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Abstract 

Hydrolase-catalyzed kinetic resolution is a well-established biocatalytic process. However, 

the computational tools that predict the favorable enzyme scaffolds for separating racemic mixture 

are underdeveloped. To address this challenge, we trained a deep learning framework, EnzyKR, 

to automate the selection of hydrolases for stereoselective biocatalysis. EnzyKR adopts a 

classifier-regressor architecture that first identifies the reactive binding conformer of an 

enantiomer-hydrolase complex, and then predicts its activation free energy. A structure-based 

encoding strategy was used to depict the chiral interactions between hydrolases and enantiomers. 

EnzyKR was trained using 204 enantiomer-hydrolase complexes curated from IntEnzyDB, and 

was tested using a pre-split dataset of 20 complexes on the task of active free energy prediction. 



EnzyKR results in a Pearson R of 0.66, a Spearman R of 0.70, and an MAE of 1.48 kcal/mol. 

EnzyKR was further tested on the task of predicting enantiomeric excess ratios for 18 hydrolytic 

reactions catalyzed by fluoroacetate dehalogenase RPA1163 and halohydrin HheC, where the 

performance of EnzyKR was compared against a recently-developed kinetic predictor, DLKcat. 

EnzyKR outperformed the DLKcat in 13 out of 18 catalytic reactions. EnzyKR provides a novel 

computational strategy for an accurate prediction of enantiomeric outcome of hydrolase-catalyzed 

kinetic resolution reactions.  
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1. Introduction  

Stereoselective biocatalysis provides strategies to differentiate enantiomers in the synthesis 

of pharmaceuticals, agrochemicals, and other fine chemicals.1 Hydrolases have been widely 

employed for kinetic resolution in industrial chemical synthesis. For instance, lipases and esterases, 

such as lipase B Candida antarctica (CAL-B),2 lipoprotein lipase,3 gluconolactonase, acetylcholine 

esterase,4 thermolysin, catalyze the formation of chiral esters with high enantio- or 

regioselectivity.5 Dehalogenases, such as fluoroacetate dehalogenase RPA1163, accelerate the 

stereoselective synthesis of fluorocarboxylic acid.6 Epoxide hydrolases have been used to generate 

enantiopure diols and unreacted epoxides for pharmaceutical uses.7 Chiral biocatalysts receive 

broad attentions due to their ability to catalyze reactions with high specificity, efficiency, mild 

operating conditions, and environmental sustainability.  



However, for a non-native substrate, identifying biocatalysts with high stereoselectivity for 

kinetic resolution can be challenging due to the unknown structure-function relationships.8 To 

address this, empirical and computational models have been developed to facilitate the prediction 

of stereoselective outcomes of hydrolase-catalyzed kinetic resolution. In 1998, Kazlauskas et al.9 

established a model that links the size or hydrophobicity of stereocenter substituents with 

enantioselectivity for ~130 esters derived from secondary alcohols. In 2002, Tomić et al.10 used 

quantitative structure-activity relationship (QSAR) analysis to predict the enantioselectivity of 

Burkholderia cepacia lipase (BCL)-catalyzed acylation reactions involving thirteen racemic 3-

(aryloxy)-1,2-propanediols. In recent years, machine learning has emerged as a powerful tool to 

predict stereoselective biocatalytic processes.11 For one, Cadet et al.12 developed a machine 

learning model to predict the impact of mutations on the enantioselectivity for epoxide hydrolase. 

The model was trained using 512 possible single point mutations variants and achieves an R2 of 

0.81 on the a test set containing 28 mutants. Despite the significant advances in models that 

specialize in enantiomeric prediction for certain types of hydrolases, the “generalist” models that 

can predict enantioselectivity across a broad spectrum of hydrolase scaffolds, mechanisms, and 

substrate types remain undeveloped.11  

One promising strategy is to directly predict the kinetic parameters for an enzymatic 

reaction, because the apparent selectivity in kinetic resolution directly connects to the difference 

of hydrolytic rates between enantiomers. In recent years, the predictive models for enzyme 

turnover number (i.e., kcat) have been developed for metabolic engineering.11 For example, 

Heckmann et al.13 used elastic net regression, random forest, and deep neural network models to 

predict kcat values in Escherichia coli, achieving a cross-validated Pearson R2 value of 0.31 for kcat 

and 0.76 for kapp,max. Li et al14. developed a deep learning model, DLKcat, to predict genome-scale 



kcat values for over 300 yeast species, achieving a Pearson R value of 0.94. However, one major 

pitfall in the existing models is lack of chirality representation of the substrates. As such, these 

models likely fail in the task of enantiomeric prediction. 

