repulsion between items49. They are 

used in other application areas for text summarization48, pose 

estimation47 and diverse image selection46, but have not yet 

been investigated for library design. While common methods 

for selecting diversity are maximizing the sum of pairwise 

distances17, 45 or minimizing average pairwise similarity44, the 

determinant of the similarities  captures the interaction 

between multiple molecules simultaneously50. Additionally, the 

max-sum or min-average methods scale in time complexity 

quadratically with the number of building blocks in the 

optimization space. While the DPP has a cubic scaling, it is 

instead dependent on the size of the sampled library rather 

than the number of options. 

 

We propose a library optimization workflow for de novo 

generated building blocks in a combinatorial fashion applying 

recombination51, 52. Using LibINVENT41, we generate and filter 

building blocks that can attach to an example scaffold using 

specified reactions. We then use the Computer Aided Synthesis 

Prediction (CASP) tool AiZynthFinder12 to evaluate all generated 

building blocks and their availability in the eMolecules building 

block platform53 of purchasable building blocks, or estimate the 

number of reaction steps needed to synthesize them using 

template-based retrosynthesis prediction8, 9. We 

simultaneously explore and optimize the library selection for 

Quantitative Estimate of Drug-likeness (QED)54, Quantitative 

Structure-Activity Relationship (QSAR)1, 36, 55, 56 and Structural 

diversity (ECFP6)57 using Gibbs sampling58, conditioned on a 

constant size, thus sampling from a determinantal point process 

of constant size k (k-DPP)59. The workflow is model-agnostic and 

can be applied to any list of building blocks and any CASP tool 

that break down the building blocks into stock-available 

precursors. We apply this workflow to optimize a library from 

all available building blocks from eMolecules 53. We also 

simulate an in-house building block store by optimizing over a 

subset of the available building blocks and explore the 

differences in optimized libraries between using available 

building blocks and commercially available building blocks. 

 

The main contributions of this framework are as follows. we 

• extend combinatorial library design to score de novo 

designed building blocks, 

• propose the use of DPPs, in particular k-DPPs, to 

sample libraries that optimize the trade-off between 

quality and diversity, and 

• estimate the difference in score between libraries 

using available building blocks and total pool of 

generated reactants, and  estimate the potential gain 

from expanding the available building blocks.  

Methods 

The framework (see Figure 1) consists of the generation of 

building blocks, followed by use of retrosynthesis prediction 

models to estimate if the building blocks are available in a 

defined stock data set, or if they could be produced from this 

stock through synthesis. While the implementation here 

[https://github.com/SeemonJ/combinatorial-library-design-

dpp] is specifically made to work with the open source versions 

of LibINVENT60 and AiZynthfinder61, the framework itself can be 

adapted to work with any metrics.  

 

  

Figure 1. Flowchart of methods used for the combinatorial library design. 

 



Journal Name  ARTICLE 

  

Application example 

The scaffold displayed in Figure 2 is adapted from the original 

LibINVENT publication41. The reactions used are Buchwald-

Hartwig62 for the left attachment point and primary amide 

coupling63 for the right one. We will refer to these reactions as 

BH and AC respectively in the following.  

Target activity model 

The QSAR model is a random forest model64 built using Scikit-

learn 0.21.365 with 50 estimators. The training data used is all 

DRD2 data available in ExcapeDB66, with a threshold for 

active/inactive  pXC50 of 6. Compounds from HTS assays from 

ChEMBL67 without pXC50 data were assigned as inactive. With 

these definitions for activity, the data set had 6,304 active 

compounds and 344,905 inactive compounds. The compounds 

were represented by the extended connectivity fingerprint with 

2,048 bits and radius 3 (ECFP6). The model was trained using an 

80%/20% training/test data split. The data is imbalanced with 

most of training points labelled as inactive compounds, 

resulting in AUC-ROC score of 0.995 by having a pessimistic bias. 

This model was used both as part of the LibINVENT 

reinforcement learning run and during Library selection. 

 

Building block generation using LibINVENT 

The building blocks were generated using the pre-trained prior 

model of LibINVENT60. The reinforcement learning was run for 

1,000 epochs with a batch size of 128 and a learning rate of 

5 × 10−6. The default diversity filter, which penalizes previously 

sampled building blocks, and the custom alerts for non-druglike 

groups were included during training. Reaction filters for the BH 

and AC reactions were applied, which penalize building blocks 

that do not match the reaction SMARTS68.  

