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Abstract 

Computational simulation of biomolecules can provide important insights into protein 

design, protein-ligand binding calculations, and ab initio biomolecular folding, among other 

applications. Accurate treatment of the solvent environment is essential in such applications, but 

use of explicit solvent can add considerable cost. Implicit treatment of solvent effects using a 

dielectric continuum model is an attractive alternative to explicit solvation since it is able to 

describe solvation effects without the inclusion of solvent degrees of freedom. Previously, we 

described the development and parameterization of implicit solvent models for small molecules. 

Here, we extend the parameterization of the generalized Kirkwood (GK) implicit solvent model 

for use with biomolecules described by the AMOEBA force field via the addition of interstitial 

space corrections to account for biomolecular geometry. These corrections include updating 

pairwise descreening scale factors to be element-specific and adding neck and tanh corrections to 

the calculation of effective radii. We then apply the AMOEBA/GK implicit solvent to a set of nine 

proteins and achieve an average RMSD of 2.1 Å across 500 ns simulations. Overall, the continued 

development of implicit solvent models will help to facilitate simulation of arbitrary biomolecules 

on biologically relevant timescales. 

Introduction 

 Biomolecular simulation is a powerful tool that can be used to understand important 

biological processes such as biomolecular folding1,2 and binding3,4. Simulations can also aide in 

biomolecular design5 and provide insights into molecular interactions. Often, simulations are 

limited by the use of accurate but costly explicit descriptions of solvent, making it difficult to 

achieve biologically relevant timescales. Implicit solvent models that represent solvent effects 
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using a dielectric continuum provide a complementary alternative that eliminates explicit 

representation of solvent molecules. The total implicit solvent potential of mean force can be 

divided into polar (electrostatic) and non-polar terms. The polar term can be calculated numerically 

using Poisson-Boltzmann (PB) solvers such as the adaptive Poisson-Boltzmann solver (APBS)6 

and PyGBe7,8. Alternatively, the popular generalized Born (GB)9-11 model for fixed partial charges 

or the generalized Kirkwood (GK)12 model for polarizable multipoles offer efficient analytic 

approximations.  

A foundational component of biomolecular simulations is the selection of a force field. 

Various GB implicit solvent models for proteins and nucleic acids have been described for fixed 

charge force fields. An early GB implicit solvent model developed by Hawkins, Cramer, and 

Truhlar13 (HCT) presented a pairwise descreening method to calculate effective radii (Figure 1) 

analytically based on a van der Waals solute volume. Alternatively, the GBSW (GB simple 

switching)14,15 model, implemented in CHARMM16,17, samples atomic density around individual 

atoms to determine contributions to effective radii and employs a switching function to smooth the 

dielectric boundary. Ideally, effective radii should be computed using a molecular volume (i.e., 

Lee-Richards18). This motivates the GBMV (GB molecular volume)19 and GBMV220 models, also 

implemented in CHARMM, that leverage a close approximation of molecular volume to calculate 

effective radii. Further work in AMBER21 led to a model from Onufriev, Bashford, and Case22 

(OBC) that added a molecular volume correction in the form of tanh rescaling of effective radii. 

This correction to effective radii calculated based on pairwise descreening of van der Waals radii 

helps to account for high dielectric interstitial spaces. An additional molecular volume correction 

was introduced by Mongan et al.23 for the Coulomb field approximation (CFA) and later by 

Aguilar et al.24 for the Grycuk25 approach, which both use an approximate “neck” contribution to 
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describe the solvent-excluded space between pairs of nearby atoms. Both tanh and CFA neck 

corrections were implemented in AMBER within the GB-neck2 models for proteins26 and nucleic 

acids27, and were shown to increase the accuracy of effective radii. A broader description of GB 

models is presented in a recent review by Onufriev and Case11.  

 

Figure 1 Pictorial representation of effective Born radii for an arbitrary globular molecule in 

implicit water. The effective Born radii, 𝑎𝑖 and 𝑎𝑗, for atoms 𝑖 and 𝑗, respectively are larger than 

the intrinsic radii for both atoms (𝜌𝑖 and 𝜌𝑗). Since atom 𝑗 is more deeply buried within the 

molecule than atom 𝑖, 𝑎𝑗 is larger than 𝑎𝑖. The effective Born radius for ion 𝑘 is approximately 

equivalent to its intrinsic radius, 𝜌𝑘 – the effective Born radius could be slightly larger due to 

descreening by a nearby molecule. 

As an alternative to fixed charge force fields, polarizable force fields have been developed 

that in principle should provide a more transferable description of biomolecular electrostatics. 

Early work by Maple et al. combined a polarizable force field with numerical PB continuum 

solvation to study protein-ligand interactions28. Similarly, the AMOEBA force field for proteins29 

and nucleic acids30 has been combined with PB6,8, ddCOSMO31, and GK12,32 electrostatic 
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continuum models. More recently, the Drude oscillator polarizable force field33-47 has been 

combined with PB electrostatics and used to study pKa shifts48,49. 

Previously we described a polarizable implicit solvent model for the AMOEBA force field 

using Generalized Kirkwood (GK) electrostatics for small molecules32. This model was designed 

for small molecules and computed effective radii using an integral over a van der Waals volume 

rather than an integral over a molecular volume. Here we describe three modifications to extend 

the model to biomolecules. These include – using element-specific HCT overlap scale factors for 

pairwise descreening, the addition of a neck correction to account for interstitial space volumes 

between nearby atoms, and finally a tanh correction to account for more distal interstitial spaces. 

The non-polar model described in the previous work is also extended to biomolecules, which 

includes a cavitation term based on GaussVol50 and a Weeks-Chandler-Anderson (WCA)51 

dispersion term. Protein simulations are presented to demonstrate the efficacy of the current 

implicit solvent model and future work to expand to nucleic acid and biomolecular complex 

simulation is discussed. This AMOEBA/GK model is implemented in both Force Field X52 and 

OpenMM53, and is being ported to Tinker54,55. 

Theory 

The aqueous solvation free energy difference of a molecule (∆𝐺𝑠𝑜𝑙𝑣) is the change in free 

energy between a molecule in vacuum and in water. To formulate an implicit solvent, ∆𝐺𝑠𝑜𝑙𝑣 can 

be decomposed into three separate path dependent free energy differences56 to give 

∆𝐺𝑠𝑜𝑙𝑣 =  ∆𝐺𝑐𝑎𝑣 + ∆𝐺𝑑𝑖𝑠𝑝 + ∆𝐺𝑒𝑙𝑒𝑐 

Equation 1 
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where ∆𝐺𝑐𝑎𝑣 is the unfavorable formation of a molecule-shaped cavity in water and ∆𝐺𝑑𝑖𝑠𝑝 is the 

favorable addition of solute-water dispersion interactions in the previously formed cavity. 