To address this limitation, here we developed a deep learning model, EnzyKR, to predict 

the enantiomeric outcome of hydrolase-catalyzed kinetic resolution reactions. EnzyKR adopts a 

graph neural network architecture and a multi-task learning approach to predict kcat values for 

hydrolase-enantiomer pairs. Distinct from existing kcat predictors, EnzyKR encodes the chirality 

information of substrates through geometric features extracted from hydrolase-enantiomer pairs. 

As the difference of kcat values between enantiomers informs stereoselectivity, EnzyKR can be 

potentially used to screen and select hydrolase scaffolds for stereoselective biocatalysis 

applications. 

2. Computational Methods 

Model design and architecture. EnzyKR is comprised of a classifier and a regressor. The 

classifier identifies the reactive hydrolase-enantiomer complexes from unreactive ones. The input 

data for the classifier involve the complex structure, enzyme sequence, and simplified molecular-

input line-entry system (SMILES) string. The complex structure is represented as a distance map, 

with the distances between the substrate's geometric center and specific residues encoded using a 

2D convolutional neural network (CNN) with three layers. The distance map encoder has a filter 

size of 11, a padding size of 1, and a ReLU activation function, and produces 1673 x 512 tensors 

as output. EnzyKR also employs an enzyme sequence encoder, which takes in the enzyme 

sequence profile generated by aligning against the UniRef5015 database using HMMER16. The 

resulting multiple sequence alignment (MSA) of the enzyme is then processed through 2D CNN 

layers that involve an identical architecture to the distance map encoder. The enzyme sequence 



encoder produces 2385 x 512 tensors as output. To encode the substrate SMILES strings, EnzyKR 

uses a graph neural network (GNN) encoder with three graph convolution layers (Supporting 

information, Text S1).17 The RDKit package was used to represent the topology of substrates by 

separating their atoms and bonds into nodes and edges for use in the GNN encoder.18 The input 

dimensions for the graph convolution layer and the multilayer perceptron layer are both 16. The 

output of the classifier uses the cross-entropy loss function to evaluate the predictive accuracy for 

the binary classification of reactive versus unreactive hydrolase-enantiomer complexes.  

In the regressor, the input involves the embeddings of the classifier concatenated with the 

interaction map derived from the structures of the hydrolase-enantiomer complexes. Different 

from the distance map used in the classifier that only measures the distances between the geometric 

center of the substrate and the hydrolase residues, the interaction map stacks the distances between 

each atom of the substrate and the Cα and Cβ atoms of the hydrolase residues in one matrix. To 

encode the embeddings, the regressor uses one module of cross-attention with 10 attention heads 

and a dropout rate of 0.5. The attention module is followed by residual blocks to extract features 

with a dimension of 8316 × 512 from the cross-attention embeddings. The residual blocks consist 

of three 2D dilated convolution layers with a filter size of 11 and a padding size of 1, one 2D batch 

norm layer, and one ReLU layer. Subsequently, two layers a of fully connected neural network 

(i.e., multiple-layer perceptron) is employed to conduct regression between the extracted feature 

and the activation free energy (i.e., ∆G‡).  

Data curation. The training data consists of the enzyme sequences, substrate SMILES 

strings, and hydrolase-substrate complexes. The training data contains 204 hydrolase-substrate 

complexes and the test data contains 20 complexes (Supporting Information, dataset.zip). The 

dataset involves 63 distinct types of hydrolases and 182 distinct types of substrates (i.e., 111 chiral 



versus 71 achiral substrates). The data for hydrolase sequence, structure, substrate SMILES, and 

enzyme turnover rate (i.e., kcat) were curated from IntEnzyDB, an integrated enzyme structure-

kinetics database developed by our lab.19, 20 The dataset contains 12 subclasses of hydrolase based 

on the enzyme commission (EC) number. The major subclasses are 3.1 and 3.2 – they have 63 and 

56 enzymes, respectively. There are 27 enzymes shared by both subclasses.  

