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Abstract 

It is not appropriate to use the determination coefficient, 𝑅2, to characterize the quality of fit 

for a least squares fitted line. In this paper, the maximum of 𝑅2 is found as a function of the 

rotation angle of the data and gives the quality of fit for the line found by linear least squares 

with perpendicular offsets. The same rotation method is used to derive the perpendicular offset 

fit to the data, which yields two possible solutions where the correct root can be identified by a 

simple discriminant. These results are then generalized for any arbitrarily oriented offset, 

bringing about a new measure for the quality fit of a line, 𝑄2. Unlike the determination 

coefficient, 𝑅2, this quality of fit measure is invariant to rotational transformations of the data 

and is specific to the offset’s orientation, which is directly related to the uncertainties in x- or y-

data. Finally, this paper provides a method to determine the slope and intercept of a fitted line, 

as well as its quality of fit, given any estimate of the uncertainty ratio.  

Key words: quality of fit, linear least squares, perpendicular offsets, variable offsets, uncertainty 

Introduction 

A common practice in mathematics, engineering, and science is to fit a straight line to 

data, thus leading to the question, “What is the quality of the fit?” Although standard 

deviations for the fit, slope, and intercept are well-known and can be easily calculated, this 

question is very often answered by giving the square of the correlation coefficient 𝑅2, which we 

will refer to as the determination coefficient. The determination coefficient is seemingly easy to 

interpret. It varies between zero and one where a value of zero indicates that the data has no 

preferred direction and a value of one indicates a perfect fit with all data points falling on a 

straight line. However, this interpretation is naïve. The determination coefficient depends not 

only on the degree of scatter of the data points, but also on the slope or average inclination of 

the data with respect to the axes. This can be seen from the definition of 𝑅2. If we consider a 

data set (𝑥𝑖 , 𝑦𝑖) of 𝑛 points, then 𝑅2 for such a data set has several equivalent definitions. For 

the purpose of this paper, we use the following definition of the determination coefficient: 

𝑅2 =
𝑆𝑆𝑥𝑦

2

𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦
       (1) 

where the 𝑥-variance, 𝑦 -variance, and covariance are defined as 𝑆𝑆𝑥𝑥 =
1

𝑛
∑ (𝑥𝑖 − 〈𝑥𝑖〉)2𝑛

𝑖=1 , 

𝑆𝑆𝑦𝑦 =
1

𝑛
∑ (𝑦𝑖 − 〈𝑦𝑖〉)2𝑛

𝑖=1 , and 𝑆𝑆𝑥𝑦 =
1

𝑛
∑ (𝑥𝑖 − 〈𝑥𝑖〉)(𝑦𝑖 − 〈𝑦𝑖〉)𝑛

𝑖=1  respectively, with the 
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averages of 𝑥𝑖  and 𝑦𝑖 represented as 〈𝑥𝑖〉 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  and 〈𝑦𝑖〉 =

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 . To form 𝑅2, the 

covariance squared is made dimensionless by dividing by the product of the two variances. The 

covariance compares the tendency of 𝑥𝑖  to deviate from 〈𝑥𝑖〉 to how 𝑦𝑖 deviates from 〈𝑦𝑖〉. That 

is, when 𝑥𝑖  values with a tendency to be above 〈𝑥𝑖〉 occur together with 𝑦𝑖 values with a 

tendency to be above 〈𝑦𝑖〉, which implies that 𝑥𝑖  values below 〈𝑥𝑖〉 tend to accompany 𝑦𝑖 below 

〈𝑦𝑖〉, then 𝑆𝑆𝑥𝑦 > 0. If 𝑆𝑆𝑥𝑦 < 0 then there is a negative correlation between the 𝑥𝑖  and 𝑦𝑖 

deviations from their averages. Clearly, 𝑅2 is a meaningful quantity, but it is not an appropriate 

measure of the quality of fit. In this paper, we propose a measure of quality of fit 𝑄2 which is 

appropriate for characterizing linear least squares fit of data.  

