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ABSTRACT: Visual observations are frequently used as a preliminary evaluation of the chemical contents of mixtures, but their 
accuracy largely depends on the observer’s experience and intuition, which are difficult to share. Here, we report component ratio 
prediction using image-based machine learning (ML), which is applicable to analysis of various solid mixtures, such as mixtures of 
organics and inorganics, polymorphous crystals, and enantiomers. The trained model with 300 images could predict the sugar/dietary 
salt weight ratio from an image within 4% error. The ML prediction pipeline was shown to be broadly applicable to polymorphic 
glycine, D/L-tartaric acid, and four-component systems. As an application demonstration, we also used our ML system to analyze 
yield of a solid-state decarboxylation reaction. These results demonstrated that accumulation of researchers’ experience derived from 
visual information can be shared as trained ML models and used as a quantitative analysis method. 

INTRODUCTION 
Quantitative analysis of chemical compounds is indispensa-

ble processes in chemical science. Although many precise anal-
ysis methods, such as nuclear magnetic resonance, high-resolu-
tion mass spectrometry, and optical spectroscopies, have played 
central roles in chemical laboratories, researchers still rely on 
visual observations with the naked eye for preliminary evalua-
tion. Visual inspection is a quick and non-destructive analysis 
methods that requires no spectrometer. In the 19th century, 
Louis Pasteur succeeded in the optical resolution of a tartrate 
salt through careful visual observation of the crystals, which led 
to the discovery of molecular chirality.1 While visual observa-
tion has acted as an impetus for historic breakthroughs, its ac-
curacy largely depends on the observer’s experience and intui-
tion. For example, experienced researchers can sometimes esti-
mate the approximate component ratio between the desired 
product and other products just by looking at a solid reaction 
mixture based on empirical knowledge of the color, texture, 
grain sizes, or transparency of the products (Figure 1a), but less 
experienced researchers cannot. Such differences in experience 
may influence the outcome of the chemical research, when 
thousands of similar samples are to be analyzed. The experience 
and intuition of researchers are, however, often difficult to ex-
plicitly formulate and thus contain considerable uncertainty, 
which makes visual observations subjective and unreliable. 

Recently, machine learning (ML) has begun to be used in 
chemical science to identify and analyze the multidimensional 
correlations between explanatory variables (i.e., 

descriptors/features) and target variables, as evidenced by many 
successful cases, such as catalyst development,2,3 reaction con-
ditions,4,5 and functional materials.6-8 Because the prediction 
performance of ML systems generally depends on the infor-
mation and representation they use as input, various potentially 
related factors or quantities associated with molecular struc-
tures, chemical reactivities, and spectroscopic measurements 
have been validated and used as descriptors.9 The raw pixel val-
ues of a photograph have also been used as input variables in 
image-related tasks, as recently demonstrated in evaluation of 
nanoparticles10,11 and crystal growth.12,13 This success primarily 
relies on the recent advances in deep learning, in particular, the 
capability of representation learning to directly learn relevant 
feature representations from low-level sensory data such as 
photographs. Accordingly, visual inspections in experimental 
laboratories could potentially be replaced by image-based ML 
as a more accurate and reliable tool. However, a big problem 
lies in how to formulate the visual observations of human re-
searchers and input them as data into ML in a consistently rele-
vant way.14 From the photograph in Figure 1a (right), research-
ers would instantly recognize that a glass flask is being held by 
a person and anticipate that the chemicals to be analyzed are 
inside the flask. Such visual perception is grounded not simply 
in the visual stimulus itself, but also in the rich contextual in-
formation from all the past experiences and knowledge. Devel-
oping a similar machine recognition system would be, if not im-
possible, time-consuming and require an astronomical number 
of diverse training images that can cover all potential contextual 
variations that researchers encounter in daily activities.



 

 

Figure 1. (a) Prediction of the mixing ratio of a reaction mixture by observation with the human eye. (b) Prediction of the mixing ratio of 
components by image-based ML. (c) Photograph of the mixture of sugar and dietary salt used in this experiment. The inset shows a magnified 
photograph of the sugar and dietary salt mixture. (d) Preparation procedure of the samples for the datasets. (e) Settings for photographing 
the samples. 