  

A total of 104,991 unique molecules (82%) were generated, of 

which 94,808 (74%) matched the reaction filters. All molecules 

for which QSAR model assigned a probability of being active 

lower than 0.8 were removed in post-processing. This yielded 

45,928 remaining products, from which the building blocks 

were extracted. 32,159 unique carboxylic acids and 2,084 

unique aromatic halides were identified, corresponding to AC 

and BH reactions, respectively. The runtime was approximately 

2 hours using a Nvidia 2080Ti. 

  

Building block availability 

The public version of AiZynthFinder61 was used to check which 

building blocks were available directly ‘in stock’, and which 

building blocks would require synthesis to be available. The 

baseline stock consists of purchasable building blocks from 

eMolecules53, and consists of approximately 1.5 million building 

blocks (including 227K carboxylic acids and 444K aromatic 

halides). AiZynthFinder was set to a maximum search time of 5 

minutes, and maximum 10 reaction steps for identifying a 

synthetic route. AiZynthFinder was run in batches across 

multiple CPU’s of varying models as performing the analysis on 

~34K building blocks for up to 5 minutes each would, in the 

worst case, require ~2,800 CPU hours, in the scenario that no 

building blocks were available directly in stock. This analysis was 

performed both for the baseline stock and for five limited 

availability subsets, used to simulate internal stock. The limited 

availability subsets were sampled uniformly without 

replacement from the baseline stock and were chosen to be 3% 

of the size of the baseline size (~45k building blocks).   

 

The parameters chosen both for generative modelling and 

retrosynthesis let both models run for a longer time, 1000 

epochs compared to 100 during generation and 5 minutes 

instead of 2 for retrosynthesis evaluation, than previous uses of 

the same architectures12, 41. This yields more output building 

blocks and solves more routes than previous use in 

demonstrated studies, and potentially include LibINVENT 

output that could be a result of over-exploiting the QSAR model. 

This was done intentionally to increase the size of the search 

space and provide a larger diversity of building blocks with 

respect to quality properties to showcase the effect of the 

different strategies.  

 

Determinantal Point Processes 

In library design, diversity is often computed between 

compounds through the matrix of pairwise distances. When 

optimizing the library, the most common approaches maximize 

the sum of distances, maximize the minimum distance, or 

maximize the average distance to the nearest neighbour17, 44, 45.  

This captures the distance between a pair of two molecules 

well, but does not capture the relationships between multiple 

molecules simultaneously50. 

 

Discrete DPPs are probability distributions first used by Odile to 

model fermions69, and have been increasingly popular within 

machine learning for capturing the trade-off between diversity 

and quality46. Let 𝐿 ∈ ℝ𝑛×𝑛 be a positive semi-definite (PSD) 

matrix. A discrete DPP with kernel 𝐿 is a probability distribution 

𝜇: 2[𝑛] → ℝ+defined by 

𝜇(𝑆) ∝ 𝐷𝑒𝑡(𝐿𝑆), ∀𝑆 ⊆ [𝑛].   (1) 

 

where 𝐿𝑆  is the principal submatrix of 𝐿 indexed by the 

elements of 𝑆. Consider that if each row of the matrix is a 

feature vector that represents an item, then the probability of 

a set of items is proportional to the volume of the hull spanned 

by the vectors.  A diverse selection in the given features will 

correspond to a larger volume. For this study, the feature 

representation used to describe the products of the selection is 

the ECFP6 similar to the QSAR model, and the similarity 

measure described with the Tanimoto index70 (also known as 

Figure 2. Scaffold used as input for the generation of building blocks. This figure is 

adapted from 1. 



ARTICLE Journal Name 

 

the Jaccard index). This is well suited for application into DPPs, 

as the pairwise similarities 𝐿 is a typical kernel46.  

