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Abstract. Water's oxygen is the electron source in the industrially important oxygen evolution 

reaction, but how water interacts with an electrode's active sites remains poorly understood. Much 

microscopic insight into the Stern layer water structure and the interfacial fields currently comes 

from atomistic simulations,1-6  with joint theoretical and surface-specific experimental studies just 

emerging.7-9 The strong absorber problem for water in particular has hampered our molecular 

understanding of how the water molecules in the Stern layer orient themselves in response to an 

externally applied potential. Here, we employ operando nonlinear optics with a non-resonant pulse 

triplet while recording cyclic voltammograms at Ni:NiOx electrodes in contact with pH 13 

electrolyte. We quantify the number of net-aligned Stern layer water molecules that point their 

oxygen atoms towards the electrode in response to the externally applied potential and obtain the 

total electrostatic field across the electrical double layer by quantifying the total potential. We find 

that the energy associated with water flipping is parabolic in the fraction of Stern layer water 

molecules flipped and comparable to the cohesive energy of water and ice, depending on the choice 

of the Stern layer relative permittivity (2 and 1.33, respectively). 

 Probing interfacial solvent structure and electrostatic fields at electrode:electrolyte 

interfaces directly, in real time, and without the need for electrochemical, spin, or spectroscopic 
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labels, or plasmonic structures, remains a major challenge despite the topic's importance for many 

electrochemical transformations.4,10-21 Consider the amphoteric nature of the oxides that terminate 

many electrodes used for the oxygen evolution reaction (OER). This reaction is typically carried 

out above the point of zero charge at high pH14 where, at open circuit potential, the interfacial 

water molecules direct their protons to the electrode surface. In this configuration, access of the 

electrode's active sites to the electrons in water's oxygen atoms would be blocked by water's 

protons unless the applied potential is sufficiently high to weaken the interfacial hydrogen bond 

network so that the water molecules can flip to point their electron source (the oxygen atoms) 

towards the electrode's active site (the metal oxo site). The sensitivity of nonlinear optical 

processes to interfacial structure and electrostatics should make it possible to gain insights into 

Stern layer water flipping if the strong absorber problem could be overcome.  

 Prior nonlinear optical studies of electrode:electrolyte interfaces have largely been based 

on second harmonic generation (SHG) intensity measurements (see Gruen's22 and Nagy and 

Roy's23 pioneering work on nickel electrodes), from which Φ(0)!"! and c(2) cannot be quantified. 

Recent approaches have focused on potential-of-zero charge quantifications via SHG amplitude 

and phase measurements on a platinum electrode,9,24 without quantifying Φ(0)!"! and c(2). These 

studies hark back to nonlinear electroreflectance studies from silver electrodes that started with 

Bloembergen in 1967.25 SHG signals from aqueous electric double layers were first reported by 

Wang in 1969.26 Heinz and Shen employed electrochemical conditions,27,28 Richmond,29-34 

Corn,35,36 and Guyot-Sionnest37 pioneered the method in chemistry as electric-field induced second 

harmonic, and Eisenthal established it for insulators.38 The field grew39-42 to include vibrational 

sum frequency generation (SFG) spectroscopy.43-49 Homodyne-detected SFG spectroscopy and 

SHG microscopy imaging under electrochemical control have now been realized by the Campen 
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and Roke groups for Au electrodes in the electrochemical stability window as well as for the 

OER.50-53 Liu and Shen reported phase-resolved nonlinear optical measurements of optically thin, 

gate-controlled Si:SiOx:water interfaces,54 while the Suntivich group applied phase-sensitive SHG 

to Pt electrodes to identify potentials of zero charge.9,24 We now build on these excellent studies 

by using optically transparent thin metal nanolayers for which we quantify the Stern layer structure 

and electrostatics at electrodes from SHG amplitude and phase measurements.  

 In the experiments, we begin with a ten-nanometer thin nickel layer deposited by physical 

vapor deposition onto a glass microscope slide that is subsequently placed into a custom-designed 

spectro-electrochemical cell (Fig. 1a, please see Methods) connected to an electrochemical 

workstation and probed by a femtosecond laser oscillator (80 fs, 1034 nm, 75.5 MHz). Using single 

photon counting, we record the SHG intensity simultaneously with the current density as a function 

of applied potential at pH 13 and 1 M ionic strength (NaCl). The SHG intensity is quadratic in 

input power (see Supporting Information Fig. S1a). We find SHG intensity minima that precede 

the potentials of the well-known Ni2+/Ni3+ redox pair (Fig. 1b and Supporting Information Fig. 