To establish practical ML-based visual observation analysis, 
it is thus of great importance to frame the problem design in a 
reproducible, less uncertain, and robust form (Figure 1b) de-
spite the inevitable variability and diversity of visual observa-
tions. Here, we report mixing-ratio prediction using image-
based ML and its applicability to analysis of weight (molar) ra-
tios, enantiomeric ratios, and reaction yields. The initial pilot 
case for the design, development, and optimization of the ML 
models was to predict the weight ratio between sugar (sucrose) 
and dietary salt (NaCl) from a given image of their mixture. The 
model achieved a prediction with a mean absolute error (MAE) 
of 3.9% for a physically independent test dataset. Suitable 
trained models for ML were obtained using 300 images as train-
ing data for each case. For reproducibility, we open-sourced the 
codebase, examined all randomness-included calculations mul-
tiple times, and carefully performed prediction assessment to 
avoid any potential data leakage, which also provides a web-
based prediction system to enhance the usability for third-party 
assessment by non-experts. Using optimized conditions for ML 
model making, we were able to predict the molar (or weight) 
ratio of polymorphic glycine, D/L-tartaric acid, and four-com-
ponent organic/inorganic mixture systems. The ML-based pre-
diction system was also applied to analyze the reaction yield of 
solid state decarboxylation of p-aminosalicylic acid. To further 
expand the ease of applicability, we also show that this ML 
model trained with images taken by a research-level microscope 
can be transferred to the images recorded by a consumer-level 
mobile camera after fine-tuning calibration with a few images. 

 

RESULTS AND DISCUSSIONS 
An initial investigation of the image-based ML system tar-

geted a pilot case study of predicting the weight ratios of given 
mixtures of sugar and dietary salt (Figure 1c). The sugar and 

dietary salt samples used in this experiment had averaged grain 
sizes of 0.46 and 0.41 mm, and averaged grain weights of 0.17 
and 0.14 mg, respectively. Because the grain-size distributions 
showed considerable overlap (Figure S1 in the in the Support-
ing Information), it is difficult for the human eye to clearly dis-
tinguish these solids based on the size, color, and transparency 
of the image. An initial training dataset of a total of 100 mix-
tures of sugar and dietary salt with different weight ratios was 
prepared by weighing (Figure 1d): sugar/dietary salt (mg/mg) = 
0:10, 1:9, 2:8, …, 9:1, and 10:0 with 9–10 samples for each ratio. 
Each well-blended sample with a total weight of 200 mg was 
spread on a glass plate inside a square area of 2.4 cm ´ 2.4 cm 
with a sample thickness of 1.0 mm so that all of the grains could 
be photographed without grain overlap (Figure 1e). To avoid 
the influence of the background, the sample glass plate was 
placed on a black stage, and a photograph was taken with a mi-
croscope camera at resolution of 2048 ´ 1536 pixels. The 
collected images were trimmed to a square shape of 1536 × 
1536 pixels. To evaluate the prediction performance of the ML 
system, another set of 100 images was prepared and used as the 
test dataset to evaluate the error between the predictions and the 
actual weight ratios. To avoid any unintended data leakage, this 
test dataset was prepared as a physically independent dataset 
from the training dataset: for each image, a new sample was 
taken, weighed, mixed, and spread on a glass plate. Hence, the 
test dataset contained the natural batch effect from potential 
confounders. The prediction accuracy was evaluated by multi-
ple standard metrics: the MAE, root-mean-squared error 
(RMSE), and coefficient of determination (R2). A random sub-
set of 10% of the training dataset was used as a validation da-
taset to choose the best model, and the remaining 90% of the 
training dataset was used for training, unless specified other-
wise. 



 

 
Figure 2. (a) Data augmentation (DA) process. Center cropping of 1200 × 1200 pixels, random cropping of 800 × 800 pixels, resizing to 
512 × 512 pixels, CLAHE, random horizontal flipping with 50% probability, random vertical flipping with 50% probability, and random 
90° rotation are sequentially applied every time an image is given to ML. (b) Training phase. The ML model is trained over subimages from 
DA. (c) Inference phase. DA is applied multiple times, and each augmented image is given to ML to obtain a predicted ratio. These multiple 
predicted ratios are averaged to give a single number as the final prediction. (d) ML model. Three-channel color 512 × 512 pixels are input 
into a convolutional neural network (CNN), and global average pooling (GAP), a head regressor by fully-connected layers in sequence, and 
finally softmax are applied to output the predicted ratios. 