 

Kulesza and Taskar 46 demonstrate that the quality of terms can 

be incorporated into DPPs by decomposing the kernel into 

𝐿𝑖,𝑗 = 𝑞𝑖𝜙𝑖
𝑇𝜙𝑗𝑞𝑗,  (2) 

where 𝜙𝑖
𝑇𝜙𝑗  represents the similarity between items 𝑖, 𝑗 and 𝑞𝑖  

is a measure of the quality of the item.  This applies to multiple 

quality measures and inserting  equation 2 into the definition of 

DPP thus yields the probability for observing the set 𝑌 while 

sampling the DPP 

𝑃𝐿(𝑌) ∝ (∏ 𝑞𝑖
2

𝑖∈𝑌 )𝐷𝑒𝑡(𝑆𝑌). (3) 

Sampling process 

Evaluating the determinant of all possible products at once may 

introduce practical problems, since the naive implementation of 

determinant calculations are 𝑂(𝑛3). This naïve implementation 

is used in most libraries. Due to parallelization in smaller blocks 

of submatrices across multiple threads, it is possible to compute 

determinants of matrices with 𝑛 > 10,000 in minutes. For the 

sampled number of possible products, 32,159 × 6,213 =

199,803,867, it is computationally infeasible to evaluate all 

subsets, let alone optimize across all possible selections. For 

scenarios such as ours, however, the only selections of 

relevance are sets of practical size, such as the same sizes as 

screening plates, i.e., 96, 384 or 1536. K-DPPs are an extension 

of general DPPs that are conditioned to selected sets of size 

exactly 𝑘. Gharan and Rezaei71 introduced a computationally 

efficient method for sampling k-DPPs using a Gibbs sampling 

scheme shown to have fast mixing properties. Here, the 

proposal distribution samples suggestions only from exchange 

operations between one element and one non-element of the 

current 𝑘-set. This ensures that the size of selection always 

remains constant. Moreover, at time step t during sampling, it 

requires only computation of the transition probability  

𝑃𝐿(𝑌𝑡+1) ∝ (∏ (
𝑞𝑖

𝑞𝑗
)

𝑙

𝑖∈𝑌𝑡+1,𝑗∈𝑌𝑡,𝑙=𝐺 ) (
𝐷𝑒𝑡(𝑆𝑌𝑡+1

)

𝐷𝑒𝑡(𝑆𝑌𝑡)
)

𝜔𝑑𝑖𝑣

,  (4) 

where 𝐺 is the set of quality parameters included and 𝜔(∙) are 

the respective weights for each parameter. These weights are 

tuneable. To give equal importance to QSAR value, QED score 

and diversity, we set 𝜔𝑄𝑆𝐴𝑅 = 𝜔𝑄𝐸𝐷 = 𝜔𝑑𝑖𝑣 = 0.33 as 

constant.  At each point t, this results in two computations of 

complexity 𝑂(𝑘3) for the two determinant calculations. The 

following sampling scheme was implemented for selecting 𝑢 

and 𝑣 number of building blocks from the respective sets 𝐴, 𝐵 

of available building blocks for two attachment points: 

Algorithm 1. 

1. Initialize selection with 𝑢 and 𝑣 building blocks at 

random from 𝐴, 𝐵 respectively 

2. Create 𝑢 × 𝑣 matrix of products 𝑌0, denote this matrix 

as the active set 𝑄 

3. Compute the quality values, 𝑞𝑌0
 and the matrix of 

pairwise similarities, 𝑆𝑌0
  

4. Compute  

𝑃𝐿(𝑌0) ∝ (∑ 𝜔𝑙 log (𝑞𝑖
2)𝑖∈𝑌0,𝑙∈𝐺 )+𝜔𝑑𝑖𝑣𝑙𝑜𝑔𝐷𝑒𝑡(𝑆𝑌0

) 

5. Select a new building block from either 𝐴 or 𝐵 

uniformly 

6. Compute the new matrix  𝑌1, and the corresponding 

values, 𝑞𝑌1
  𝑆𝑌1

 

7. Calculate the transition probability  

log (𝑃𝐿(𝑌𝑡+1)) = 𝑓 ((∑ 𝜔𝑙log (𝑞𝑖
2)𝑖∈𝑌𝑡+1,𝑙∈𝐺 ) +

𝜔𝑑𝑖𝑣𝑙𝑜𝑔𝐷𝑒𝑡(𝑆𝑌𝑡+1
) − (∑ 𝜔𝑙 log(𝑞𝑗

2)𝑗∈𝑄,𝑙∈𝐺 ) −

𝜔𝑑𝑖𝑣𝑙𝑜𝑔𝐷𝑒𝑡(𝑆𝑄)),   (4) 

where, 

𝑓(𝑥) = {
0, 𝑖𝑓 𝑥 > 0

𝛼𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

and 𝛼 is a tunable parameter on the acceptance 

probability, 

8. Move to the new state  𝑄 = 𝑌1 with probability 

𝑃𝐿(𝑌𝑡+1)  or stay with 𝑄 = 𝑌0 with probability 1 −

𝑃𝐿(𝑌𝑡+1) 