Collectively, these first two terms combine to make up the non-polar portion of solvation free 

energy differences (∆𝐺𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟 = ∆𝐺𝑐𝑎𝑣 + ∆𝐺𝑑𝑖𝑠𝑝). Overall, our non-polar term builds on the 

many advancements and insights contained in the AGBNP family of implicit solvents57-60. The 

final term ∆𝐺𝑒𝑙𝑒𝑐 accounts for the interaction of solute charge density (i.e., fixed partial atomic 

charges or polarizable atomic multipoles) with the continuum solvent. The implementation and 

parameterization of the non-polar term for the current AMOEBA implicit solvent model, as well 

as the implementation and parameterization of the polar term for small molecules has been 

described previously32. Here, updates to the AMOEBA GK implicit solvent model to facilitate its 

use with biomolecules are described. 

Reference values for ∆𝐺𝑒𝑙𝑒𝑐 in the specific case of the polarizable AMOEBA force field 

can be determined either by solving the Poisson-Boltzmann equation (PBE) numerically using the 

APBS multigrid finite-difference solver6,61,62 or via a boundary integral approach implemented in 

PyGBe. While numerical solutions to the PBE can be systematically improved (e.g., by using 

progressively finer grids or surface meshes), they are generally too expensive to be used for 

molecular dynamics simulations. For this reason, several approximations have been proposed, 

including the well-known generalized Born approximation. GB employs a summation over 

pairwise and self-interactions for fixed atomic partial charge force fields to yield ∆𝐺𝑒𝑙𝑒𝑐 as 

∆𝐺𝐺𝐵 = −
1

2
(

1

𝜀ℎ
−

1

𝜀𝑠
) ∑

𝑞𝑖𝑞𝑗

𝑓𝑖𝑗
𝑖,𝑗

 

Equation 2 
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where 𝜀𝑠 is the permittivity of solvent (78.3 for water), 𝜀ℎ is the permittivity of a homogenous 

reference state (1.0 for vacuum), 𝑞𝑖 and 𝑞𝑗 are the partial charges of atoms i and j, respectively, 

and a commonly used form of the generalizing function f is given by 

𝑓𝑖𝑗 =  √𝑟𝑖𝑗
2 + 𝑎𝑖𝑎𝑗exp (−𝑟𝑖𝑗

2/𝑐𝑎𝑖𝑎𝑗) 

Equation 3 

where 𝑟𝑖𝑗 is the atomic separation distance in Angstroms, 𝑎𝑖 and 𝑎𝑗 are the effective Born radii, 

and 𝑐 controls the transition from the Born regime (𝑓 = 1 𝑎⁄  ) to the screened Coulomb’s law 

regime (𝑓 = 1 𝑟⁄  ). For most GB implementations, 𝑐 = 4, but here we treat 𝑐 as a tunable 

parameter and fix its value to 2.455 as determined previously12. Generalized Kirkwood extends 

the GB approximation to arbitrary degree multipole moments, which facilitates the use of 

polarizable atomic multipole solute electrostatics. The GK monopole term 𝐺𝐺𝐾
(0)

 is equivalent to the 

GB charge-charge term given in Equation 2. As a further example, the GK interaction between 

two permanent dipoles 𝐺𝐺𝐾
(1)

 is given by 

𝐺𝐺𝐾
(1)

=
1

2
[

1

𝜀ℎ

2(𝜀ℎ − 𝜀𝑠)

2𝜀𝑠 + 𝜀ℎ
] ∑ 𝑢𝑖,𝛼𝑢𝑗,𝛽 [

3𝑟𝛼𝑟𝛽(1 − 𝑓𝑖𝑗)

𝑓𝑖𝑗
5 +

𝛿𝛼𝛽

𝑓𝑖𝑗
3 ]

𝑖,𝑗

 

Equation 4 

where 𝒖𝑖 and 𝒖𝑗 are permanent dipole moment vectors, the 𝛼 and 𝛽 subscripts denote use of the 

Einstein summation convention, and 𝛿𝛼𝛽 is the Kronecker delta. Higher-order GK interaction 

tensors have been described previously12 and can be generated to a desired order using a tensor 

recursion63 for two Cartesian multipoles in the global frame or after rotation into their quasi-

internal (QI) frame64. For the interaction between two multipoles truncated at quadrupole order, 
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use of the QI frame is ~30% faster for computing the pairwise GK energy, force and torque (despite 

the cost of rotating both multipoles from the global frame into the QI frame and the cost of rotating 

both the forces and torques back into the global frame). Reference GK tensor recursion code is 

available in the “multipole” package of Force Field X (https://ffx.biochem.uiowa.edu)52.  

For GB or GK approximations to concord with numerical solutions to the Poisson equation 

(PE), it has been demonstrated that effective radii should approach being perfect65. The reference 

perfect effective Born radius for an atom with a fixed partial charge (q) is defined based on its self-

energy ∆𝐺𝑠𝑒𝑙𝑓 as determined using a numerical solution of the PE with all other atoms in the 

molecule uncharged 

𝑎𝑖 = −
1

2
(

1

𝜀ℎ
−

1

𝜀𝑠
)

𝑞𝑖
2

∆𝐺𝑠𝑒𝑙𝑓
 

Equation 5 

Although perfect effective Born radii enforce that the electric potential at atomic centers match 

those from the numerical PE solutions, neither the electric field nor its gradient are guaranteed to 

be correct (i.e., permanent dipole and quadrupole self-energy contributions computed using perfect 

effective Born radii generally deviate from their reference numerical PE values). As an alternative, 

the contribution of higher order atomic multipole moments to the self-energy can be included to 

calculate a perfect effective Kirkwood radius using the following equation66  

∆𝐺𝑠𝑒𝑙𝑓 =
1

2
[𝜀0

𝑞𝑖
2

𝑎𝑖
+ 𝜀1

𝑢𝑥,𝑖
2 + 𝑢𝑦,𝑖

2 + 𝑢𝑧,𝑖
2

𝑎𝑖
3 +

2

3
𝜀2

Θ𝑥𝑥,𝑖
2 + Θ𝑦𝑦,𝑖

2 + Θ𝑧𝑧,𝑖
2 + 2(Θ𝑥𝑦,𝑖

2 + Θ𝑥𝑧,𝑖
2 + Θ𝑦𝑧,𝑖

2 )

𝑎𝑖
5 ] 

Equation 6 

https://ffx.biochem.uiowa.edu/
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where Θ is a traceless permanent quadrupole and the permittivity function 𝜀𝑛 for a multipole 

moment of order n is given by67 

𝜀𝑛 =
1

𝜀ℎ

(𝑛 + 1)(𝜀ℎ − 𝜀𝑠)

(𝑛 + 1)𝜀𝑠 + 𝑛𝜀ℎ
 

Equation 7 

A perfect effective Kirkwood radius 𝑎𝑖 can then be determined using Equation 6 and a simple 

numerical search. Note that the right-hand side of Equation 6 neglects polarization energy (i.e., the 

interaction of an induced dipole at site i with the reaction field of its permanent dipole) and the 

computed ∆𝐺𝑠𝑒𝑙𝑓 is based on input of an AMOEBA permanent multipole with no induced dipole. 