Considering the variability of visual observations, the ML 
model was designed as ensemble regression over randomly 
cropped subimages from an input image (Figure 2a–c), which 
is called test-time augmentation (TTA) in inference. The base 
model was thus trained over 512 × 512 pixel subimages associ-
ated with the same ground truth of parent images (Figure 2b). 
Each subimage was obtained from the original 1536 ´ 1536 in-
put image by center cropping to 1200 × 1200 pixel size to re-
move the edges of the sample area, random cropping at different 
locations to 800 × 800 pixel size, random flipping and 90° rota-
tion with a probability of 50%, contrast normalization by con-
trast-limited adaptive histogram equalization (CLAHE), and 
resizing to 512 × 512 pixels (Figure 2a). These sizes were fixed 
to obtain subareas that were sufficiently large to estimate the 
average weight ratio. To predict the weight ratio of a given 1536 
´ 1536 image, the same data augmentation procedure was ap-
plied multiple times to obtain several 512 × 512 subimages from 
a single input image, and the predicted weight ratios of each 
subimage were averaged to obtain the final predicted value of 
the weight ratio of the original input image (Figure 2c). The ML 
model had a standard architecture with a convolutional neural 
network (SE-ResNeXt-50)15 backbone, global average pooling, 
and a head regressor by fully-connected layers with softmax 
outputs, and it was trained with soft cross-entropy loss (Fig. 2d, 
also see Methods). For the sugar/salt two-component example, 
the ML model output two values as predictions of the weight 

ratios of sugar and dietary salt in wt%, satisfying 0 ≤ sugar 
(wt%) ≤ 1, 0 ≤ dietary salt (wt%) ≤ 1, and sugar (wt%) + dietary 
salt (wt%) = 1. 

The observed–predicted plots of the initial pilot case of 
weight-ratio prediction by the ML models are shown in Figure 
3. When the ML model was directly trained with the input im-
ages (with only non-random preprocessing of center cropping 
to 1200 × 1200 pixels, resizing to 512 × 512 pixels, and 
CLAHE), the prediction performance was MAE = 10 %, RMSE 
= 11%, and R2 = 0.85 (Figure 3a), presumably because of the 
small number of only 100 training images, and it also exhibited 
unstable prediction variability. Adding data augmentation by 
random flipping and 90° rotation improved the prediction accu-
racy to MAE = 7.1%, RMSE = 9.1%, and R2 = 0.90 without 
TTA (Figure 3b). When the model was trained with data aug-
mentation, a differently augmented image was generated for 
each epoch, and thus 12,000 images were given to ML during 
training of 120 epochs. We re-trained the ML model by further 
adding random cropping to the data augmentation, and we ex-
amined the TTA prediction performance of the obtained model 
with varying number of augmented images from 1 to 50 (Figure 
S2). As a result, 30-image TTA with MAE = 5.9%, RMSE = 
7.7%, and R2 = 0.93 was selected as the setup for further inves-
tigation, considering the balance between the efficiency and the 
significance of the accuracy improvement (Figure 3c).  

 
 



 

 
Figure 3. (a–c) Observed–predicted sugar-ratio plots for 100 test images using different data processing in ML: (a) without data augmentation 
(DA) and test-time augmentation (TTA), (b) with DA (except for random cropping) and without TTA, and (c) with DA and 30-image TTA. 
(d) Relationship between the training image data and the prediction accuracy. (e) Prediction of the mixing ratio under the optimized condi-
tions. (f) Selected examples of the prediction of the mixing ratio under the optimized conditions. 