9. Repeat steps 5-8 until termination. 

 

Since the pairwise similarity values of 𝑆𝑋  are all in [0,1], the 

determinants may become too small for double precision with 

relevant choices of k. For numerical stability, the logarithm of 

the right hand side of equation 3 is used in step 7. The logarithm 

of the determinant become negative, where a greater value 

represents a more diverse set. In the numerical experiments we 

let 𝑚 = 12, 𝑛 = 8, corresponding to the generated building 

blocks of carboxylic acids and aromatic halides respectively, and 

used 𝑘 = 96 as it is a common plate size.  

 

We chose to conduct experiments for 𝛼 = 0 such that we only 

accept strict improvements (hill climbing, which is a greedy 

search). The selections of the model for different optimization 

strategies were examined, see Table 1. To explore the mixing 

time, the termination criteria were set as a patience parameter, 

sampling the distribution until 10,000 samples were drawn 

without finding a better solution. We compare the results 

against the average result of 100 random selections and the top 

96 cherry-picked compounds by QSAR values from the 

LibINVENT run.  

Results 

In this section, we first show the results of processing the 

generated building blocks from LibINVENT through 

AiZynthFinder, to give a measure of the selection space for the 

framework. We then present the average results of each 

optimization strategy for different levels of availability related 

to required number of reaction steps. Next we show 

optimization results for a simulated scenario of limited stock 

building block availability. Finally, we discuss the computational 
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performance of the model when scaling up to larger selection 

space. 

 

The 32,159 unique carboxylic acids and 2,084 unique aromatic 

halides generated through LibINVENT were analysed using 

AiZynthFinder. The retrosynthetic prediction found that 88.7% 

of the generated carboxylic acids and 98.3% of the aromatic 

halides could be synthesized within 2 steps of reactions from 

the base eMolecules stock. Of the building blocks, 6,203 

carboxylic acids (19.3% of the generated building blocks) and 

763 aromatic halides (36.6%) were directly available in stock; 

i.e., required no synthesis. The full distribution of reaction 

availability can be seen in Figure 3.  

 

The compound selection was performed on the criteria of only 

QSAR, only QED, only Diversity and all the metrics 

simultaneously with equal weight. For the rest of this section, 

we will refer to the strategy of optimizing the metrics 

simultaneously with Simultaneous Optimization (SO). The 

single-objective strategies were performed by setting the 

weights 𝜔𝑘  in Algorithm 1 for the ignored metrics to 0. This was 

performed for building blocks available from 0-4 reaction steps, 

as extending the search to the remaining compounds added few 

additional options (see Figure 3). At each step, the new building 

blocks were added to the existing pool of available blocks to 

model the marginal gain for the chemist to perform synthesis 

for acquisition of new building blocks. We repeated 10 runs for 

each level of reaction step for Algorithm 1 from different 

randomized initializations. 

 

The results for single-objective search, cf. Table 1, show that the 

average QSAR values while optimizing for the other objectives 

tended to stay between 0.6-0.7, indicating that an arbitrary re-

combination of building blocks from LibINVENT compounds of 

high QSAR values does not always result in a product that also 

has a high QSAR value.  

 

Expanding the search to building blocks available by 1-4 

reaction steps resulted in samples of slightly lower diversity as 

average QSAR value went from very close to 1.0 to selections 

that had each compound with a value of exactly 1.0. Optimizing 

for diversity maintained the average QSAR value in the 

observed selections. The results of SO did not improve as the 

number of available building blocks increased. This indicates 

that the set of purchasable building blocks that is already 

available covers optimal solutions given our scoring 

parameters. For the single-objective optimization strategies, 

the QED value tended to decrease as the size of the search 

space increased. A possible explanation could be that the 

building blocks corresponding to several steps of reactions are 

more complex, which tend to have a negative effect on the QED 

value54. The difference between the selections from baseline 

available building blocks and selections of building blocks one 

reaction step away represent the largest change in QED score, 

while further expansions of the building block availability 

resulted in much smaller or no changes for all metrics. This 

observation is likely explained by the distribution of building 

blocks we previously observed in Figure 3; one reaction step 

represents a change from a space of 6,203 × 763 products to a 

space of 23,034× 1,926, almost ten times larger. The next 

reaction steps increase the size of the product space relative to 

the previous step by 31.7% and 4.9%, respectively. The sampling 

process thus selects building blocks from a pool that is very 

similar between these three selections, and as such the 

distributions are similar. 