To illustrate how the naïve interpretation of 𝑅2 can fail, consider situations where  

𝑆𝑆𝑥𝑦 = 0 as shown in Figs. 1a and 1b. In Fig. 1a, four sets of data points are plotted that have a 

preferred direction that lies parallel to either of the axes. It is demonstrated in these figures 

that no matter how closely the points lie along the line of preferred direction, the 

determination coefficient 𝑅2 = 0. Had these data sets been rotated so as not to lie along one 

of the axes, a transformation that does not affect the scatter of the data, then the 

determination coefficient would have been nonzero. By comparison in Fig. 1b, two examples 

show data that is randomly scattered, which also leads to 𝑅2 = 0. These two data sets in Fig. 1b 

Figure 1 Examples of data sets with determination coefficient, R2, equal to zero.  (a) R2 equal 
to zero due to data being perfectly oriented in the direction of either axis. (b) R2 equal to zero 
due to random scatter of points that have no definitive orientation or covariance.  In all these 
examples, the degree of scatter does not impact the value of R2. 
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can also be rotated, but the determination coefficient will remain zero. It is only the degree of 

scatter that should be associated with quality of fit. In §1, we derive the maximum of the 

determination coefficient, 𝑅𝑚𝑎𝑥
2  that only reflects the degree to which the data line along a 

straight line and is invariant to the inclination of the data. We then develop a geometric 

interpretation of this result which makes it possible to determine that 𝑅𝑚𝑎𝑥
2  is the quality of fit 

for a line determined using linear least squares with perpendicular offsets. 

In addition, the rotational method lends itself to an alternative derivation of the linear 

least squares with perpendicular offsets. This is sometimes referred to as total least squares 

because it gives the minimum sum of the square residuals or error. The traditional derivation 

for this problem yields a quadratic equation for the slope, and hence, two possible solutions. It 

is a nuisance to visually choose the correct solution and mathematically unsatisfying. The 

rotational method used in this paper yields the same two solutions for the slope and intercept; 

however, it also yields a very simple discriminant to distinguish which is the correct solution. 

Sampaio1 has used a rotation combined with an iterative scheme to estimate this result 

numerically. In §2, we derive the discriminant for the traditional solution. We then use the 

rotational method to derive a purely analytical solution, which yields the same numerical result 

but has a simpler discriminant. 

Textbooks2 often state that least squares using vertical offsets assumes that all the 

uncertainty is in the 𝑦-variable, while least squares using horizontal offsets assumes that all the 

uncertainty is in the 𝑥-variable. In addition, least squares with perpendicular offsets assumes 

that the uncertainty in 𝑥 and 𝑦 is equal. This observation can be generalized using the 

rotational method. In §3 we demonstrate how to fit a straight line to data using offsets of 

arbitrary angle to the axes. The resulting slope and intercept depend on this angle. What is 

most interesting is that we can relate the slope of the offset to the ratio of the relative 

uncertainty of the 𝑥-data to that of the 𝑦-data. This gives a direct relation between the relative 

uncertainty in the 𝑥-data versus 𝑦-data set and how it affects the slope and intercept for the 

fitted line. This leads to a simple relation between the uncertainty ratio and the slope and 

intercept of a line fit with arbitrary offsets. 

Finally, in §4 we generalize 𝑅𝑚𝑎𝑥
2  the quality of fit for perpendicular offsets to the 

quantity 𝑄2 the quality of fit specific to any offset. An illustration of the main results of the 

paper are given in the appendix for readers who wish to apply the method. 

The problem of fitting a straight line to data has been addressed by many authors. 

Notably, York3,4 published a method of fitting straight lines with correlated error in both 

variables. Several others5,6,7,8,9 have subsequently published articles extending and improving 

York’s method. The method we present in this paper requires a constant error or uncertainty 

ratio 𝜎𝑥 
2 /𝜎𝑦

2  for all data points. This leads to simpler results that can easily be implemented and 

for which 𝑄2 can be expressed. 
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§1 The Determination Coefficient 

Our first goal is to separate the effect of the scatter of the data from the inclination of 

the data with the axes. We do this by considering the data in an arbitrarily rotated coordinate 

system. A pure rotation can be defined by the transformation: 

   𝑥̂𝑖 = 𝑥𝑖 cos 𝜃 − 𝑦𝑖 sin 𝜃   and   𝑦̂𝑖 = 𝑥𝑖 sin 𝜃 + 𝑦𝑖 cos 𝜃  (2) 

where 𝜃 is the angle between the fixed and the rotated axes. Here we take (𝑥𝑖 , 𝑦𝑖) as the data 

with reference to fixed axes and (𝑥̂𝑖, 𝑦̂𝑖) as the data points with reference to rotated axes. Using 

Eq. (2), the determination coefficient can be expressed in the rotated frame as:  

𝑅2(𝜃) =
𝑆𝑆𝑥̂𝑦̂

2

𝑆𝑆𝑥̂𝑥̂𝑆𝑆𝑦̂𝑦̂
=

(𝑆𝑆𝑥𝑦 cos 2𝜃+
1

2
[𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦] sin 2𝜃 )

2

(
1

2
[𝑆𝑆𝑥𝑥+𝑆𝑆𝑦𝑦]+

1

2
[𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦] cos 2𝜃−𝑆𝑆𝑥𝑦 sin 2𝜃)(

1

2
[𝑆𝑆𝑥𝑥+𝑆𝑆𝑦𝑦]−

1

2
[𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦] cos 2𝜃+𝑆𝑆𝑥𝑦 sin 2𝜃)