In practice, perfect effective Born radii and perfect effective Kirkwood radii agree to within ~2% 

on average (see Table 1) and both represent the degree of burial of an atom within a molecule. 

Mean perfect effective Born radii and perfect effective Kirkwood radii for several biomolecules 

are shown in Table 1 and the full regression of radii for ubiquitin (PDB ID: 1UBQ) is shown in 

Supplementary Figure 1 as an example. 
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Table 1. Mean perfect Born radii and perfect Kirkwood radii for each tested molecule. On average, 

perfect Kirkwood radii are slightly smaller than perfect Born radii for AMOEBA permanent 

multipoles. 

Molecule 
Average Perfect Born 

Radius for All Atoms (Å) 

Average Perfect Kirkwood 

Radius for all Atoms (Å) 

1MIS 2.93 2.86 

2JXQ 2.91 2.86 

1F5G 2.93 2.88 

2L8F 3.03 2.97 

1ZIH 3.12 3.07 

1SZY 2.94 2.88 

2KOC 2.87 2.82 

1D20 2.88 2.86 

2HKB 2.91 2.88 

1BPI 3.48 3.41 

1L2Y 2.96 2.89 

1UBQ 4.14 4.08 

1UCS 4.00 3.92 

1VII 3.12 3.05 

1WM3 3.94 3.87 

2OED 3.53 3.45 

2PPN 4.16 4.09 

7SKW 4.57 4.51 

Average 3.36 3.30 

The effective radius of an ion in solvent shrinks to its vdW radius (𝑎𝑖 ≈  𝜌𝑖) as it moves away 

from any other descreening atoms. For an atom in a molecule, the effective radius is larger than 

the vdW radius (𝑎𝑖 >  𝜌𝑖), particularly for a deeply buried atom in a biomolecule (𝑎𝑖 ≫  𝜌𝑖). 

Element-Specific Overlap Scale Factors  

For the calculation of effective radii, the GK implicit solvent model combines the analytic HCT 

pairwise descreening approximation13 with the solvent field approximation (SFA) proposed by 

Grycuk25. For the calculation of effective radii, the GK implicit solvent model uses an analytic 

approach based on the HCT pairwise descreening approximation13 in combination with insights 

from Grycuk25. As a part of this approximation, a unitless scale factor was set previously at 0.72 

to account for the atomic overlaps that would otherwise lead to overestimated effective radii32. 
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While a single scale factor worked well, it was straightforward to achieve a modest improvement 

in accuracy using element specific overlap scale factors. The current implementation of the GK 

pairwise descreening term with element specific scale factors is given in by 

𝑰𝑣𝑑𝑤(𝑟𝑖𝑗) =
𝜋

12
(

3 (𝑟𝑖𝑗
2 − (𝑆𝐻𝐶𝑇,𝑗 ∗ 𝜌𝑗)

2
) + 6𝑢2 − 8𝑢𝑟𝑖𝑗

𝑢4𝑟𝑖𝑗

−
3 (𝑟𝑖𝑗

2 − (𝑆𝐻𝐶𝑇,𝑗 ∗ 𝜌𝑗)
2

) + 6𝑙2 − 8𝑙𝑟𝑖𝑗

𝑙4𝑟𝑖𝑗
) 

Equation 8 

where 𝜌𝑗 is the radius of atom 𝑗 used for descreening, 𝑆𝐻𝐶𝑇,𝑗 is the element-specific scaling factor 

for atom 𝑗, and u and l are the upper and lower integration bounds, determined based on the overlap 

of atoms 𝑖 and 𝑗. A detailed description of how to determine the upper and lower integration bounds 

can be found in the original paper13. 

Pairwise Neck Interstitial Space Correction 

Descreening for the AMOEBA small molecule implicit solvent was based on using a van 

der Waals definition of solute volume. This approximation is not appropriate for large 

biomolecules where interstitial spaces become increasingly important, which motivates the more 

physically realistic Lee-Richards molecular volume. Specifically, use of a van der Waals volume 

leads to underestimation of the effective radii for biomolecules by failing to account for 

descreening due to interstitial spaces that are too small to accommodate water molecules. Although 

these interstitial spaces are too small to accommodate an explicit water molecule, they are 

nonetheless “filled” by continuum water leading to artificially favorable electrostatic hydration. A 
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more accurate descreening integral requires a correction to account for these interstitial spaces and 

to properly exclude continuum water. The concept of “neck” regions between pairs of nearby 

atoms was first described by Mongan and co-workers for the |𝒓|−4 integral23 and later refined by 

Aguilar and co-workers for the |𝒓|−6 integral24. The functional form of the latter is given by 

Ineck(𝑟𝑖𝑗) =  
4𝜋

3
𝑆𝑛𝑒𝑐𝑘,𝑖𝑗 ∗ 𝐴𝑖𝑗(𝑟𝑖𝑗 − 𝐵𝑖𝑗)4(𝜌𝑖 + 𝜌𝑗 + 2𝜌𝑤 −  𝑟𝑖𝑗)4 

Equation 9 

where, 𝜌𝑖 and 𝜌𝑗 are the vdW radii of atoms 𝑖 and 𝑗, respectively, 𝜌𝑤 is the radius of water (1.4 Å) 

and 𝑟𝑖𝑗 is the separation distance. The 𝐴𝑖𝑗 and 𝐵𝑖𝑗 constants were originally determined using 

benchmark values from a numerically exact method of calculating effective Born radii called 

NSR6, which has been described previously24. In this work, values of  𝐴𝑖𝑗 and 𝐵𝑖𝑗 were calculated 

for an expanded set of vdW radii using benchmark perfect effective radii values from APBS 

calculations. The procedure for determining 𝐴𝑖𝑗 and 𝐵𝑖𝑗 was otherwise analogous – for pairs of 

atoms, APBS was used to determine the value of the neck integral at various separation distances. 

