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ABSTRACT: 

A mild, scalable (kg) metal-free electrochemical decarboxylation of alkyl carboxylic acids to 

olefins is disclosed. Numerous applications are presented wherein this transformation can simplify 

alkene synthesis and provide alternative synthetic access to valuable olefins from simple 

carboxylic acid feedstocks. This robust method relies on alternating polarity to maintain the quality 

of the electrode surface and local pH, providing a deeper understanding of the Hofer-Moest process 

with unprecedented chemoselectivity. 

 

  



 

MAIN TEXT: 

The incorporation of carboxyl groups onto olefins is one of the most useful and industrially 

applied reactions of the modern era (e.g., hydrocarboxylation, Figure 1A).1–4 The reverse process 

of removing a carbonyl group (deformylation/decarboxylation) is less studied, yet could serve as 

a convenient tool to install an olefin when the carboxylic acid is readily available, offering 

alternative disconnections for retrosynthetic analysis.5–7 For example, olefin 1 could be envisioned 

to arise from a sequence of Diels-Alder8 and functional group manipulations9 or, perhaps more 

attractively, from readily available tranexamic acid in a single operation (following Cbz 

protection). One potential platform to access this reactivity would be via an electrochemically 

generated carbocation produced by decarboxylation (Figure 1B). Such reactivity is embodied by 

the classic Hofer-Moest reaction,6,10–13 a transformation that generates these reactive intermediates 

through a strongly oxidative process. Although there are numerous examples that utilize this 

electrosynthetic tactic, the vast majority proceed only on activated systems (allylic, benzylic, and 

a-heteroatom).14 Recent variants, such as decarboxylative etherification14 and fluorination,15 have 

extended the scope of this reaction largely to tertiary systems and select secondary examples. 

Electrochemical decarboxylation of secondary, let alone primary carboxylic acids, is considered 

extremely challenging even in these state-of-the-art protocols. The recently developed rapid 

alternating polarity (rAP)16,17 variant of the Kolbe reaction is a notable exception as it enables 

decarboxylation of primary carboxylic acids with high chemoselectivity;18 however, this reaction 

favors carbon radical formation over the carbocation. To the best of our knowledge, a general 

electrochemical decarboxylative olefination has yet to be described. In this communication, we 

disclose a modification of the rAP-Kolbe conditions, now allowing facile decarboxylation of 

unactivated primary, secondary, and tertiary carboxylic acids without the need for preactivation 

(e. g., redox-active ester formation), enabling access to olefins via carbocations. 



 

 
Figure 1. Interconversion of carboxylic acids and olefins. (A) Whereas hydrocarboxylation is well-established on 

industrial scale, decarboxylative olefination remains underexplored despite its synthetic value. (B) Electrochemical 

oxidation of carboxylic acids can invoke Hofer-Moest reactivity. 

 

Our preliminary studies started from slightly modified electrochemical decarboxylations for 

etherification14 and flurionation15 (Table 1). In an attempt to favor olefination, the alcohol 

nucleophile was excluded from the etherification conditions (entry 1). However, oxidation of the 

model secondary acid was sluggish, and no olefin product was observed. Fluorination conditions 

led to trace conversion to olefin 1, in good agreement with the original report that this method is 

not applicable to secondary carboxylic acids (entry 2). rAP Kolbe conditions18 gave much better 

conversion when compared to the previous methods, resulting in moderate yield of 1 (entry 3). To 

further improve the reaction, graphite electrodes were evaluated based on their well-established 

ability to access carbocations over carbon radicals.11,19 However, switching to graphite electrodes 

resulted in low conversion with 50 ms rAP (entry 4). This large drop in conversion could be 

explained by the order of magnitude higher electrode capacitance of graphite over reticulated 

vitreous carbon (RVC) (i.e., electricity was largely consumed by charge-discharge cycles of the 

electrical double layer).17 To account for such a large electrode capacitance, a much longer pulse 

was applied (5 s instead of 50 ms), resulting in a significant improvement in conversion and 67% 

yield of the desired olefin (entry 5). These conditions outperform state-of-the-art photochemical 

methods (entry 6),20 and as illustrated below, this functional electrochemical protocol enables 

unprecedented scalability (up to 1 kg) in the context of decarboxylative olefination of unactivated 

carboxylic acids. Remarkably, these optimized conditions did not work (on preparative scale) if 
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direct current (DC) electrolysis was applied instead of alternating polarity. In fact, no conversion 

was observed under DC conditions (entry 7, mechanistic studies vide infra). A catalytic amount of 

base is necessary to ensure conversion of carboxylic acid 2 (entry 8). Use of tetramethylammonium 

salts can be circumvented by replacement with KOH (entry 9). Furthermore, the addition of pivalic 

acid is necessary to avoid partial oxidative degradation of the olefin product (entry 10). 2-Methyl-

2-butene can also be used in place of pivalic acid (entry 11), further confirming the role of PivOH 

as a sacrificial additive rather than a pH buffering agent due to its acidic nature. 