The structural models for hydrolase-enantiomer complexes were constructed using 

RosettaLigand21 (Supporting Information, Text S2). Each substrate sdf file was obtained from 

PubChem API by searching their SMILES string. Conformational sampling was conducted for 

each substrate to generate 250 conformers using BCL::Conf web interface from the Meiler Lab.22 

These conformers were used as input to dock into the active site of their corresponding hydrolase 

using RosettaLigand. The docked hydrolase-enantiomer complexes were divided into two 

categories based on the spatial proximity between enzymes’ catalytic residues (i.e., catalytic triad) 

and the geometric center of the reacting functional group on the substrate. If the distances are all 

within 4.0 Å, the substrate-enzyme complexes were classified as reactive substrate-enzyme 

complexes. Otherwise, the complexes were classified to be unreactive. Each reactive complex was 

also visually inspected to ensure optimal positioning of the substrate into the active site. In total, 

we curated 224 reactive hydrolase-enantiomer complexes versus 448 unreactive ones. To examine 

the capability of EnzyKR to differentiate enantiomers, we curated an independent test set of 18 

hydrolytic reactions catalyzed by fluoroacetate dehalogenase RPA1163 (PDB ID: 5K3F)6 and 

halohydrin HheC (PDB ID: 1PWX)23. The data for the enantiomer excess (ee) ratio were manually 

curated from the publication. For each of the 36 hydrolase-enantiomer complexes, we adopted the 

above-mentioned docking approach to build the structural model.  

3. Results and Discussion 



3.1 The Model Architecture of EnzyKR 

EnzyKR is a deep learning model designed for predicting the activation free energy of a 

hydrolase-substrate complex in a chirality-resolved fashion. EnzyKR consists of two parts: a 

classifier and a regressor. The classifier distinguishes reactive hydrolase-enantiomer complexes 

from unreactive binding poses, while the regressor predicts the hydrolytic activation free energy 

(i.e., ∆G‡) for the reactive complex. The classifier employs different neural network architectures 

to separately encode enzyme sequences, substrate SMILES strings, and the distance map between 

the substrate enantiomer and enzymes (detailed in the Computational Methods section). Notably, 

the distance map contains the center-of-mass distances between the substrate and enzyme residues. 

The representation informs the spatial distribution of substrate and nearby active site residues and 

is invariant to the translation and reflection of cartesian coordinates. The classifier adopts cross-

entropy in its loss function for binary classification of reactive versus unreactive substrate-enzyme 

complexes. The regressor of EnzyKR takes input from both the classifier embedding and substrate-

enzyme interaction maps. Unlike the distance map encoded by the classifier, the interaction map 

stacks the matrices of atomic distances between each atom on the substrates and the atoms of the 

enzyme residues (i.e., Cα and Cβ).  

The regressor leverages a cross-attention module to encode a representation matrix that 

concatenates the embedding of the classifier with the substrate-enzyme interaction map. The 

representation matrix is fed into a two-layer residual block to extract features from the cross-

attention embeddings. These features are then used to predict the ∆G‡ value of a hydrolase-

substrate complex through a two-layer multiple-layer perceptron (MLP) neural network.  

 



 

Figure 1. The architecture of EnzyKR. The classifier takes in substrate-enzyme distance maps, 

enzyme multiple sequence alignment, and substrate SMILES strings to determine whether the 

hydrolase-substrate complex is reactive or not. The embeddings generated from the classifier are 

passed to the regressor along with the substrate-enzyme interaction map to predict the activation-

free energy. CNN refers to convolutional neural network. GNN refers to graph neural network.  

Compared to existing deep learning models that predict kcat or ∆G‡ for enzyme catalysis,11, 

13, 14 the novelty of EnzyKR architecture manifests in three aspects. First, EnzyKR explicitly 

encodes chirality involved in the interactions between hydrolase and substrate enantiomers in the 

form of distance map and interaction map for the classifier and regressor, respectively. In 

comparison, existing predictive models for enzyme kinetics do not include features that describe 

spatial relationships between enzyme and substrate atoms. Second, EnzyKR uses a cross-attention 

mechanism to extract important features from hydrolase sequence, substrate SMILES strings, and 

the interaction map. This allows the model to effectively identify the most relevant encoded 

features for downstream prediction tasks. Third, EnzyKR employs a GNN to encode the substrate's 

topology, which is likely to encode atomic connectivity more effectively than one-hot embedding. 