The separation distance at which the value of the neck integral is at a maximum (𝑛𝑒𝑐𝑘𝑚𝑎𝑥) was 

recorded as 𝑟𝑖𝑗
𝑚𝑎𝑥 for that pair of radii. The value of  𝐵𝑖𝑗 was then calculated as 𝐵𝑖𝑗 = 2𝑟𝑖𝑗

𝑚𝑎𝑥 −

(𝜌𝑖 + 𝜌𝑗 + 2𝜌𝑤) and 𝐴𝑖𝑗 was calculated such that Ineck(𝑟𝑖𝑗
𝑚𝑎𝑥) =  𝑛𝑒𝑐𝑘𝑚𝑎𝑥. A slight change to 

the determination of 𝐴𝑖𝑗 values in this work was to include the 
4𝜋

3
 constant explicitly in the neck 

integral equation instead of including it in the 𝐴𝑖𝑗 values – this was done to facilitate consistency 

in the components of the descreening integral. A full tabulation of these updated 𝐴𝑖𝑗 and 𝐵𝑖𝑗 

constants is available in Supplementary Tables S1 and S2.  
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For a single pair of atoms, the neck between them perfectly describes the correction from 

the van der Waals volume to the Lee-Richards molecule volume. For more than two atoms, 

however, neck regions can overlap and lead to an overestimation of the interstitial volume. A scale 

factor (𝑆𝑛𝑒𝑐𝑘) is introduced to correct for these overlaps. The 𝑆𝑛𝑒𝑐𝑘 scale factor to correct for 

overcounting neck regions is analogous to the HCT scale factors for overlapping atoms during 

pairwise descreening. Additionally, neck contributions to molecular volume are only calculated 

for pairs of atoms that are close enough to exclude water between them. In other words, neck 

regions are calculated only between atoms whose separation distance (𝑟𝑖𝑗) satisfies the following 

criterion 

𝑟𝑖𝑗 ≤ 𝜌𝑖 + 𝜌𝑗 + 2𝜌𝑤 

Equation 10 

To calculate forces (e.g., for optimization or molecular dynamics) the neck correction must be 

differentiable with respect to separation distance. This derivative is given by 

𝜕 Ineck(𝑟𝑖𝑗
𝑚𝑎𝑥)

𝜕 𝑟𝑖𝑗
=

16𝜋

3
∗ (𝑆𝑛𝑒𝑐𝑘,𝑖𝑗 ∗ 𝐴𝑖𝑗(𝑟𝑖𝑗 − 𝐵𝑖𝑗)

3
(𝜌𝑖 + 𝜌𝑗 + 2𝜌𝑤 − 𝑟𝑖𝑗)

4
− 𝑆𝑛𝑒𝑐𝑘,𝑖

∗ 𝐴𝑖𝑗(𝑟𝑖𝑗 − 𝐵𝑖𝑗)
4

(𝜌𝑖 + 𝜌𝑗 + 2𝜌𝑤 − 𝑟𝑖𝑗)
3

) 

Equation 11 

In previous implementations of the neck correction, a single 𝑆𝑛𝑒𝑐𝑘 scaling factor was used in all 

cases. In this work, we propose a modification to the neck scaling factor based on the number of 

heavy atoms bound to a particular atom of interest. If no heavy atoms are bound to atom i. then 

𝑆𝑛𝑒𝑐𝑘,𝑖 = 1.0. For all other cases, the scaling factor for atom 𝑖 is calculated based on Equation 12: 
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𝑆𝑛𝑒𝑐𝑘,𝑖 = 𝑆𝑛𝑒𝑐𝑘 ∗  
5.0 − 𝑛ℎ𝑒𝑎𝑣𝑦

4.0
 

Equation 12 

Where 𝑛ℎ𝑒𝑎𝑣𝑦 is the number of heavy atoms bound to the atom of interest and 𝑆𝑛𝑒𝑐𝑘 is the 

maximum fit scale factor. A pictorial representation of this 𝑆𝑛𝑒𝑐𝑘 scheme is shown in Figure 2.  

 

Figure 2 Diagram of bonding aware neck scaling scheme and associated equations used to calculate 

atomic 𝑆𝑛𝑒𝑐𝑘,𝑖 scale factors. The scaling factor is reduced proportionally to the number of heavy 

atoms bound to an atom of interest. If the atom of interest has no bound heavy atoms, the scale 

factor is set to 1.00; this is done to preserve accurate scaling for free ions in implicit solvent. 

 

This modification to the treatment of interstitial space necks preserves accuracy for free ions 

(Figure 3) and results in atoms with fewer bound heavy atoms forming more necks than atoms 

with more bound heavy atoms. Finally, the following combining rule is used to weight the 

chemical environment of both atoms that form the neck 

𝑆𝑛𝑒𝑐𝑘,𝑖𝑗 = (𝑆𝑛𝑒𝑐𝑘,𝑖 + 𝑆𝑛𝑒𝑐𝑘,𝑗) 2⁄  

Equation 13 
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Figure 3 Demonstration of utility of the bonding aware neck scaling scheme for unbound ions in 

the AMOEBA GK implicit solvent. Using a single, fixed scaling factor leads to underestimation 

of the neck integral value at all separation distances for pairs of unbound ions while chemically 

aware scaling preserves accuracy for unbound ions. 

Hyperbolic Tangent Interstitial Space Correction  

The pairwise neck correction, described above, is helpful in accounting for short-range 

underestimation of molecular volume, but does not account for long-range underestimation. A 

version of the hyperbolic tangent (tanh) function is used to smoothly scale up effective Born radii, 

increasing the radii of deeply buried atoms more than the radii of atoms closer to the surface. This 

type of tanh rescaling function has been used previously as part of both |𝒓|−4 CFA interstitial 

space corrections23,65 and, more recently, |𝒓|−6 SFA interstitial space corrections24. The tanh 
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correction used in the current implicit solvent model is a version of the previously used tanh 

function for |𝒓|−6 interstitial space corrections. The maximum effective radius is capped at 30 Å 

and does not consider the electrostatic size of the solute24. The tanh rescaling function and 

associated component functions are presented below: 

𝑐𝑖 =  
4𝜋

3
(

1

𝜌𝑖
3 −  

1

303
) 

Equation 14 

Ψ𝑖 =  ∑ Ivdw(𝑟𝑖𝑗)

𝑖≠𝑗

+ ∑ Ineck(𝑟𝑖𝑗)

𝑖≠𝑗

 

Equation 15 

1

𝑎𝑖
=

3

4𝜋
(

4𝜋

3
𝜌𝑖

−3 − 𝑐𝑖 tanh(𝛽0Ψ𝑖𝜌𝑖
3 − 𝛽1(Ψ𝑖𝜌𝑖

3)2 + 𝛽2(Ψ𝑖𝜌𝑖
3)3) )

1/3

  

Equation 16 

Here 𝑎𝑖 is the effective radius of atom 𝑖, 𝛽0, 𝛽1, and 𝛽2 are tunable parameters, Ivdw(𝑟𝑖𝑗) is the 

|𝒓|−6 integral over all van der Waals spheres in the solute (Equation 8) and Ineck(𝑟𝑖𝑗) are short-

range pairwise neck contributions (Equation 9). The tanh correction to the effective radius and its 

derivative are given by 

𝑠𝑐𝑎𝑙𝑒(Ψ𝑖) =  𝑐𝑖 tanh(𝛽0Ψ𝑖𝜌𝑖
3 − 𝛽1(Ψ𝑖𝜌𝑖

3)2 + 𝛽2(Ψ𝑖𝜌𝑖
3)3)  