 

The top 96 compounds by QSAR value  generated by  LibINVENT 

had an average QSAR value of 1.0, average QED of 0.43. While 

these compounds are more diverse than any selection found in 

our combinatorial selection, they achieve this by breaking the 

combinatorial constraint. The selection had 96 different 

carboxylic acids and 3 different aromatic halides. 95 carboxylic 

were evaluated by AiZynthfinder to be synthesizable, in at most 

four reaction steps. The 3 aromatic halides were all available 

directly in stock. 

 

To compare these results against random selection, we sampled 

100 combinatorial selections of size 12 × 8,  where each 

building block for the respective AC and BH reactions was 

sampled with equal probability. This was repeated for building 

block availability from each level of reaction steps up to 4 

reaction steps from the stock. The random selections 

consistently had worse QSAR values and QED values than SO, 

while having diversity values that were not noticeably different 

from the optimized selections. The average QED value among 

the random selections is <0.25, which is significantly lower than 

the average of an “attractive drug” 54. In addition, the average 

QSAR value is lower than 0.8, which means many products in 

the selection are not very likely to be bioactive. This validates 

the need for optimizing these selections.  

 

Figure 3. Distribution of number of reaction steps needed for the generated building 

blocks from the entire eMolecules stock. The building blocks for which a retrosynthetic 

route could not be found are denoted with ‘-‘ 
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Selection strategy N Reaction 

steps 

Avg 

QSAR 

Avg  

QED 

Avg  

logDet 

QSAR ∑  

4

0

 0.999 0.297 -196.0 

 0 0.993 0.370 -206.8 

 1 1.000 0.281 -192.9 

 2 1.000 0.278 -195.9 

 3 1.000* 0.281 -193.1 

 4 1.000* 0.277 -192.1 

QED ∑  4
0   0.679 0.782 -154.9 

 0 0.676 0.785 -155.9 

 1 0.677 0.782 -154.4 

 2 0.685 0.781 -155.5 

 3 0.682 0.782 -153.5 

 4 0.675 0.781 -155.1 

Diversity ∑  4
0   0.692 0.139 -95.81 

 0 0.698 0.244 -101.3 

 1 0.699 0.138 -95.88 

 2 0.688 0.110 -94.12 

 3 0.687 0.103 -94.13 

 4 0.686 0.099 -93.65 

Simultaneous 

Optimization 

∑  4
0   0.848 0.701 -126.8 

 0 0.852 0.703 -126.8 

 1 0.848 0.701 -126.8 

 2 0.845 0.704 -127.3 

 3 0.843 0.699 -126.2 

 4 0.851 0.699 -127.2 

Random selection ∑  4
0   0.777 0.247 -126.7 

 0 0.765 0.354 -128.3 

 1 0.781 0.231 -126.7 

 2 0.778 0.213 -125.6 

 3 0.779 0.215 -126.3 

 4 0.781 0.213 -125.9 

LibINVENT  

top 96 

- 1.000 0.43 -88.44 

The selected products of the single-objective optimizations as 

well as the SO were also compared visually. Figure 4 shows a 

small sample of 2 × 2 combinatorial examples from the 

different selections for visual clarity. The single-objective 

selections leave plenty of room for improvement. QED-

optimized and diversity-optimized selections both have QSAR 

values around 0.7, but while the QED-optimized compounds are 

small, the diversity optimized compounds promote larger 

building blocks with several rings and side chains. QSAR-

optimized selections have the lowest diversity and cover a 

range of low QED-scores, favouring building blocks with 1-2 

rings each and are generally too large still for being druglike. It 

is likely that the QSAR score of 1.0 indicates that LibINVENT 

finds exactly which bits in the fingerprint representation that 

exploit the QSAR model. SO yielded a balanced selection of 

smaller building blocks that still yielded a high average QSAR 

value of ~0.848. 