Notably, new encoding strategies for molecular structures have been developed that preserve chiral 



information, such as ChIRo24 and SELFIES25. These methods present as potential alternatives for 

the future development of EnzyKR.  

3.2 The Training and Test Dataset of EnzyKR 

The dataset used for training and testing EnzyKR includes 224 hydrolase-substrate 

enantiomer complexes curated from 13 enzyme commission subclasses under the category of 

hydrolases (left, Figure 2). The most populated subclasses are 3.1 (e.g., esterases and lipases) and 

3.2 (e.g., amylase), which have 63 and 56 members, respectively. The distribution of ∆G‡ values 

(i.e., converted from kcat using Eyring’s equation, eq1) ranges from 5.0 to 23.0 kcal/mol, with an 

average of 16.4 kcal/mol (right, Figure 2).  

Δ𝐺‡	 = 	 − RT ln("!"##
"$$

)	    eq. 1 

In this equation, R is the gas constant, T is temperature, h is the Planck constant, and kB is 

the Boltzmann constant.  The hydrolase with the lowest ∆G‡ is 3',5'-cyclic-AMP phosphodiesterase 

(i.e., EC = 3.1.4.53), which hydrolyzes the second messenger 3',5'-cyclic AMP (cAMP), and the 

one with the highest ∆G‡ is acylaminoacyl-peptidase (i.e., EC = 3.4.19.1), which cleaves an N-

acetyl or N-formyl amino acid from the N-terminus of a polypeptide. A large proportion of the 

curated data (i.e., 83.5%) has an activation free energy between 12.2 and 21.2 kcal/mol. The wide 

distribution of ∆G‡ values reflects the diversity of catalytic performance of hydrolases. We 

partitioned the dataset into training and test sets based on hydrolase sequence identity. Among the 

224 hydrolase-enantiomer complexes, we selected 20 complexes whose sequence identities are 

less than 85% from each other in the test set, leaving the remaining 204 complexes in the training 

set. A lower hydrolase sequence identity in the test set creates a more challenging task for the 

generalizability of EnzyKR.  



 

Figure 2. Statistics of the curated dataset used for developing EnzyKR. (a) Distribution of enzyme 

commission (EC) subtypes for the hydrolases used in this work. The specific hydrolase subtypes 

as well as their EC numbers (up to the second digit) are labeled on the right-hand side of the pie 

chart. (b) Distribution of activation free energy, ∆G‡ for a total of 224 hydrolase-substrate 

enantiomer complexes, in which ∆G‡ values are converted from kcat using Eyring’s equation shown 

in eq1. The bin size is 1.8 kcal/mol.  

3.3 The Performance of EnzyKR 

The performance of EnzyKR was evaluated using both the training and test sets. To assess 

the classification ability of EnzyKR's classifier component, we employed the area under the curve 

(AUC) metric. The classifier of EnzyKR achieves an AUC of 0.87. Reduction in AUC was 

observed upon removal of enzyme sequence or substrate SMILES strings from the input features. 

Replacing GNN by CNN for encoding the SMILES strings also decreases the AUC (Supporting 

Information, Figure S1). We used both Pearson and Spearman correlations to examine the 

regressor of EnzyKR for its ability to predict the value and rank of activation free energies of 

different hydrolase-substrate complexes. The parity plot for the training set (204 data points) 

shows a decent linear correlation with a Pearson R of 0.91, Spearman R of 0.86, and a mean 

absolute error (MAE) of 0.8 kcal/mol. On the test set, EnzyKR achieves a Pearson R of 0.66, 
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Spearman R of 0.70, and MAE of 1.5 kcal/mol. For both training and test sets, the value of 

Spearman R resembles that of Pearson R, which indicates that EnzyKR balances the regression of 

target values or ranking without overfitting. The drop of EnzyKR performance on the test set is 

likely due to the small sample size. However, we should note that curating high-quality structure-

sequence-kinetics dataset is intrinsically challenging. In our integrated structure-kinetics database 

IntEnzyDB,20 the total number of hydrolase-substrate pairs is only 355, where the hydrolase 

mutants and unstructured substrate (e.g., cellulose) have been removed for the development of 

EnzyKR.   