Equation 17 
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and 

𝜕 𝑠𝑐𝑎𝑙𝑒(Ψ𝑖)

𝜕Ψ𝒊
=  𝑐𝑖(𝛽0𝜌𝑖

3 − 2𝛽1Ψ𝑖𝜌𝑖
6 + 3𝛽2Ψ𝑖

2𝜌𝑖
9)(1

− tanh(𝛽0Ψ𝑖𝜌𝑖
3 − 𝛽1(Ψ𝒊𝜌𝑖

3)2 + 𝛽2(Ψ𝑖𝜌𝑖
3)3)2) 

Equation 18 

Parameterization 

Element-Specific Scale Factors 

Element-specific scaling factors were determined using a limited memory BFGS optimizer and 

five different test molecules – two proteins, two RNA, and one DNA that were chosen from the 

set of biomolecules used to validate the small molecule implicit solvent models32. The optimizer 

target function is given by 

𝐸(𝑷) =  𝑊𝑀𝑈𝐸 ∑(∆𝐺𝑖,𝑠𝑒𝑙𝑓
𝑃𝐵 −  ∆𝐺𝑖,𝑠𝑒𝑙𝑓

𝐺𝐾 )
2

𝑛

𝑖=1

+  𝑊𝑀𝑆𝐸 (∑ ∆𝐺𝑖,𝑠𝑒𝑙𝑓
𝑃𝐵

𝑛

𝑖=1

−  ∑ ∆𝐺𝑖,𝑠𝑒𝑙𝑓
𝐺𝐾

𝑛

𝑖=1

)

2

+  𝑊𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∑ (𝑆𝐻𝐶𝑇
𝑒𝑙𝑒𝑚𝑒𝑛𝑡 − 0.72)

2

𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑖=1

 

Equation 19 

where 𝑊𝑀𝑈𝐸 = 1.0, 𝑊𝑀𝑆𝐸 = 10.0, and 𝑊𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 1.0𝐸4. Here ∆𝐺𝑖,𝑠𝑒𝑙𝑓 is the self-energy 

for atom i calculated using either PB or GK for n atoms and 𝑆𝐻𝐶𝑇
𝑒𝑙𝑒𝑚𝑒𝑛𝑡 is the element-specific scale 

factor for each element (C, N, O, P, S) where 𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = 5. The HCT scale factors were 

optimized for each molecule individually and then averaged. Benchmark permanent AMOEBA 

electrostatic solvation energy values were calculated using APBS based on a van der Waals 
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definition of the solute volume. The decision to use permanent self-energy values was motivated 

by the expense of using APBS to compute the self-consistent reaction fields and by the relatively 

smaller contribution of self-polarization. Van der Waals  radii were used for consistency between 

the PB and GK electrostatics models32. The benchmark self-energies, ∆𝐺𝑖,𝑠𝑒𝑙𝑓
𝑃𝐵 , used in the HCT 

scale factor optimizer were determined using monopoles without considering higher order 

multipole moments. These self-energies are consistent with perfect effective Born radii and 

promote transferability of the final  𝑆𝐻𝐶𝑇
𝑒𝑙𝑒𝑚𝑒𝑛𝑡 to other force fields, including fixed charge varieties. 

Starting from the initial small molecule scale factor, element-specific scaling factors were 

fit for C, N, O, P, and S. Due to the high degree of overlap with their bound heavy atom, the choice 

was made to exclude hydrogen atoms from contributing to descreening for the AMOEBA GK 

implicit solvent. For this reason, no scale factor was fit for hydrogen atoms (i.e., the HCT scale 

factor for hydrogen atoms is 0). The final element-specific scaling factors (𝑆𝐻𝐶𝑇
𝑒𝑙𝑒𝑚𝑒𝑛𝑡) are shown in 

Table 2. 
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Table 2. Element-specific 𝑆𝐻𝐶𝑇 scaling factors optimized for individual protein (1BPI and 1UCS), 

RNA (1MIS and 1ZIH), and DNA (1D20) molecules. Final scale factors are averages. 

Element and 

Bondi68 Radius (Å) 
1BPI 1UCS 1MIS 1ZIH 1D20 Final 

C (1.70) 0.7151 0.7294 0.6694 0.6975 0.6634 0.6950 

N (1.55) 0.8348 0.7614 0.7659 0.7365 0.7377 0.7673 

O (1.50) 0.7635 0.7785 0.8098 0.8048 0.8261 0.7965 

P (1.80) --- --- 0.6173 0.6300 0.5878 0.6117 

S (1.80) 0.7214 0.7194 --- --- --- 0.7204 

All 𝑆𝐻𝐶𝑇
𝑒𝑙𝑒𝑚𝑒𝑛𝑡  scale factors were fit using a van der Waals description of solute volume, 

expanding directly on previous work with small molecules. Thus, only the neck and tanh 

corrections account for a molecular description of solute volume18 for biomolecules (i.e., the HCT 

scale factors do not implicitly account for interstitial spaces). The final scale factors agree with 

chemical intuition regarding heavy atom overlaps. Carbon atoms can form four bonds, often to 

other heavy atoms, necessitating a smaller scale factor than the base value of 0.72. Phosphorous 

atoms can form four bonds as well (e.g., to oxygen atoms in the tested nucleic acids), and are larger 

than carbon atoms, which explains why phosphorous has the smallest HCT scale. Conversely, 

nitrogen and oxygen atoms are smaller than carbon and phosphorous, while also generally forming 

fewer bonds with other heavy atoms. This is consistent with fewer overlaps and explains the 

relative increase in those two scale factors during fitting. In the tested protein systems, sulfur atoms 

form either one or two bonds with heavy atoms. Due to sulfur atoms being larger than nitrogen or 

oxygen, but forming fewer bonds than carbon or phosphorous, an intermediate amount of overlap 

is expected and is consistent with the sulfur HCT scale remaining close to the base value. Final 

𝑆𝐻𝐶𝑇 scale factors were used to compute the electrostatic portion of solvation free energy 

differences for all 18 molecules used to validate the small molecule implicit solvent models32. 

When compared with APBS results, GK energy differences produced a slope of 1.0001 and an R-

squared of 0.9971 (Figure 4). 
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Figure 4 Comparison of permanent electrostatic energies for biomolecules calculated in APBS and 

GK. GK energies are calculated using van der Waals base radii to be consistent with APBS and 

element specific HCT scaling factors. The dashed gray line is the best fit regression line with slope 

= 1.0001 and 𝑅2 = 0.9971. The solid black is x=y to guide the eye. 

Neck and Tanh Interstitial Space Corrections 

To facilitate the use of the GK implicit solvent model with mixed protein/nucleic acid 

simulations, a single set of tanh 𝛽 parameters were fit for all tested biomolecules. During initial 

MD testing with the full biomolecule test set, proteins and nucleic acids showed distinct 

sensitivities to the magnitude of the neck scaling factor. The original goal of fitting a single neck 

scaling factor for use with both proteins and nucleic acids lead to a balancing of errors whereby 

folded protein electrostatic energies were too negative and folded nucleic acid electrostatic 
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energies were too positive (i.e., compared to PB reference values). For this reason, neck scale 

factors for proteins and nucleic acids are expected to have different optimal values.  