 
Table 1. Discovery of the electrochemical decarboxylative olefination. Benchmarks with state-of-the-art conditions 

and effect of key reaction parameters (see SI for further details). i and ii indicate olefin regioisomers. aDetermined by 
1H NMR. bObtained as single isomer i. 

 

With optimized conditions in hand, the scope of this electrochemical decarboxylative olefination 

was explored. In general, this practical method is applicable to a variety of unactivated secondary, 

tertiary, and even primary carboxylic acids as illustrated in Table 2. Compatible functional groups 

include: esters (3, 10, 11, 20), ketals (4), sulfones (5), carbamates (6, 7), amides (10), epoxides 

(11), arenes (12, 16), alcohols (14), alkenes (14, 19) and ketones (15). As demonstrated in 3-7, this 

method offers rapid access to unsaturated six-membered rings with a variety of functional groups. 

Although such a motif is a prime target for Diels-Alder approaches, accessibility and stability of 

the reactants, as well as polarity matching, is not always trivial. For example, access to olefinic 

sulfone 5 can be laborious (previously reported in 7 steps),21 whereas electrochemical 

decarboxylation allows its preparation in a single step from the commercially available acid 

($5.4/g). Similarly, the synthesis of 4-aminocyclohexene derivatives 6 and 7 from a readily 
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available carboxylic acid ($4.8/g, free amine) also exemplifies the potential of this protocol to 

circumvent a cumbersome Diels-Alder/Curtius rearrangement sequence.8,22 Medicinally relevant 

gemfibrozil, used as a lipid regulator to treat high cholesterol, offers an intriguing case study on 

chemoselectivity. The electron-rich alkyl aryl ether prone to electrochemical oxidation was 

tolerated in the decarboxylative olefination, highlighting the chemoselective nature of the 

oxidation process. The method also allows facile derivatization of naturally occurring carboxylic 

acids such as ursolic acid, isosteviol, and dehydroabietic acid to deliver unique olefins with 

complex polycyclic scaffolds (14-16). Interestingly, in the case of camphoric acid, the tertiary acid 

was selectively decarboxylated to afford g,d-unsaturated acid 13. Simple primary carboxylic 

acids–the most abundant yet least prone to undergo Hofer-Moest–are efficiently decarboxylated 

under this protocol. Oleic acid, a common component of plant oil, can be turned into an exotic 

diene 19, while suberic acid monomethyl ester can be converted into a valuable unsaturated ester 

20 ($160/g). In addition to olefin product formation, this protocol demonstrates different reaction 

outcomes based on the nature of the carbocation intermediate. b-Hydroxy acid 8 can readily 

undergo decarboxylation followed by pinacol-type rearrangement to form cyclic ketone 9, while 

adamantanol derivative 17 efficiently leads to Grob fragmentation product 18.15 Another unique 

evidence of carbocation intermediacy was obtained in the decarboxylation of a primary acid, where 

the formation of alkene 22 was accompanied by cyclopropane 21. This byproduct formation 

invokes a non-classical carbocation stabilization followed by a new C–C s-bond formation via g-

deprotonation.23–25 Since oxidative decarboxylation is balanced by reduction of acetone used as 

solvent, confirmed by the detection of ~1.0 equiv. of isopropanol in crude 1H NMR (see SI), 

functional groups susceptible to electron-transfer within the redox window of carboxylate and 

acetone might not be tolerated (Table 2, bottom left).26 Therefore, reductively labile functionalities 

such as alkyl halides (23), aryl sulfonamides (24), electron-poor heterocycles (25), or enones (26) 

were not amenable to the current reaction conditions. Similarly, tertiary alkyl amines (27) or 

electron-rich heterocycles (28) interfered with oxidative decarboxylation. In certain cases, olefin 

formation provided an inseparable mixture of isomers. In this scenario, the mixture could be 

converted into a single product by enlisting alkene isomerization conditions (Table 2, bottom 

right), using the recently reported electrocatalytic generation of Co–H to access the internal isomer 

12b.27,28 



 

 
Table 2. Scope of the electrochemical decarboxylative olefination. Diverse examples of 

carbocation reactivity and limitations are shown, as well as the possibility to obtain a single olefin 

isomer. i, ii, and iii indicate olefin regioisomers; ratio is determined by 1H NMR. 