 

Figure 3. The performance of EnzyKR on the training set and test set. (a) EnzyKR was trained on 

a dataset comprising 204 substrate-enzyme complexes and achieved a Pearson correlation of 0.91, 

a Spearman correlation of 0.86, and a mean absolute error (MAE) of 0.83 kcal/mol. (b) To evaluate 

the model's performance on unseen data, it was tested on a pre-splitted dataset of 20 substrate-

enzyme complexes, resulting in a Pearson correlation of 0.66, a Spearman correlation of 0.70, and 

an MAE of 1.48 kcal/mol. The red line indicates the prediction values are equal to the experimental 

values.  

To assess the contribution of various features to EnzyKR, we benchmarked the impact of 

removing various features on the predictive accuracy of the regressor (Supporting Information, 

a b



Table S1). With the removal of interaction map from the input, we observed a decrease in both 

Pearson and Spearman R values to 0.53 and 0.51, respectively, as well as an increase in MAE to 

2.2 kcal/mol. Similarly, with the removal of the classifier embedding from the classifier output 

layer, we observed a significant decrease in Pearson and Spearman R values to 0.58 and 0.61, 

respectively, and an increase in MAE to 2.0 kcal/mol. In a subsequent analysis, we removed the 

SMILES strings of substrates from the input of the classifier. This led to a drop in both Pearson 

and Spearman R values to 0.6 and an increase in MAE to 2.0 kcal/mol. These results suggest that 

both the interaction map and substrate SMILES strings are essential features that contribute 

positively to the predictive accuracy of the EnzyKR regressor.  

Furthermore, we compared the performance of EnzyKR against two predictors: DLKcat,14 

a deep learning kcat predictor, and a compound-protein interaction (CPI) model26 that predicts the 

substrate-enzyme binding affinity Kd. Using the same hydrolase training set curated in this study 

(i.e., 204 data points), we retrained DLKcat and CPI models based on the code reported in their 

original publications, and then evaluated the predictive performance of both models on the same 

test set. The results show that the retrained DLKcat model exhibits a Pearson R of 0.64, a Spearman 

R of 0.63, and an MAE of 1.7 kcal/mol, and the CPI model displays a Pearson R of 0.63, a 

Spearman R of 0.65, and an MAE of 1.8 kcal/mol (Supporting information, Table S2). In 

comparison, EnzyKR performs better in accuracy (especially for Spearman R) than DLKcat and 

the CPI model in predicting activation free energies. This is likely due to EnzyKR's incorporation 

of the interaction map, which involves greater information density and thus helps to enhance the 

learning efficiency of the model.  

3.4 Prediction of Enantiomeric Excess Values. 



We further tested EnzyKR's ability to distinguish the reactivity difference between 

enantiomers. Specifically, we assessed its performance in predicting the outcomes of hydrolytic 

kinetic resolution. We curated a new test set that consists of 18 hydrolytic reactions catalyzed by 

fluoroacetate dehalogenase RPA11636 and halohydrin HheC23, due to the high stereoselectivity in 

these two reactions (Figure 4). Under the conditions of 60°C and pH 7.0, RPA1163 selectively 

catalyzes the defluorination of (S)-2-fluoro-2-phenylacetic acid and its derivatives, while leaving 

the (R)-enantiomer untouched. On the other hand, at pH 6.5 and 35°C, Hhec catalyzes the ring-

opening reaction of (R)-spiro-epoxyoxindoles and its derivatives, while not reacting with the S-

enantiomer. In both reactions, the enantiomeric excess values are greater than 95%.  

 

Figure 4. The test set of kinetic resolution prediction for EnzyKR. The test set was constructed by 

18 enantioselective hydrolytic reactions derived from two hydrolases. (a) The fluoroacetate 

dehalogenase, RPA1163, catalyzes the C–F bond hydrolysis in 9 fluoroacetic acid derivatives 

labeled using a to i. (b) The halohydrin dehalogenase, HheC, catalyzes the stereoselective epoxide 

ring-opening in 9 spiro-epoxyoxindoles derivatives labeled using j to r.  

To predict the ee value using EnzyKR, we first employed ChemDraw 22.0 to construct the 

SMILES strings and structural files (i.e., .sdf file) for the substrate enantiomers. Next, we 

employed RosettaDock to construct the hydrolase-enantiomer complexes. Taking the hydrolase-



enantiomer complex, enzyme sequence, and substrate SMILES string as input, EnzyKR predicts 

the ∆G‡ values for both R- and S- enantiomers, which are denoted as ∆GR‡ and ∆GS‡, respectively. 