The {𝛽0, 𝛽1, 𝛽2} parameters were initially fit simultaneously using a genetic algorithm. 

Each run of the genetic algorithm included 1000 generations of 500 individuals with the top 20% 

of individuals being carried over directly to the next generation and a mutation rate of 0.3. 

Permanent self-energies (∆𝐺𝑖
𝑆𝑒𝑙𝑓,𝑃𝑒𝑟𝑓𝑒𝑐𝑡

), permanent electrostatics energies (∆𝐺𝑖
𝐸𝑙𝑒𝑐,𝑃𝑒𝑟𝑓𝑒𝑐𝑡

), and 

perfect effective Kirkwood radii (𝑅̅𝑝𝑒𝑟𝑓𝑒𝑐𝑡)  were calculated using APBS and used as target data 

for optimization according to the following objective function 

𝐸(𝑷) =  𝑊𝑀𝑈𝐸 (∑|∆𝐺𝑖
𝐸𝑙𝑒𝑐,𝐺𝐾 − ∆𝐺𝑖

𝐸𝑙𝑒𝑐,𝑃𝑒𝑟𝑓𝑒𝑐𝑡
|

2
𝑛

𝑖=1

+  ∑|∆𝐺𝑖
𝑆𝑒𝑙𝑓,𝐺𝐾

− ∆𝐺𝑖
𝑆𝑒𝑙𝑓,𝑃𝑒𝑟𝑓𝑒𝑐𝑡

|
2

 

𝑛

𝑖=1

)

+ 𝑊𝑀𝑆𝐸 (∑ ∆𝐺𝑖
𝐸𝑙𝑒𝑐,𝐺𝐾

𝑛

𝑖=1

− ∑ ∆𝐺𝑖
𝐸𝑙𝑒𝑐,𝑃𝑒𝑟𝑓𝑒𝑐𝑡

𝑛

𝑖=1

)

2

+  𝑊𝑅𝑎𝑑 (∑(𝑅̅𝑝𝑒𝑟𝑓𝑒𝑐𝑡 − 𝑅̅𝐺𝐾)
2

𝑛

𝑖=1

) 

Equation 20 

where 𝑊𝑀𝑈𝐸 = 0.001, 𝑊𝑀𝑆𝐸 = 1.0 and 𝑊𝑅𝑎𝑑 = 1.0. The parameters for each new (non-mutant) 

individual were selected randomly from uniform distributions across the following ranges: 𝛽0 ∈

{0.5000, 1.5000}, 𝛽1 ∈ {0.1000, 0.4000}, 𝛽2 ∈ {0.0004, 0.2000}. The permanent energies and 

perfect effective Kirkwood radii used as benchmarks were from a set of nine proteins (1BPI, 1L2Y, 

1UBQ, 1UCS, 1VII, 1WM3, 2OED, 2PPN, 7SKW) and nine nucleic acids (1MIS, 2JXQ, 1F5G, 

2L8F, 1SZY, 1ZIH, 2KOC, 1D20, 2HKB). The fitting of tanh parameters is a multiple-minima 

problem22,24,27 and for this reason a local optimization approach (e.g., using an L-BFGS optimizer) 

will not explore the parameter space effectively. Instead, the genetic algorithm was used to control 

parameter ranges based on results from prior work22,26,27 and trial and error. 
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The candidate parameter sets produced by the optimization runs were used to calculate GK 

permanent electrostatic energies for the biomolecule test set. Additionally, the GK effective radii 

were plotted against the tanh input (Ψ) to check the shape of the tanh function for given 𝛽 

parameter sets. Any tanh function that did not have a positive first derivative across the full 

functional range was eliminated. Output parameters from the genetic algorithm were slightly 

adjusted manually to improve the electrostatic energy regression for all tested biomolecules 

resulting in the following parameter set {𝛽0 = 0.9563, 𝛽1 = 0.2578, 𝛽2 = 0.0810}, which is 

plotted in Figure 5.  

 

Figure 5 Effective Born radii for a molecule with a 1.7 Å base radius (carbon atom) without a tanh 

rescaling function (dashed line) and with the final fit tanh rescaling function using 𝛽0 = 0.9563, 

𝛽1 = 0.2578, 𝛽2 = 0.0810 (solid line) across a range of the scaled volume integral, Ψ 

With the tanh 𝛽 parameters fixed, final 𝑆𝑛𝑒𝑐𝑘 scaling factor for proteins was then determined using 

progressively finer 𝑆𝑛𝑒𝑐𝑘 scans. The bonding awareness scheme, described above, was used for all 
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scans. The final protein scale factor (𝑆𝑛𝑒𝑐𝑘,𝑝𝑟 = 0.1350) helped improve permanent self-energies 

relative to only using a tanh correction (Figure 6). The final optimized parameters are given in 

Table 3.  

  



24 

 

Table 3 Final fit implicit solvent parameters. Neck scaling factor is applied in a bonding aware 

manner, described in Equation 9 

Parameter Value 

𝛽0 0.9563 

𝛽1 0.2578 

𝛽2 0.0810 

𝑆𝑛𝑒𝑐𝑘,𝑝𝑟𝑜𝑡𝑒𝑖𝑛 0.1350 

 

 

Figure 6 Comparison of permanent self energies with perfect effective multipole radii and GK fit 

radii for proteins. Energies calculated with only the tanh correction have a slope of 1.215 and 𝑅2 

of 0.996; energies calculated with the full correction (neck and tanh) have an improved slope of 

1.072 and 𝑅2 of 0.983; The solid black line is x=y to guide the eye. 

Effective radii were calculated in GK using the protein parameter set and thioredoxin (2TRX), 

which was not used in fitting. These radii are plotted against perfect effective Kirkwood radii 

(calculated using APBS) in Figure 7. 
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Figure 7 Comparison of 2TRX effective radii calculated in GK without interstitial space 

corrections (orange plusses) and with interstitial space corrections (blue circles) to perfect effective 

multipole radii calculated in APBS. Fit GK electrostatic radii are used for both series. The first 

plot (left) shows all effective radii for 2TRX (thioredoxin) while the second plot (right) shows the 

range of effective radii from 1-5 Å. The solid black line is x=y to guide the eye. 
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Total electrostatic hydration free energy differences calculated using APBS with a molecular 

surface are plotted against total electrostatic hydration free energy differences calculated using GK 

with the full interstitial space correction model for all test molecules in Figure 8. 

 

Figure 8 Total electrostatic energy for tested proteins calculated using APBS and GK. All energies 

were calculated using a full SCF and GK fit base radii. GK energies were calculated with (Slope: 

0.987, 𝑅2: 0.9937) and without (Slope: 1.575, 𝑅2: 0.9907) interstitial space corrections. 