 

To evaluate the selection strategies in a more practically 

relevant setting, we restricted our building block stock 

availability to a subset of 3% of the original size (~45k building 

blocks) simulating an approximate availability of building blocks 

available for a pharmaceutical company. The distribution of 

solved retrosynthesis routes for the building block subsets are 

shown in Figure 5. The unsolved routes on average were 26,504 

with a standard deviation of 526.6 and 1,072 with a standard 

deviation of 132.9 for AC and BH reactions, respectively.  
  

Table 1. Summary of average metrics across all selection strategies used.  LogDet 

is the logarithm of determinant of the kernel matrix, or matrix of all pairwise 

Tanimoto similarities in the current selection. A value closer to 0 is more diverse.  

Random selection is the average values of 100 combinations selected for each 

reaction step availability.  For each optimization strategy, we show the results of 

stock-available building blocks (0 reaction steps) and building blocks up to 4 

reaction steps away. The overall average results are denoted by ∑ .4
0  

Figure 4. Sampled compounds using the selection strategies of Max QSAR, Max QED, 

Max diversity and Simultaneous Optimization of all three criteria. The shown 

examples are using building blocks available in the eMolecules stock. 

Figure 5. Distribution of average number of reaction steps needed for the generated 

building blocks while using a 3% subset of the stock. The error bars show the standard 

deviation across the 5 splits. The number of unsolved routes is omitted from the figure 

for visual clarity.  
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It is noteworthy that the proportion of building blocks added 

per reaction step relative to the current available size is larger 

for these limited availability subsets, i.e., as 1,745 and 385 

building blocks are added for AC and BH after one reaction, 

compared to 16,831 and 1,163 building blocks added for the full 

stock. The general trend continues as the selection space is 

expanded to more reaction steps and in the first four reaction 

steps almost half of the total number of aromatic halides and 

more than half of the carboxylic acids become available. 

The same four selection strategies were used for building blocks 

available from 0-4 reaction steps with ten starting randomized 

initializations each. Here, the selection from stock-available 

(zero reaction steps), seen in Table 2, shows that the highest 

achievable values are drastically lower than after acquiring 

more building blocks by synthesis.  For this smaller space the 

algorithm is likely to result in the same optimum for the given 

stock with multiple initializations.  

The results show that optimized selections approach their 

respective values from the full eMolecules availability already 

after extending the selection space to building blocks available 

within one reaction, and that the stock-available selections 

score similar in average QSAR and diversity to the random 

selection of previous experiment. There are smaller 

improvements in selections with building blocks available 

within two reaction steps and no improvements with further 

reactions. We can draw parallels with the distribution of 

available building blocks in Figure 4 to the distribution of the 

previous experiment, and note that the improvements occur 

when a relatively large number of new building blocks are 

added to the selection space. When the relative expansion of 

the space is low the probability of finding a new improved 

solution is also low.  

 

Unlike the previous experiment, however, the QED score 

remains at a similar level or, in some cases, improves as the 

number of reaction steps increase. It is likely that the number 

of added building blocks through reactions that are “too 

complex” are lower in this experiment. 

 

The methodology of comparing the optimization results 

between two different stocks of availability might be useful to 

estimate the prospective gain from synthesizing new building 

blocks compared to buying available compounds or simply using 

the current stock by comparing the optimization results with 

different selection spaces. This can assist the decision-maker in 

designing efficient libraries in a combinatorial manner. The 

number of building blocks estimated to be available through 

synthesis shows a substantial/relevant increase in search space 

as the number of reaction steps increases. In practice, only 

stock-available building blocks or building blocks that can be 

synthesized in one reaction step will often be used. 

Alternatively, one could introduce a constraint on the total 

number of reaction steps used for the selected library, which 

could be accounted for using e.g., reaction sampling. 

 

Computational time 

During selection, we opted for relatively small selection 

dimensions to limit the computational time to less than ten 

hours per run, since we performed 12 optimizations, for 10 

splits and 5 different building block availabilities, for a total of 

600 selections. The observed runs would perform for 

approximately 20,000-100,000 samples depending on selection 

space, initialization and number of metrics, which could take 

between 20 minutes and 4 hours on a single CPU with the QSAR 

model being the biggest bottleneck. However, since the 

evaluation of a random forest model is linear in the number of 

new products between two samples (12 or 8 depending on the 

exchanged building block) and determinant calculations have 

the time complexity of 𝑂(k3) with total number of products, 

the method will eventually be limited by evaluations of diversity 

rather than QSAR. This appears feasible with size 1,536 as here 

𝑛 = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠2 = (𝑢 × 𝑣)2. The termination criterion for 