S5), which follow the scan rate dependence documented elsewhere.55  

 To obtain the SHG amplitude and phase, we record SHG interference patterns  generated 

by beating three SHG sources against one another: source 1 is the electrode:electrolyte interface 

(the "signal"), source 2 is a local oscillator ("LO", a 50 µm thin piece of z-cut a-quartz, like in our 

earlier work)56-61, and source 3 is a reference oscillator ("RO", a second 50 µm thin piece of z-cut 

a-quartz oriented such that its azimuthal angle is 30° relative to that of the LO, which maximizes 

the SHG amplitude and sets the ROLO phase to 180°, as shown in Supporting Information Figures 

S2 and S3). The RO and LO bracket a phase shifting unit made of a 1 mm thin fused silica plate 

on a computerized rotating stage.62-64 Fig. 1c shows the interference fringes detected for the 
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electrode + ROLO signal as we vary the applied potential between -0.3 V and +0.7 V vs Ag/AgCl, 

as well as the triplicate measurement of the ROLO-only configuration (SHG signal from electrode 

blocked using a long-pass filter). Several CVs with a wider voltage range are presented as well. 

Clear variations in amplitude and phase are observed, especially at high positive applied potential 

when compared to around zero applied potential. 

 We obtain the total interfacial potential, Φ(0)!"!, and the second-order nonlinear 

susceptibility, c(2), as follows: We first determine the ROLO phase by blocking the SHG signal 

from the sample electrode with a long-pass filter and subtract it from the phase obtained when all 

three SHG sources are active to obtain the SHG phase of the sample electrode as jsig= jelectrode+ROLO 

– jROLO. Here, jelectrode+ROLO refers to the SHG phase obtained when all three SHG pulses are 

present at the detector, while jROLO refers to the SHG phase obtained when the SHG signal from 

the electrode:electrolyte interface is blocked using a long-pass filter and only the two SHG pulses 

from the reference and the local oscillators are sent into the detector. We then normalize the SHG 

amplitude to the value at the open circuit potential (OCP, measured to be around -0.1 V vs 

Ag/AgCl in our cell). Fig. 2a shows that the SHG phase decreases with increasing applied potential 

in a sigmoidal fashion, while the amplitude goes through minima at the applied potentials that 

coincide with the SHG intensity minima seen in Fig. 1b. We then calibrate the SHG response from 

our optical window against the second-order nonlinear susceptibility of another z-cut a-quartz 

piece put in place of the electrolyte solution like in our previous work,56-59,61 accounting for Fresnel 

coefficients and the wave vector mismatch in our experimental geometry (please see Supporting 

Information Note S1).  We then employ our recently established optical model for quantifying 

Φ(0)!"! and c(2) from the SHG amplitude and phase measured at silica:water interfaces for high 

ionic strength,59,65 adding to it the metal-specific contributions to the second-order nonlinear 
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susceptibility discussed earlier by Guyot-Sionnest et al. (for Ag)66 and Nagy and Roy (for Ni).67 

We obtain the following expression for the total potential drop across the electrode:electrolyte 

interface (see Supporting Information Note S1): 

   Φ(0)!"! =
#∙%!"#,%&'(&'()*+,!"#+-.°0+1∙2"'*+,!"#+-.°03

(5.1+1)8)*+,'
(.)   (1) 

Here, C is the calibration factor that also accounts for the Fresnel coefficients (C=3.1 x 10-22 m2V-

1 in our case, please see Supplementary Information Note S1), Esig,norm is the measured SHG 

amplitude normalized to the value obtained at zero applied volt (the condition at which we calibrate 

to quartz, as described in Supplementary Information Note S1), jsig is given as explained above, 

and 𝜒9:!;<
(=)  (1x10-21 m2V-2 from experiment and theory, vide infra)68,69  is the third-order nonlinear 

susceptibility of the diffuse layer, which has been shown to be invariant with ionic strength, pH, 

and surface composition.70 Eqn. 1 accounts for the 90° phase shift from metals64 and the ca. 5x 

larger nonlinear optical response we obtain from the nickel nanolayer when compared to a fused 

silica window, both at pH 13 and 1 M ionic strength (please see Supplementary Information Note 