We then optimized the photography conditions and number 
of training images. When the accuracy of ML-based analysis 
was evaluated using images with different sample densities (10, 
20, and 35 mg/cm2), the densest condition (35 mg/cm2) showed 
the best MAE and RMSE values (Figure S3 and S4). The inter-
val of the ground truth values in the training data also affected 
the accuracy. When 100 images of training data were used with 
1wt% increments, the MAE and RMSE were lower than those 
with 10 and 20wt% increments (Figure S5 and S6). Although 
ML can complement data that have not actually been input dur-
ing the training processes, preparing various mixing ratios for 
training was found to be effective for model construction. 

Using the optimized conditions (30-image TTA, 35 mg/cm2, 
and 1wt% increment), we investigated the relationship between 
the number of training images and the prediction accuracy to 
evaluate the cost–performance ratio. A suitable prediction 
model could not be constructed using only 10 images even with 
data augmentation, but using 25 images gave moderate-level 
prediction. The MAE and RMSE gradually decreased with in-
creasing number of original images for training until 300 im-
ages, after which the MAE and RMSE became stable (Figure 
3d and S7). Using 300 images of the sugar/dietary salt mixtures 

for the training dataset (Figure 3f), the accuracy of ML-driven 
prediction improved to MAE = 3.9%, RMSE = 4.6%, and R2 = 
0.97 (Figure 3e). The inference time for computing the pre-
dicted values for 100 images was 34.79 seconds with 30-image 
TTA on an NVIDIA A100 GPU (0.348 seconds per image), 
7.52 seconds with one-image TTA (0.075 seconds per image) 
on a NVIDIA A100 GPU, and 20.25 seconds with one-image 
TTA on an AMD EPYC 7252 3.1GHz/8-core CPU (0.202 sec-
onds per image). 

We further compared the prediction accuracy and stability 
with human visual inspection by assigning the same prediction 
task to five examinees, including one expert engaged in actual 
image collection and four non-experts not related at all to this 
project (Figure S8). The five examinees were asked to estimate 
the weight ratios of 10 images of sugar/dietary salt mixtures 
randomly chosen from the test dataset, referring to the same 300 
images as the training dataset for ML (see the Supporting Infor-
mation). The results indicated that the prediction accuracy of 
the ML system was much more accurate and stable than human 
visual inspections, which greatly varied (MAE = 7.5%–25 %, 
RMSE = 9.3%–34 %, Figure S8). 



 

 
Figure 4. (a) Analysis of the mixing ratios of a- and g-glycine. Typical crystal morphologies of the a- and g-forms, observed–predicted plot, 
and representative results of ML-based prediction. (b) Prediction of the enantiomeric ratio (er) of mixtures of L- and D-tartaric acid. Crystals 
of each enantiomer, observed–predicted plot, and representative results of ML-based prediction. (c) Analysis of the naphthalene content of 
solid mixtures containing naphthalene, silica gel, alumina, and celite. 

Next, we investigated the applicability of ML-based mixture 
analysis to different chemical solids. Crystal polymorphism is a 
phenomenon where different types of crystals are formed from 
an identical compound. Because the solubility of the crystals 
generally differs between two polymorphs, distinguishing pol-
ymorphs is of great importance in the pharmaceutical commu-
nity.16 When glycine is crystallized from neutral water, rod-like 
crystals of a-glycine in the monoclinic P21/n space group ex-
clusively form. Conversely, crystallization from hydrochloric 
acid gives a different polymorph17: g-glycine as prismatic crys-
tals in the trigonal P31 space group (see the Supporting Infor-
mation). Using authentic solids of a- and g-glycine, 300 images 
of mixtures with different weight ratios were taken as training 

dataset for ML. The ML pipeline for the initial pilot case was 
applied to this dataset, and its accuracy was evaluated using an-
other physically independent set of 100 images as the test da-
taset. To our delight, the observed–predicted plot (Figure 4a) 
showed a good correlation with MAE, RMSE, and R2 of 4.0%, 
5.6%, and 0.96, respectively. It should be noted that methods 
for quantitative analysis of polymorphic mixtures are quite lim-
ited because they are composed of the same molecules. A re-
ported method using infrared spectroscopy for evaluation of a- 
and g-glycine has an uncertainty of 2%.18 ML-based prediction 
showed that the ratio of polymorphs can be predicted at compa-
rable accuracy to infrared spectroscopy using only a photograph 
of the mixture. 