Finally, the predicted ∆GR‡ and ∆GS‡ values are plugged into eq2 to obtain ee%, which ranges 

from–100% to 100%. Notably, a positive ee% value indicates that the S-configuration is favored. 

𝑒𝑒% = %&'%&'()
‡ %'(+

‡,

%('%&'()
‡ %'(+

‡,
   eq. 2 

Figure 5 shows the ee% values predicted by EnzyKR(red) and DLKcat (grey), along with 

the reference experimental values (black). EnzyKR correctly predicts the favored enantiomer and 

outperforms DLKcat in 13 out of 18 reactions (i.e., 1a-e, 1g-i, 4j, 4m-n, 4p, and 4r), which 

occupies >70% of the test cases. For 4o, EnzyKR identifies the favored enantiomer but DLKcat 

performs better in quantitative accuracy. For 1f, 4k, 4i, and 4q, EnzyKR failed to identify the 

favored enantiomer. In more than half of the test cases, DLKcat predicts an ee% value lower than 

50%. The overall predictive performance of DLKcat appears to be similar to a random guess. This 

is likely caused by the missing of chirality information in the input features. Although the SMILES 

string annotates chirality, chirality is not learned by the model in a physically meaningful fashion. 

In contrast, EnzyKR employs the atomic distance map and interaction map to differentiate 

substrate chirality, allowing the model to effectively learn the enantiomeric preference of 

hydrolases.   



 

Figure 5. The predicted enantiomeric excess (ee%) values of EnzyKR (red) and the baseline model 

DLKcat (grey) for 18 enantiomer pairs in hydrolase-catalyzed kinetic resolution. The labels of the 

derivatives are consistent with those used in Figure 4. The reference experimental ee% value is 

shown in black.  

Despite a greater predictive accuracy of EnzyKR than the baseline model DLKcat, we 

should note the limitation of EnzyKR in the data size and in the representation of chirality. In our 

future works, we plan to further improve EnzyKR in two aspects. First, we will expand the training 

dataset by incorporating a diverse set of substrate-enzyme complexes involved in different types 

of catalytic reactions, such as oxidase, reductase, and transferase, among others. This approach 

will allow EnzyKR to learn from a wider range of catalytic scaffolds and improve its 

generalizability. Second, we plan to employ equivariant neural networks (EGNN)27 or E(n)-

transformers to explicitly encode the Euclidean coordinates for the enzyme-substrate complexes. 

By incorporating additional geometric features, we expect that the new architecture will enable 

EnzyKR to better represent the chiral interactions between enzymes and substrates, leading to a 

further enhanced predictive performance. 



4. Conclusions 

Here we reported the development of EnzyKR as a deep learning model specialized in 

predicting the activation free energies of hydrolase-substrate complexes in a chirality-resolved 

manner. The model was trained on 204 data points and tested on 20 data points, where the structure 

and function data for hydrolase-substrate pairs have been collected from IntEnzyDB. EnzyKR 

comprises two components: a classifier and a regressor. The classifier is responsible for 

distinguishing reactive hydrolase-enantiomer complexes from unreactive binding poses, which 

yields a area under the curve value of 0.87. The regressor was designed to predict the hydrolytic 

activation free energy for the reactive complexes. On the training set, the EnzyKR regressor 

exhibits a strong linear correlation, with a Pearson correlation coefficient R of 0.91, a Spearman 

correlation coefficient of 0.86, and a mean absolute error (MAE) of 0.8 kcal/mol. On the test set, 

EnzyKR achieves a Pearson R of 0.66, a Spearman R of 0.70, and an MAE of 1.5 kcal/mol. 

Furthermore, EnzyKR was tested on a kinetic resolution task involving 18 hydrolytic reactions 

catalyzed by fluoroacetate dehalogenase RPA11636 and halohydrin HheC. Notably, EnzyKR 

accurately predicted the favored enantiomer in 13 out of 18 reactions, which significantly 

surpasses the performance of DLKcat, a former kcat predictor model that does not embed substrate 

chirality. EnzyKR provides a computational tool for guiding the selection of hydrolase scaffolds 

for stereoselective synthesis.  
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