S1). This experimentally determined factor of 5 is in good agreement with the computed factor of 

4.5 in eqn. 7 of Nagy and Roy and the 1/2 term in eqn. 1 of Guyot-Sionnest et al. that account for 

metals' bulk magnetic dipole contribution to 𝜒(>).66,67 With eqn. 1 establishing Φ(0)!"!, the 

second-order nonlinear susceptibility is given by (see Supporting Information Note S1) 

  𝜒(>) = '𝐶 ∙ 𝐸'(?,)"<A𝑠𝑖𝑛(−𝜑'(? − 90°) − 1.5 ∙ Φ(0)!"! ∙ 𝜒9:!;<
(=) 5/5 (2) 

At Φ(0)!"!=0, we find that 𝜒B(.)+&+C.D
(>)  is -4.8 x 10-22 ± 0.3 x 10-22 m2V-1. This non-zero value is 

attributed to the net aligned dipoles from the interfacial NiOH, NiO-, and NiOH2+ groups. As these 

groups cannot flip their net orientation, we employ 𝜒B(.)+&+C.D
(>)  as the reference value relative to 

which we provide the change in the second-order nonlinear susceptibility, ∆𝜒(>), that arises when 
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the mobile Stern layer species change their orientation distribution in the presence of a non-zero 

total potential. Positively (resp., negatively) signed values of ∆𝜒(>) correspond to water molecules 

pointing their protons towards from (resp., away from) the electrode, consistent with SHG and 

SFG result from colloidal68 and macroscopically flat59,71,72 oxide/water interfaces.  

 Fig. 2b shows the total potential and the second-order nonlinear susceptibility obtained 

from eqns. 1 and 2 as a function of externally applied potential. At open circuit potential, the total 

potential is between -300 mV and -350 mV, consistent with the negative surface charge of nickel 

oxide at pH 13 (points of zero charge of nickel oxides are below pH 11).73-76 We note that this total 

potential is the Gouy-Chapman-Stern potential associated with the mobile charges (ions) plus the 

contributions from the immobile charges (electrons bound to the molecules and ions), like from 

dipoles and quadrupoles. The total potential first decreases in magnitude with increasingly positive 

applied potential until it crosses 0 V at +0.4 V potential applied vs Ag/AgCl at pH 13. At this 

applied voltage, the electrode is at the potential of zero charge, which coincides with the minimum 

observed in the SHG intensity vs applied potential run shown in Fig. 1b. Fig. 2b also shows that 

the net-change in the second-order nonlinear susceptibility becomes smaller as the applied 

potential becomes more positive. At the point of zero total potential (Φ(0)!"!=0), ∆𝜒(>) is zero, 

indicating a lack of symmetry breaking (the key requirement for a non-zero 𝜒(>) value) that is 

consistent, to leading order, with an isotropic arrangement of the Stern layer water molecules 

(equal number of interfacial water molecules with dipole moments pointing up and down, or all 

fully disordered, so that 𝒩.<a(2)>=0, where 𝒩 is the total number of Stern layer water molecules 

and a(2) is water's molecular hyperpolarizability). Fig. 2c shows that similar results are obtained 

when using NaOH, KOH, and CsOH, as well as different fringe acquisition times, while Fig. 2d 

shows the variation of Φ(0)!"!=0 and ∆𝜒(>) for a slightly wider range of applied potentials.   
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 Encouraged by these results, we proceeded to estimate the number of water molecules that 

flip their dipole orientations. To this end, we employed the molecular hyperpolarizability for a 

liquid water model estimated by Gubskaya and Kusalik at the MP2 and MP4 level of theory 

(a(2)=5.3 x 10-52 C m3V-2).77 This value was used recently by the Roke group68 to estimate the 

third-order nonlinear susceptibility, c(3), of liquid water, which is in good agreement with the 

experimental value reported by Dalstein et al.69 Dividing the ∆𝜒(>) values shown in Fig. 2b-d by 

a(2) and multiplying by a Stern layer water permittivity estimate (e=1.33 to 2)78 then yields the 

number of water molecules per cm2 that flip their orientation.  