 

 
Figure 5. (a) Decarboxylation reaction of PAS to MAP. Insets show the changes in appearance. (b) Prediction of the MAP yield (%) from 
pictures of reaction mixtures. (c) Reaction monitoring using the ML-based yield prediction system under discontinuous heating conditions. 
Images of reaction mixtures were taken every 1 hour (5 images), and the averaged yields from 5 images at each time-point were used as the 
predicted MAP yield values in the graph.  

 
Enantiomers, two stereoisomers in a mirror-image relation-

ship, are one of the most difficult combinations to distinguish 
in molecular science. The purity of an enantiomer is described 
by the enantiomeric excess19 or enantiomeric ratio (er),20 an im-
portant index that is frequently used to evaluate the outputs in 
asymmetric synthesis. To analyze the er of a mixture of enanti-
omer crystals by image-based ML, we prepared 300 different 
mixtures of an enantiomer pair: L- and D-tartaric acids. Unlike 
sugar and dietary salt, the crystalline solid of L-tartaric acid 
shows almost the same color and size distribution as its enanti-
omer, D-tartaric acid. Our established ML pipeline excluding 
random flipping from data augmentation was applied to the 300 
training images of the mixtures. The observed–predicted plot 
(Figure 4b) for another independent test dataset of 100 images 
showed that from the images of crystalline mixtures, image-
based ML can predict the er with MAE, RMSE, and R2 of 6.4%, 
7.9%, and 0.93, respectively. Although the appearances of en-
antiomeric crystals are too confusing to quantitatively distin-
guish with the human eye, image-based ML can rapidly and 
quantitatively determine the er.  

We further examined ML-based analysis of mixtures con-
taining more than two solid components for future applications 
of ML-based analysis to estimation of the reaction yields using 
photographs of complex mixtures. As a model case, we pre-
pared 300 mixture samples of naphthalene, silica gel, alumina, 
and celite with various weight ratios, and we used the 300 im-
ages as the training dataset. The weight ratio of naphthalene was 
assigned as the ground truth of each image, and the ML model 
was trained to predict the weight ratio of naphthalene. The ob-
served–predicted plot (Figure 4c) of 100 independent test 

images showed that image-based ML can also be applied to 
multi-component mixture analysis, with MAE, RMSE, and R2 
of 3.4%, 4.8%, and 0.97 for prediction of the weight ratio of 
naphthalene, respectively. 

Our ML-based system enables non-destructive analysis of 
solid-state chemical reaction. p-Aminosalicylic acid (PAS) is 
an antibiotic used in the medical treatment of tuberculosis, and 
is known to undergo thermal decarboxylation in the solid state 
to form m-aminophenol (MAP). This solid-state reaction results 
in continuous changes in physical appearance as the reaction 
progresses; when fine powder PAS was heated above 110 °C, 
crystalline of MAP gradually appears (Figure 5a). Considering 
practical cost performance, we collected 75 different images of 
reaction mixtures of PAS at different progress rates as a training 
dataset, and built an ML model for reaction yield prediction us-
ing the NMR-based reaction yield of MAP as ground truth for 
each image. Validation of the ML model was carried out using 
further images of reaction mixtures; when using an ML model 
built from 25 out of 75 training images, the prediction of reac-
tion yields was failed. Another ML model based on 50 training 
images gave a better prediction score (Figure S15). With a ML 
model generated from 75 images, the best MAE, RMSE, and R2 
were determined to be 5.7%, 6.8%, and 0.96, respectively (Fig-
ure 5b).  

Encouraged by the validation results, we conducted image-
based reaction yield analysis of the PAS decarboxylation reac-
tion. Solid PAS (ca. 200 mg) was placed on a glass plate, and 
heated with a hot plate using various temperature profiles (Fig-
ure S16). When the reaction was carried out at a constant 