Tuning Based on Molecular Dynamics Trajectories 

 Original base radii for the GK implicit solvent model were fit previously using small 

molecule solvation free energy differences32. During initial molecular dynamics tests on 

biomolecules, the simulations exhibited overcounting in the pairwise descreening integrals. This 
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was traced to the 1 𝑟6⁄  descreening integral being the largest for small separation distances (i.e., 

the HCT overlap scale factors are appropriate on average, but can be too large for some overlaps 

at very short range). To alleviate this, a small descreening offset of 0.3 Å was added to push the 

beginning of the descreening integral away from the atomic center. It was also observed that 

repeated backbone atoms tended to favor intramolecular interactions (such as hydrogen bonding) 

over interactions with the GK continuum. This is in part due to the lack of hydrogen bonding 

within the fitting test set of small molecule solvation free energy differences. Slight alterations to 

selected atomic base radii for proteins helped alleviate the incorrect preference of certain groups 

to form intramolecular hydrogen bonds with backbone groups in place of interacting with implicit 

water. Radii for protein carbonyl carbon and oxygen atoms, asparagine and glutamine amide 

nitrogen atoms, and lysine and arginine HN atoms were modified slightly – a tabulation of the 

updated GK base radii is available in Supplementary Table S4. 

A known limitation of the current implicit solvent model involves the use of GaussVol to 

determine the surface area term used in cavitation free energy calculations. GaussVol is 

comparable to the more general Connolly method69,70 when calculating a van der Waals surface 

area, but underestimates the molecular surface area compared to a Connolly molecular surface 

area. However, the latter is not yet available on GPUs. For this reason, underestimation of 

molecular surface area due to use of GaussVol van der Waals surfaces leads to an underestimation 

of the cavitation free energy term, which reduces the energetic penalty of unfolding. To help 

correct for the underestimation, the atomic radii used for GaussVol were scaled up by 15%. This 

modest increase preserved simulation efficiency, while even small additional increases to 20 or 

25% reduced simulation speed by almost a factor of 2 (due to nonlinear increase in GaussVol 

atomic overlaps as a function of atomic radii). Future work to extend the GaussVol approach to 
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efficiently handle molecular surface areas will benefit both fixed charge and polarizable implicit 

solvents. 

Results and Discussion 

Parameterization of the current biomolecular implicit solvent model was designed to enable 

simulations of both proteins and nucleic acids. Results for proteins are presented here, while those 

for nucleic acids will be described in a later contribution. MD simulations were performed for the 

set of nine proteins used to validate the small molecule implicit solvent model32 using the GK 

implicit solvent with interstitial space corrections. The 7SKW structure of lysozyme was used in 

this work in place of the 6LYT structure used previously due to the improved resolution of 7SKW 

across the same lysozyme sequence. Final implicit solvent parameters (Table 3) and updated GK 

base radii (Supplementary Table S4) were used for all simulations. Each molecule was simulated 

continuously for at least 500 ns. Explicit neutralizing chloride ions (nine total ions) were added to 

the lysozyme simulation (7SKW) and restrained using flat-bottom potentials. These restraints help 

maintain the neutralizing ion cloud around the solute and keep ions from diffusing away towards 

entropically favored states. The restraints enforced a maximum separation distance of 45.0 Å from 

the center of mass of the lysozyme protein, while no minimum distance penalty was used. Explicit 

ions were energy-minimized to an RMS gradient of 1.0 kcal/(mol Å) and then equilibrated for 1 

ns at 100K, 1 ns at 200K, and 1 ns at 300 K with the position of the biomolecule fixed before 

systems began the simulation protocol for all test molecules.  

All test systems were first energy-minimized to an RMS gradient of 1.0 kcal/(mol Å) then 

equilibrated for 1 ns at 100K, 1 ns at 200K, and 1 ns at 300K. During equilibration, protein C-

alpha atoms were fixed to promote relaxation of side chains before allowing the full biomolecule 
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to move. Production runs were 500 ns at 298.15K. A 2 fsec Langevin multiple time step integrator 

was used for all simulations, along with mass repartitioning from heavy atoms to bound hydrogen 

atoms. 

Output MD trajectories were compared to base structures for all test systems. Where 

experimental structures consisted of NMR ensembles, the first structure in the ensemble was 

selected as the base structure. RMSDs for proteins are reported in Table 4. All RMSDs reported 

are backbone heavy atom RMSDs, which consider heavy atoms in the peptide backbone, and were 

calculated in FFX using the Superpose utility script. Average backbone heavy atom RMSDs for 

proteins were 2.74Å for all residues and 2.14Å for non-terminal residues (Table 4). Average 

RMSDs after 30ns of simulation are also available in Table 4 in order to more directly compare to 

previous protein simulations in explicit AMOEBA water29. The average backbone RMSD for 

explicit AMOEBA water simulations reported in the original paper was 1.33 Å29, while the average 

backbone RMSD for implicit AMOEBA water simulations was 2.09 Å (Table 4). Part of this 

difference is likely due to the reduced viscosity of continuum solvent, which results in faster 

kinetics. Snapshots along each trajectory were clustered based on non-terminal backbone heavy 

atom RMSD into ten clusters and representative structures from the largest clusters are presented 

superposed with the base experimental structures in Figure 9. Representative structures were the 

minimum RMSD structure from the second half of the trajectory (250 ns and beyond) in the largest 

cluster. RMSD trajectories across the full 500ns simulation time are presented in Figure 10. 

  



30 

 

Table 4 Average Backbone (BB) RMSD values across 500 ns MD trajectories for protein 

molecules. BBRMSDs include heavy atoms in the protein backbone – values are presented in 

Angstroms (Å). 

PDB ID 
# 

Residues 

Formal 

Charge 

Average BBRMSD 

with All Residues (Å) 

Average Non-Terminal 

BBRMSD (Å) 

   30 ns 500 ns 30 ns 500 ns 

1BPI 58 6.0 1.73 1.69 1.37 1.57 

1L2Y 20 1.0 1.99 2.86 1.24 2.10 

1UBQ 76 1.0 2.98 3.97 1.48 1.94 

1UCS 64 0.0 1.22 1.76 0.83 1.12 

1VII 76 2.0 2.18 2.76 2.01 2.56 

1WM3 88 1.0 1.51 3.23 1.48 3.08 

2OED 56 -2.0 1.80 2.03 1.78 2.02 

2PPN 107 4.0 2.89 3.47 1.65* 2.05* 

7SKW 129 9.0 2.53 2.86 2.44 2.73 

Average   2.09 2.74 1.59 2.13 

*Also excludes flexible loop (residues 82-96) 
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Figure 9 Superposition of the deposited X-ray crystallography or NMR structure (gray) with the 

lowest-RMSD structure from the largest cluster (green). The time step in the 500 ns trajectory that 

the representative snapshot was taken from as well as the RMSD to the deposited structure are 

displayed beside the structures. All representative snapshots were taken from the second half of 

the trajectories. 