 Fig. 3a shows that at the most positive applied potential (+0.9 V), ca. 1.1 x 1015 water 

molecules have a net orientation with protons pointing away from the electrode (we denote that 

number of molecules with a negative sign in the figure). This value is the upper estimate of the 

Stern layer water density, 𝒩water↓,	max, given it is obtained from the lower bound of the relative 

permittivity, so the actual 𝒩water↓,	max is likely less given the range in reported values for the relative 

permittivity in the Stern layer.56,78-85  Yet, our range of  𝒩water↓,	max estimates using e=1.33 to 2 (1.1 

x 1015 cm-2 to 0.8 x 1015 cm-2, respectively) is close to the geometric number density of water 

molecules on the surface of a 1 cm3 cube of liquid water at standard temperature and pressure (1 

x 1015 cm-2). Most if not all the Stern layer water molecules pointing their oxygen atoms towards 

the electrode at this applied voltage would be consistent with a relative permittivity of 1.33 for the 

Stern layer water molecules. The number of net-aligned water molecules is about five times 

smaller at the negative applied potentials surveyed when compared to positive potential. 

Computing the electric field across the electrode:electrolyte interface by dividing the total potential 

by the Debye length at the high ionic strength employed here (0.7 nm at 1 M) shows that all the 

Stern layer water molecules that have flipped are subject to a field of close to -1 x 107 V cm-1 (top 
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x-axis in Fig. 3a). We then compute the total interfacial energy by multiplying the total potential 

by the elemental charge and the number of oriented Stern layer water molecules (Fig. 3b). We find 

a parabolic variation of the free energy with the fraction of Stern layer water molecules pointing 

their oxygen atoms towards the electrode. The energies range from 43 to 65 kJ mol-1, depending 

on the choice of relative permittivity. The lower point estimate is close to the cohesive energy of 

liquid water (44.5 kJ mol-1)86 while the upper is near that of ice (59 kJ mol-1).87 The experimental 

data can be modeled with a 2-dimensional Ising model describing Stern layer water molecules 

pointing their oxygen atoms towards and away from the electrode. Employing the Helmholtz free 

energy mean field solution for the square lattice model (z=4)88  

   𝑓 = (𝒩EFGHI↓)>𝐽
K
>
− 𝛽+5𝑙𝑛=𝑐𝑜𝑠ℎA𝛽 ∙ (𝐽𝑧|𝒩EFGHI↓| + 𝑒 ∙ Φ!"!)FG (3), 

where 𝒩EFGHI↓= – 1 x 1013 – Φ!"! x 1 x 1015 (the linear least squares fit result of the e=1.33 dataset 

shown in Fig. 3b), J is the coupling constant, b=(kBT)-1 with kB being the Boltzmann constant and 

T being temperature (300K), and e is the elementary charge. This model is consistent with coupling 

constants of -1.2 x 10-34 J and -0.8 x 10-34 J for the ca. 1 x 1015 water molecules in the Stern layer 

assuming e=1.33 and e=2.0, respectively, for the relative permittivity.  

 In conclusion, we report the implementation of a second harmonic generation pulse triplet 

from which the SHG amplitude and phase are determined for a nickel electrode:electrolyte 

interface maintained at pH 13 and externally potentials ranging from -0.5 to +0.9 V against 

Ag/AgCl. Employing calibration procedures using z-cut a-quartz we quantify the drop of the total 

potential, Ftot, across the interface as well as the second order nonlinear susceptibility, c(2). We 

find that the interfacial electrostatics and structure vary sigmoidally with applied potential while 

they vary linearly when plotted against one another. The potential of zero Ftot is around +0.4V vs 

Ag/AgCl at pH 13 and 1 M ionic strength (near the SHG intensity minimum shown in Fig. 1b), 
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which is the potential of zero charge. Employing commonly used estimates for the relative 

permittivity in the Stern layer, we find that the changes in c(2) with externally applied potential 

correspond to net-aligned water molecules, 𝒩water↓,	max, of 0.9 x 1015 cm-2 to 1.1 x 1015 cm-2 at the 

highest potentials applied (+0.7 to +0.9V vs Ag/AgCl). A two-dimensional Ising model applied to 

the number of net-aligned water molecules, 𝒩water↓, as a function of Ftot recapitulates the 

experimentally derived variation of 𝒩water↓ with Ftot, while the energy density associated with 

aligning all the Stern layer water molecules at high positive applied potential ranges between the 

cohesive energies or ice and water, depending on the choice of the Stern layer relative permittivity. 