 

The ultimate proving ground for this simple, metal-free protocol is in its applicability to be 

conducted on a large scale. Thus, we partnered with AbbVie process chemists to scale the 

electrochemical decarboxylative olefination of carboxylic acid 2 (Figure 2). Translation of the 

method to the continuous stirred-tank reactor (CSTR), employing a cylindrical electrode array 

(Figure 2, top right), was straightforward. Equivalents of base and sacrificial additive were 
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modified, and the electrolysis mode was switched from constant current to constant potential, to 

improve the current flow and minimize reaction time. Since the AbbVie reactor (see SI) allows 

facile optimization of reaction temperature, it was fine-tuned to 35 ºC. Overall, in less than 10 lab 

experiments on 7 g scale, suitable conditions were identified for scale-up. Notably, the reaction 

stalled when DC electrolysis was employed (Figure 2, top left), confirming that the importance of 

alternating polarity is universal across various reactions scales. Increasing the scale of the reaction 

from 7 to 28 g in a larger reactor led to nearly identical reaction performance (Figure 2, bottom 

left). This preliminary scale-up effort successfully demonstrated that scaling the reaction based on 

electrode surface area would lead to predictable results. Thus, further scale-up to 1 kg was 

undertaken by simply using a larger electrode array (Figure 2, top right). The surface area of this 

electrode array supposes a ten-fold increase relative to the array used for the 28 g reaction and fits 

into an 8 L reactor body. To achieve a batch reaction size of 1 kg in this reactor, the reaction was 

further concentrated from ~0.25 M under the nominal conditions to 0.8 M without consequence. 

The next hurdle to be addressed was identifying equipment capable of providing alternating 

polarity current. The expected current flow for a 1 kg reaction would be in excess of 100 A; 

however, no power source capable of supplying this amperage with polarity alternation was readily 

available on the market. Therefore, a lab potentiostat capable of a 20 A maximum output was used 

as a compromise. The elevated capacitance of the graphite electrode material presented an 

additional challenge, which was addressed by designing a custom step-down reversal of polarity 

(see SI for further details). Despite the equipment limitation resulting in a longer reaction time (90 

hours), the kg-scale reaction proceeded smoothly, providing a comparable 80% isolated yield of 

olefin 1 (Figure 2, bottom right). To place these results in context, a hypothetical cost comparison 

of the analogous photochemical variant20 is put forth, wherein the electrochemical reaction would 

require $89 for all the reagents to provide 675 g of 1 ($26/mol of 1), while the Ir catalyst alone 

would cost >$1,000 ($302/mol of 1)29 on the same reaction scale. 



 

 
Figure 2. Electrochemical decarboxylative olefination scale-up developed at AbbVie. Process was seamlessly 

scaled-up from 7 g to 1 kg. Alternating polarity is shown to be necessary to avoid the reaction stalling. This 

electrochemical protocol is highly cost-effective. a7 g scale. bReactions monitored by HPLC. 

 

Alternating polarity (AP) every 5 seconds and DC electrolysis usually share similar reactivity 

profiles;30 therefore, it is of great surprise that merely switching from AP to DC results in little 

conversion under otherwise identical conditions (Table 1, entry 7). Accordingly, preliminary 

mechanistic investigations were conducted to provide a deeper understanding on the effect of AP 

on this transformation (Figure 3). The most notable visual difference between the reactions with 

and without AP was the appearance of electrodes after completion of the electrolysis (Figure 3A). 