 (3) 

The determination coefficient has been expressed in terms of trigonometric functions of double 

angles to emphasize the periodicity over a rotation of 180˚. Plots for typical data sets are shown 

Figure 2 Periodicity of R2 for various data sets depicted by 𝑅𝑚𝑎𝑥
2  as they are rotated about the 

origin at an angle 𝜃 (radians) from 0 to π. An extremum can be found every π/4, with the 
maxima and minima represented as squares and circles, respectively. For 𝑅𝑚𝑎𝑥

2 =1, the data set 
is represented perfectly by a straight line thus making R2=1 independent of 𝜃.   
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in Fig. 2. The plots have two extrema. The maximum value corresponds to rotating the data 

such that the line fit using perpendicular offsets will have a slope of ±1, and therefore, occurs 

every 90˚. There is a minimum value which is always zero and corresponds to the angle which 

rotates the data to give a zero or infinite slope to a fitted line and again occurs every 90˚, that 

is, the data lies along a preferred direction along either axis. 

The precise positions of these extrema can be found by taking the derivative of Eq. (3) and 

setting it equal to zero. After simplification, this yields the result:  

𝑑𝑅2

𝑑𝜃
=  

((𝑆𝑆𝑥𝑦 )
2

−𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦)(2𝑆𝑆𝑥𝑦 sin 2𝜃−(𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦) cos 2𝜃)(2𝑆𝑆𝑥𝑦 cos 2𝜃+(𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦) sin 2𝜃)

(
1

2
[𝑆𝑆𝑥𝑥+𝑆𝑆𝑦𝑦]+

1

2
[𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦] cos 2𝜃−𝑆𝑆𝑥𝑦 sin 2𝜃)

2
(

1

2
[𝑆𝑆𝑥𝑥+𝑆𝑆𝑦𝑦]−

1

2
[𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦] cos 2𝜃+𝑆𝑆𝑥𝑦 sin 2𝜃)

2 = 0 

            (4) 

The positions of the extrema are given by: 

𝜃𝑚𝑎𝑥 =
1

2
tan−1 (

𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦

2𝑆𝑆𝑥𝑦 
) +

𝑘 𝜋

2
   and  𝜃𝑚𝑖𝑛 =

1

2
tan−1 (−

2𝑆𝑆𝑥𝑦 

𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦
) +

𝑘 𝜋

2
 (5a,b) 

where 𝑘 is an arbitrary integer. In fact, 𝑘 can be set equal to zero above without loss of 

generality. Equations (5a) and (5b) can be re-inserted into Eq. (3) to give analytical expressions 

for the two unique extrema Eqs. (6a) and (6b), respectively: 

 𝑅𝑚𝑎𝑥
2 ≡ 𝑅2(𝜃𝑚𝑎𝑥) =

(𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦)
2

+4(𝑆𝑆𝑥𝑦 )
2

(𝑆𝑆𝑥𝑥+𝑆𝑆𝑦𝑦)
2  and  𝑅𝑚𝑖𝑛

2 ≡ 𝑅2(𝜃𝑚𝑖𝑛) = 0 (6a,b) 

Equation (6a) is a remarkably simple expression that is only affected by the degree of scatter in 

a data set. The quantity 𝑅𝑚𝑎𝑥
2  is invariant to a pure rotation of the coordinates as given by Eq. 

(2). In fact, 𝑅𝑚𝑎𝑥
2  is invariant to any rotation/translation of the data. In addition, the numerator 

and denominator of the right side of Eq. (6a) are both invariant to rotation. In Fig. 3, a single 

data set is rotated to several different angles and 𝑅2 is compared with 𝑅𝑚𝑎𝑥
2  at each angle. In 

this example, the value of 𝑅𝑚𝑎𝑥
2 = 0.9082 remains constant for all orientations while 𝑅2 varies 

from zero to 0.9082. The figure emphasizes that 𝑅2 has orientation dependence while 𝑅𝑚𝑎𝑥
2  

does not.  Because 𝑅2(𝜃) ranges from zero to one, it may be obvious that the expressions in 

Eqs. (6a) and (6b) correspond to the maximum and the minimum. For the sake of 

completeness, the second derivative of 𝑅2(𝜃) can be found and evaluated for the roots 𝜃𝑚 

given in Eqs. (5a) and (5b). The result of this operation is 

𝑑2𝑅2

𝑑𝜃2 |
𝜃𝑚𝑎𝑥

= −32
[(𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦)