We expect that fundamental advances and insights like the ones presented here will be useful for 

the ongoing rapid development of molecular electrochemistry. 

Methods. The electrochemical workstation is a Metrohm Autolab model (PGSTAT302N), where 

the working electrode is in contact with aqueous electrolyte having the ionic strengths and pH 

value indicated in the main text. We employ a Pt counter reference electrode and a Ag:AgCl 

reference electrode in a frit. FKM O-rings are used for sealing the spectro-electrochemical cell, 

which is unstirred and consists of a double-paned custom-designed assembly (redox.me) 

manufactured from PEEK (please see Supporting Information Fig. S1b). The open circuit potential 

is measured before each electrochemical experiment to be -0.1 V ± 0.03 V (vs Ag/AgCl, at pH 13, 

1 M ionic strength, average of several score electrodes). One window consists of a standard 1 inch 

x 3 inch VWR microscope glass slide onto which a ten-nm thin nickel nanolayer is deposited using 

a physical vapor deposition method described earlier that minimizes low-boiling point impurities 

(K, Ca, Mg).89 X-ray photoelectron spectroscopy shows the presence of nickel oxide on the 

electrode surface.89 The second window is a fused silica window that allows for the incident laser 

pulses at the fundamental frequency to exit the electrochemical assembly towards a beam stop.  
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 Alkaline solutions of NaOH and KOH are used at pH 13 with NaCl and KCl added to bring 

them to 1 mol L-1 concentration. Each solution is prepared with pure Millipore water (18.2 

MΩ·cm), allowed to equilibrate overnight, and then the pH was measured. NaOH (Lot no. 

B0312669941, Part no. SX0590-1500g, >97% pure) was purchased from EMD Chemicals, NaCl 

(Lot no. M08A016, Part no. 12314-36, >99% purity) was purchased from Alfa Aesar, KOH (Lot 

no. MKCS8606, Part no. 306568-100g, 99.99% trace metal basis) was purchased from Sigma-

Aldrich, and KCl (Lot no.  LBP3785V, Part no. 746435-500g, ≥99% purity) was purchased from 

Sigma Aldrich as well. The scan rate dependent potential differences of the Ni2/3+ oxidation and 

reduction peaks (Supporting Information Fig. S5) are in good agreement with Fe salt-free results 

shown in Fig. 2i of ref. 55.  

 We direct 0.2 W from a LightConversion Flint oscillator (model FL1-02) producing 80 

femtosecond pulses at 1034 nm at a 75.5 MHz repetition rate onto the electrode:electrolyte 

interface using a defocused (-1 cm) 10 cm lens (spot size ca. 100 µm diameter) and block the 

reflected fundamental light from the air:window interface. We direct the SHG pulses along with 

the reflected fundamental pulses from the electrode:electrolyte interface towards an off-axis 

parabolic mirror (Thorlabs) and an uncoated 0.5 mm thin a-cut calcite time delay compensator 

(CAL12050-A, Newlight Photonics) to account for spatial and temporal dispersion at the detector, 

as described in our earlier work.65 Here, we send the pulses at the fundamental and the second 

harmonic frequency first through a 50 um thin z-cut a-quartz window (producing the reference 

oscillator, RO, (Precision Micro-Optics PWQB-368252), then a 1 mm thin fused silica phase 

shifting unit (ISP Optics) on a rotating stage (Standa model 8MR174-11), and then a second 50 

um thin z-cut a-quartz window (producing the local oscillator, LO). The SHG pulse triplet 