While the appearance of the electrodes under AP conditions remained unaltered, the anode surface 

of the DC experiment electrodes had clearly been compromised. Moreover, electrode weight was 

monitored before and after electrolysis, observing non-negligible mass gain only on the DC anode, 

further supporting irreversible anode fouling. It was reasoned that such anode fouling occurs due 

to the depletion of oxidizable substance on the anode. This situation is comparable to the rAP-

Kolbe reaction, where smooth decarboxylation only under rAP conditions could be explained by 

a local pH difference around the electrodes.18 Namely, DC electrolysis generates locally acidic 

Kg scale-up result

CO2H

1: 80% yield (5:1)
CbzHN CbzHN

2: 1 kg

Me4N•OH (0.7 equiv.)
PivOH (0.5 equiv.)

acetone (8 L), 35 ºC
C/C, 6.5 V, AP (5 s), 90 h

iii

Reaction Scale-Up – From 7 g to 1 kg

1 kg
scale

7 g scale

28 g scale

DC

AP (5 s)

7 g
scale

28 g
scale

Photochemical protocol (ref 20)

Electrochemical protocol

Seamless translation to higher reaction scales

Preliminary scale-upb

AP is necessary to achieve high conversion

Alternating polarity is keya,b Electrode arrays

 $26/mol of 1

675 g of 1

Cost comparison
on kg-scale reaction  $302/mol of 1 (only Ir cost)



 

areas around the anode through the formation of electrogenerated acids,31 which suppresses 

deprotonation of carboxylic acid, and therefore, decarboxylation. In contrast, polarity switching 

can partially avert this phenomenon by reversing electrode polarity, thus diminishing the 

accumulation of acid around the electrode. In order to support this hypothesis, probe 30 bearing 

an acid-labile silyl ether functionality was introduced into the reactions (Figure 3B, top panel). 

While DC electrolysis generated the deprotected alcohol 31 in 33% yield, only 10% of 31 was 

detected under AP conditions. This supports the notion that AP attenuates local pH fluctuation. 

Furthermore, cyclic voltammetry (CV) studies clearly indicate the lack of an oxidation event 

without adding a base (Figure 3B, bottom panel), which could lead to high potential at the electrode 

and result in anode fouling. On the other hand, CV of carboxylic acid 29 in the presence of base 

exhibits an oxidation peak around 1.5 V, which is in good agreement with the reported oxidation 

potential of alkyl carboxylates.26 This oxidation event could be acting as overcharge protection, 

thus maintaining the integrity of the electrodes throughout the reaction. Following the acidity study 

highlighted in Figure 3B, further CV studies were undertaken to provide a more detailed analysis 

on the impact of AP on this decarboxylative process (Figure 3C). In order to replicate the reaction 

process as closely as possible, a graphite electrode was used as working electrode, and potential 

was swept for 10 cycles between +3 V and different low ends. Three values were chosen for the 

low end: 0 V (barely reductive), -1.0 V (reductive, but no solvent reduction), and -2.5 V 

(sufficiently reductive for solvent reduction to occur). Notably, in the +3 – 0 V window, the 

oxidative current intensity dropped considerably after the first cycle, possibly indicating electrode 

fouling. Lowering the reductive end of the window to -1.0 V attenuated this current drop. Upon 

reaching -2.5 V, a new reductive event associated with acetone reduction was observed, and the 

oxidative current intensity was maintained during ten cycles. This result indicates that the 

reduction of acetone, which consumes protons, is crucial to support smooth decarboxylation over 

time, thus resupplying carboxylate species for further oxidation. Based on the observation of 

isopropanol in crude 1H NMR on preparative scale, this scenario likely explains the role of AP. 

Namely, local acidity caused by electrogenerated acid renders the oxidative decarboxylation 

sluggish and eventually halted under DC electrolysis. On the other hand, polarity switching can 

replenish carboxylate by the reduction of acetone, which acts as sacrificial electron- and proton-

acceptor. 



 

 
Figure 3. Mechanistic studies on the electrochemical decarboxylative olefination. (A) Visible difference between 

DC and alternating polarity, (B) tracking local acidity to explain the cause for anode fouling under DC electrolysis, 

and (C) tracking anode performance to explain the need for alternating polarity. 

 

CONCLUSION: 

To summarize, a simple protocol for decarboxylative olefination is presented which precludes the 

need for expensive catalysts, ligands, additives, or any metals. The closest alternative method to 

this transformation is a photochemical decarboxylative olefination, which is cost-prohibitive on 

scale. Indeed, the scalability of this electrochemical reaction is vividly illustrated by the facile 

execution of a 1 kg scale reaction to provide a pharmaceutically relevant molecule. The 

chemoselectivity observed allows access to a range of olefins starting from ubiquitous, unactivated 

carboxylic acids. Mechanistic investigations highlight the critical role of local pH around 

electrodes–an overlooked phenomenon in the context of Hofer-Moest reactivity. More broadly, 
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this work represents another example of how alternating polarity regimes in electrosynthesis hold 

promise for the improvement and invention of useful, practical, and sustainable transformations 

where electrons are the primary reagent. 
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