32 

 

 

Figure 10 Protein non-terminal backbone (BB) RMSDs across 500ns production trajectories. All 

trajectory structures are compared to the base X-ray crystallography or NMR structure. Backbone 

RMSDs include heavy atoms in the peptide backbone and are all reported in Angstroms (Å). 

Testing of the GBNeck2 implicit solvent model26 included simulations of the trp-cage 

protein, which was also simulated here (1L2Y). A histogram of RMSD probability across two 

trajectories at 300K was presented, analogous to the 1L2Y histogram (top row, center) in Figure 

11. GBNeck2 trajectories, reported in the original paper in supplementary Figure S9, are for 160 

ns trajectories at 300K with enhanced sampling from replica exchange molecular dynamics 
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(REMD). The use of REMD simulations facilitates comparison to our 500 ns trajectories that do 

not include enhanced sampling. For both models, trp-cage RMSDs at or below 2.0Å are the most 

probable, though the distributions are have different features. RMSD histograms for all proteins 

tested in this work are shown in Figure 11. The percentage of snapshots across the 500ns trajectory 

that fall into each of the RMSD bins used to create the RMSD histograms is tabulated in 

supplementary Table S4. 

 

Figure 11 Histograms of RMSD values across 500 ns of simulation in GK implicit solvent for all 

tested proteins.  
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Average dipole moment magnitudes across production MD trajectories were calculated for 

all proteins in both vacuum and GK implicit solvation conditions. Dipole moment magnitudes in 

GK implicit solvent were calculated with and without interstitial space corrections. Average 

magnitudes in GK implicit solvent were ~30-35% larger than those in vacuum with the addition 

of interstitial space corrections slightly reducing average dipole moment magnitudes (Figure 12). 

The change between vacuum and condensed phase dipole moment magnitudes can only be 

captured using polarizable force fields, such as the AMOEBA and Drude models. 

 

Figure 12 Comparison of average dipole moment magnitudes across production MD trajectories 

in vacuum and in GK implicit solvent. Implicit solvent dipole moment magnitudes are reported 

with (blue circles) and without (orange pluses) interstitial space corrections. Dashed lines are the 

best fit regression lines for GK dipole moment magnitudes, solid black line is x=y to guide the eye 

Conclusions 

In this work, updates to the AMOEBA GK implicit solvent to correct for interstitial spaces 

have been described. The updated implicit solvent model was tested with over 4 µs of MD 
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simulation using a varied set of proteins. Tested molecules were generally stable across 500 ns 

trajectories, with an average (non-terminal) backbone RMSD of 2.14 Å. The current fitting of GK 

radii was based on small molecule solvation free energy differences, which do not feature 

repetitive elements such as those in a protein or nucleic acid backbone. For this reason, additional 

tuning of base radii to account for repeated groups was performed. Tensor recursion formulations 

for GK using both Cartesian and QI frames have been made available to ease implementation in 

software packages such FFX52, OpenMM53 and Tinker54,55. This recursive scheme will help to 

facilitate 𝑛 ∙ log(𝑛) implicit solvent implementations based multipolar methods71, including for 

fixed charge GB models72.   

Future work may benefit from force matching73,74 data from biomolecular explicit solvent 

simulations to augment traditional fitting based on small molecule solvation free energy 

differences. One method of force matching parameterization was described for 16 GROMOS atom 

types by Kleinjung75 and similar procedures could be used with AMOEBA atom types as an 

alternative method of implicit solvent model fitting. The parameterization of interstitial space 

correction terms was designed to ensure that the implicit solvent model can be used to simulate 

proteins and nucleic acids simultaneously. Fitting of nucleic acid specific parameters, including 

the nucleic acid neck scale factor and tuning of previously fit electrostatic radii for nucleic acid 

atom types to account for repetitive backbone chemistries will be addressed in future work.  

The implicit solvent model for proteins is currently being used in the development of new 

protein optimization and design methods within FFX, including a family of side-chain 

optimization methods. These algorithms use a many-body energy expansion to determine optimal 

side chain conformations and titration states (e.g., for LYS, HIS, ASP, and GLU residues) from a 

set of low-energy conformations known as rotamers. Typically, the polypeptide backbone remains 
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fixed, while the side chains are moved through their rotamers. Use of a continuum solvent is 

essential to eliminate steric clashes with explicit solvent molecules as the energy of each rotamer 

(or pair of rotamers) is computed. This approach can be used in conjunction with new techniques 

for experimental structure determination (e.g., CryoEM, time resolved X-ray crystallography), 

which are rapidly increasing the number of biomolecular structures in the Protein Data Bank. 

However, experimental resolution is rarely high enough to assign titratable amino acid protons. 

Additionally, manual placement of side chains during model building is time-consuming and can 

result in energetically nonoptimal structures. Using global sidechain optimization methods built 

on rotamer libraries76, it is possible to optimize both side-chain conformations and their titration 

states during model building and refinement. 

This GK implicit solvent for proteins can also facilitate the development of constant pH 

molecular dynamics (CpHMD) algorithms for the AMOEBA force field. Implicit solvents have 

already been shown to work well with CpHMD methods using fixed charge force fields49,77-79. For 

example, GB-CpHMD80 in the AMBER simulation package has been used to predict pKa shifts 

using the Amber ff14sb. The advantage of using an implicit solvent for CpHMD simulations is 

two-fold. First, the number of atoms being simulated is reduced. A second advantage is that solvent 

relaxes instantaneously to changes in ionization state, which avoids the relatively slow kinetics 

associated with water reorientation. This is especially apparent for enhanced sampling methods 

such as pH replica exchange, where different ionization states are immediately accommodated by 

continuum water during exchanges (i.e., promoting efficient pH replica exchange rates). 

An implicit solvent was recently used in conjunction with a deep learning approach to 

calculate the absolute binding free energy difference of a host-guest system via the DeepBAR 

method presented by Ding and Zhang81. With the implicit solvent model described here, the 
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DeepBAR approach could now be applied to the series of host-guest systems modeled successfully 

by the AMOEBA polarizable force field in the context of the SAMPL challenges 82,83. Additional 

applications that stand to benefit from implicit solvation, such as the simulation of protein/nucleic 

acid complexes27 or intrinsically disordered proteins84,85, may be explored in future work. While 

the current model is parameterized for use with the AMOEBA force field, it will also be adapted 

for force fields with similar electrostatics models (e.g., AMOEBA+86 and Hippo87) as they are 

developed. This will ensure transferability and continued use with more advanced force fields. 

Overall, the stability of the current model for a broad array of proteins with the addition of only a 

few new parameters shows promise for the expanded use of GK implicit solvent for biomolecular 

simulations.  
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