(signal+RO+LO) then passes through a notch-filter centered at the SHG wavelength and interferes 
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at the detector (Hamamatsu H8259-01) as a function of the phase shifting unit (PSU) angle, which 

we vary by 40° around the normal in 1° steps. We record the SHG signal with a 100 ms acquisition 

time and 5-, 10-, and 20-fold averaging at each PSU angle. This data acquisition scheme then 

results in 40, 80, and 160 sec time periods per complete fringe, not counting the resetting of the 

rotational stage to the starting angle (a few seconds). We record three fringes at each applied 

potential and fit the 3rd fringe to the following expression from Stolle and Marowsky:63 

 f(g)=K0+K2.(g-dg)2+Esig.{cos[4.p.(d/(1.03.10-6)). 

  [n.1.4619.cos(asin{sin[(((g-dg)).p/180)/(n.1.4619)]})- 

  1.4501.cos(asin(sin((((g-dg)).p /180)/1.4501)))]+ jsig.p/180)} (4) 

Here, g-dg is the PSU angle and its small offset (typically around ±1°) that accounts for 

imperfections in zeroing the PSU plate angle as well as slight motor backlash. We employ a 4-

parameter Cauchy fit to the refractive index data for the infrared-grade fused silica from ISP optics 

to obtain the necessary refractive indices at the fundamental and SHG wavelengths. A caliper was 

used to determine the actual fused silica plate thickness, d, to be 1.07566 mm. The refractive index 

of air, n, is taken to be 1.0003. We then subtract the phase of the ROLO-only SHG doublet 

(obtained by blocking the SHG signal using a long-pass filter, jsignal+ROLO.– jROLO) to obtain the 

signal (i.e., electrode:electrolyte interface) SHG phase. Replicate measurements are performed 

using various laser spot positions on a given nickel electrode, as well as with various different 

electrodes so as to account for variations in the measurements that come along with slight 

variations in how the sample cell is assembled and mounted between replicates/trials (please see 

Supporting Information Fig. S3c-f  for majority and minority responses in the SHG amplitude and 

phase from various parts on a given nickel electrode).  
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Figure Captions 

Fig. 1 a) Top view of the beam path for the SHG pulse triplet. LPF=motorized long pass filter, 

OAP=off-axis parabolic mirror, TDC=time-delay compensator, RO=reference oscillator, 

PSU=motorized phase shifting unit, LO=local oscillator, SPF=short pass filter, 

PMT=photomultiplier tube. Beams offset for clarity. b) SHG intensity and current density 

recorded as a function of applied potential during three replicate cyclic voltammograms. c) 

Interference fringes recorded from the electrode:electrolyte interface, the reference oscillator, and 

the local oscillator (ROLO) as a function of applied potential and from the ROLO assembly only 

(SHG signal from electrode:electrolyte interface blocked with a long-pass filter).  

Fig. 2. a) SHG Phase and intensity as a function of applied potential. b) Total potential, second 

order nonlinear susceptibility minus the second order nonlinear susceptibility obtained at zero total 

potential, and current density as a function of applied potential. c) Second order nonlinear 

susceptibility minus the second order nonlinear susceptibility obtained at zero total potential as a 

function of applied potential for pH 13 and 1 M ionic strength using Na+ (green), K+ (red), and Cs+ 

(grey) as cations. d) Number of Stern layer water molecules having a net-orientation with their 

oxygen atoms pointed towards (resp., away from) the electrode (negative and resp., positive 

values) and their fraction, f, as a function of applied potential, computed using the color-coded 

Stern layer relative permittivities.  

Fig. 3. a) Number of Stern layer water molecules having a net-orientation with their oxygen atoms 

pointed towards (resp., away from) the electrode (negative and resp., positive values) as a function 

of total potential and electric field, computed using the color-coded Stern layer relative 

permittivities. b) Total energy associated with water flipping as a function of the fraction of water 

molecules having a net-orientation with their oxygen atoms pointed towards the electrode, 
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computed using the color-coded Stern layer relative permittivities. Upper and lower bounds of 

shaded area indicate range of cohesive energies of water and ice, respectively. Light and dark red 

line indicate 2D-Ising model results with J=-1.2 x 10-34 J and J=-0.8 x 10-34 J.  
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Fig. 1 
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Fig. 2 
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Fig. 3  
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