10,000 samples without improvement was chosen after some 

Selection 

strategy 

N Reaction 

steps 

Avg QSAR Avg QED Avg logDet 

QSAR ∑  4
0   0.974 0.357 -186.1 

 
0 0.909 0.373 -152.3 

 1 0.984 0.386 -189.5 

 2 0.992 0.349 -196.3 

 3 0.992 0.341 -195.4 

 4 0.993 0.335 -196.9 

QED ∑  4
0   0.697 0.764 -152.0 

 0 0.734 0.701 -143.2 

 1 0.685 0.775 -151.4 

 2 0.691 0.781 -155.1 

 3 0.687 0.782 -155.2 

 4 0.686 0.772 -155.3 

Diversity ∑  4
0   0.712 0.223 -102.8 

 0 0.722 0.305 -108.3 

 1 0.704 0.237 -102.7 

 2 0.707 0.200 -100.8 

 3 0.708 0.186 -100.3 

 4 0.716 0.187 -101.8 

Simultaneous 

Optimization 

∑  4
0   0.832 0.691 -127.1 

 0 0.789 0.650 -127.9 

 1 0.836 0.700 -127.1 

 2 0.842 0.700 -126.2 

 3 0.846 0.703 -127.2 

 4 0.846 0.703 -127.3 

Table 2. Summarization of average metrics across all selection strategies used for 

optimizing over the smaller (3%) subsets of available building blocks.  LogDet is 

the logarithm of determinant of the kernel matrix, or matrix of all pairwise 

Tanimoto similarities in the current selection. A value closer to 0 is more diverse.  

For each optimization strategy, we show the results of stock-available building 

blocks (0 reaction steps) and building blocks up to 4 reaction steps away. The 

overall average results are denoted by  ∑  4
0 . 
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initial experimentation. For larger library dimensions, it is 

possible that more samples are more suitable to find 

convergence. The increase in number of building blocks to 

choose results in more decision variables to determine for an 

optimal solution. Additionally, larger dimensions generally 

mean the marginal change of exchanging one building block on 

the average values in the selection is smaller, which implies the 

acceptance ratio becomes closer to 1. On an Intel Xeon W-2125 

CPU @ 4.00GHz machine with 8 threads the 12 × 8 

configuration required approximately 0.11s for the QSAR 

computations compared to 0.04s for computing diversity for 

each sample, while a 48 × 32 configuration required 0.14s for 

the QSAR and 4.0s for computing the diversity. A full exhaustive 

search was never considered even for the smallest subsets as 

e.g., the size of the average 3% subset at stock-availability in a 

12 × 8  configuration results in ~2 × 1027 different possible 

combinations. For the same reasons, hyperparameter 

optimization of 𝛼 and 𝜔 was not performed, as this scaffold is 

hypothetical and that a marginally better selection would not 

lead to generalizable guidelines for these parameters. 

Conclusions 

We present a framework for combinatorial library design 

evaluated using available public data and open source software 

to allow reproducibility. The framework can be controlled by 

specifying both importance of different evaluation metrics and 

the acceptance ratio 𝛼. Our experimental results show that it is 

possible to perform the multi-objective optimization towards 

both quality and diversity for our example library. The results 

show that our framework can navigate the search space around 

combinatorial library design and find selections of high (>0.8) 

QSAR values while retaining good (>0.7) QED values and high 

diversity.  The trade-offs between the different objectives were 

investigated and it was found that the multi-objective 

optimization maintained a QED relatively close to the maximum 

possible while optimizing QSAR and diversity. Building blocks 

that were selected at random showed on average low (<0.25) 

QED values and lower QSAR value (~0.78) than the quality-

focused optimization strategies. Our experiments indicate that 

the set of all available purchasable building blocks require 

minimal extra synthesis to reach the highest observed scores, 

while simulated scenarios of limited stock greatly benefit—to 

comparable score levels—from single-step synthesis of building 

blocks. The latter scenario might be useful in practise in a larger 

company with a sizable building block store. It might be faster 

and cheaper to synthesize the needed building blocks for the 

combinatorial library design in one step compared to 

purchasing additional building blocks. It was also shown that 

synthesizing building blocks in more than one step was not 

attractive given the size of the internal building block store. For 

an institution with a very small internal building block store, it 

might be favourable to synthesize the needed building blocks 

for the libraries in more than one step. 
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