 

temperature, 110 °C, for 6 h, an almost monotonic increase in 
yield was observed as a function of reaction time. These 
changes were in good agreement with previously reported ki-
netic parameters of the PAS decarboxylation reaction.21 Next, 
we examined a slightly more complicated temperature profile 
for ML-based reaction analysis; PAS was first heated at 110 ºC 
for 3 h, then the heating was stopped and left at room tempera-
ture for 3 h, and then reheated at 110 ºC for a further 3 h. We 
took 5 different images of reaction mixtures at each 1 h, and 
analyzed using the ML model (Figure 5c). The predicted yield 
appeared to increase during heating, while remaining approxi-
mately the same at room  temperature. Reaction analysis using 
1H NMR spectroscopy also confirmed similar changes in reac-
tion rate, demonstrating the reliability of ML-based reaction 
analysis. Although NMR spectroscopy is more accurate than 
our ML-based analysis, it requires sample preparation at each 
analysis step, i.e. taking a small portion of the sample to dis-
solve in a deuterated solvent. In this sense, ML-based analysis 
is more straightforward and non-destructive, because image 
data can be acquired during the reaction without contacting the 
sample. Thus, our ML-based system would be useful for quality 
management of pharmaceutical compounds that may degrade 
during storage. 

Although image-based ML is applicable to analyzing images 
of various solid mixtures, dependence on the type of camera can 
be a common limitation. In fact, weight-ratio prediction was un-
successful for the test images taken by a mobile camera even 
though the visual difference seemed to be negligible to the hu-
man eye. For example, in the case of sugar/dietary salt mixtures, 
the MAE, RMSE, and R2 were 19%, 22%, and 0.58, respec-
tively (Figure S18a), for six test images taken by a mobile cam-
era when the ML model was trained with the 300 microscope 
images. This can be attributed to the subtle differences in the 
image resolution and brightness between the mobile camera and 
microscope camera. When the ML model pre-trained with 300 
microscope images was fine-tuned by additional training with 
24 mobile-camera images for calibration, the MAE, RMSE, and 
R2 were improved to 6.0%, 6.4%, and 0.97, respectively (Figure 
S18b). The applicability of using different cameras for image-
based ML might allow very large numbers of training datasets 
constructed in different laboratories to be merged toward the 
same targets for constructing more precise models. 

To confirm the reproducibility and further expand the ease of 
applicability, we also developed a stand-alone prediction sys-
tem that can be used by any external non-experts for third-party 
evaluation. Once a suitable ML model for a given task is ob-
tained by training, it can be shared with others and separately 
used for making predictions of any unseen images of the task. 
Demonstration of the sugar/salt example with instructions for 
sample preparation and photographing is provided as a freely 
accessible Google Colaboratory notebook (see the Supporting 
Information). We have already tested the usability of this pre-
diction system, and we confirmed that it worked well for a third-
party (Figure S19). Although it should be carefully operated for 
input test images to match the training conditions (size or mor-
phology), this suggests that image-based ML models can be 
used as a storage of visual information from experiments to be 
shared among researchers. 

 

CONCLUSION 
We have developed mixing-ratio prediction for various solid 

mixtures using image-based ML. Although the visual 

observations frequently used as preliminary evaluation of 
chemical contents are non-quantitative and largely depends on 
the experiences and intuition of the observers, ML enables ac-
curate prediction of the weight ratio from photographs. The 
data-augmentation process allows construction of a reasonable 
model for mixture analysis using 300 training images. The 
trained models allowed prediction of the ratios of sugar and di-
etary salt, polymorphic crystals, and enantiomers with better ac-
curacy than prediction by researchers. Image-based ML is also 
applicable to more complex mixtures containing four compo-
nents, thus enabled non-destructive reaction analysis of solid-
state decarboxylation of PAS. The limitation of the camera de-
pendency was resolved by fine-tuning the models with a few 
calibration data. Although training image datasets should be 
collected when different size, color, or morphologies of solids 
are used, our ML system would be convenient when thousands 
of output batches produced through a common method are to be 
analyzed. Such situations are conceivable in combinatorial 
chemistry, or in laboratorial screening processes using robotic 
technologies22 or automation synthesis.23 In addition, ML-based 
prediction could act as a checker for quality assessment of com-
bined medicines during long-term storage, reaction manage-
ment in plant synthesis, and environmental soil surveys. Alt-
hough it is generally difficult to share the experience of re-
searchers, trained ML models will assume the role of a data 
bank, and even visually impaired people can receive the bene-
fits from visual observations. 
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