2
+4(𝑆𝑆𝑥𝑦 )

2
][𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦−(𝑆𝑆𝑥𝑦 )

2
]

(𝑆𝑆𝑥𝑥+𝑆𝑆𝑦𝑦)
4 ≤ 0    and      

𝑑2𝑅2

𝑑𝜃2 |
𝜃𝑚𝑖𝑛

= 2
(𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦)

2
+4(𝑆𝑆𝑥𝑦 )

2

𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦−(𝑆𝑆𝑥𝑦 )
2 ≥ 0     (7a,b)  

where Eq. (7a) is the second derivative evaluated with Eq. (5a) and Eq. (7b) is the second 

derivative evaluated with Eq. (5b). This confirms that the maximum and minimum of 𝑅2(𝜃) 

have been correctly identified in Eqs. (6a) and (6b). 
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We now wish to understand the degree of scatter 𝑅𝑚𝑎𝑥
2  more deeply. The scatter of 

points can be interpreted in geometric terms by considering the covariance matrix: 

Σ = (
𝑆𝑆𝑥𝑥 𝑆𝑆𝑥𝑦

𝑆𝑆𝑥𝑦 𝑆𝑆𝑦𝑦
)     (8)  

The eigenvalue problem |Σ − 𝜆𝐼| = 0, where 𝐼 is the identity matrix and 𝜆 is the eigenvalue, 

leads to two eigenvalues: 

𝜆1 =
1

2
(𝑆𝑆𝑥𝑥 + 𝑆𝑆𝑦𝑦) +

1

2
√(𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦)

2
+ 4(𝑆𝑆𝑥𝑦 )

2
  (9) 

𝜆2 =
1

2
(𝑆𝑆𝑥𝑥 + 𝑆𝑆𝑦𝑦) −

1

2
√(𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦)

2
+ 4(𝑆𝑆𝑥𝑦 )

2
  (10) 

The eigenvalues give a measure of the length and breadth of the data points independent of 

the orientation of the data with respect to the axes. This can be illustrated as an ellipse defined 

by the eigenvalues and eigenvectors. The degree of scatter can now be interpreted as: 

Figure 3 Comparison of the rotational dependence of R2 and independent 𝑅𝑚𝑎𝑥
2   for a single 

data set as it is rotated about the origin at an angle 𝜃 (radians). The best fit line equations are 
formed using perpendicular offsets.  
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𝑅𝑚𝑎𝑥
2 = (

𝜆1−𝜆2

𝜆1+𝜆2
)

2

      (11) 

which is equivalent to Eq. (6a). It is now clear that when the principal minor axis is zero, then 

𝑅𝑚𝑎𝑥
2  is unity. In this case, the data defines an infinitesimally narrow ellipse and all the data 

points must fall on a straight line. In contrast, when the principal axes are equal 𝜆1 = 𝜆2 the 

Figure 4 Compares the effects of scatter on 𝑅𝑚𝑎𝑥
2  as a data set is systematically spread out 

further from a line. Ellipses have been drawn around the data sets to indicate the principle 
axes given by 𝜆1 and 𝜆2. a) The data points lie perfectly on a straight line with 𝑅𝑚𝑎𝑥

2  and R2 
equal to one.  b,c,d) Data points stretched, thus reducing 𝑅𝑚𝑎𝑥

2  to 0.750, 0.500, and 0.250 
respectively.  e) Data set oriented such that the principle axes forms a perfect circle meaning 
there is no discernable orientation; 𝑅𝑚𝑎𝑥

2  and R2 are nearly 0. f) Data has been further 
stretched such that the minor and major principle axes have switched; the line of best fit is 
now perpendicular to the earlier cases. 𝑅𝑚𝑎𝑥

2  can be seen to increase again to 0.250, but now 
in relation to the new, perpendicular best-fit line.   
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degree of scatter is zero. In this case, the ellipse is a circle and the data has no preferred 

direction.  

We can also consider the eigenvectors given by the solution of (Σ − 𝜆𝑖𝐼)𝑣𝑖 = 0 where 𝑣𝑖  

represents two vectors, one associated with each of the two eigenvalues. Solving this problem 

gives the slope of the two vectors: 

𝑣1,𝑦

𝑣1,𝑥
=

−
1

2
(𝑆𝑆𝑥𝑥+𝑆𝑆𝑦𝑦)+

1

2
√(𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦)

2
+4(𝑆𝑆𝑥𝑦 )

2

𝑆𝑆𝑥𝑦 
= −𝐵 + √𝐵2 + 1  (12) 

𝑣2,𝑦

𝑣2,𝑥
=

−
1

2
(𝑆𝑆𝑥𝑥+𝑆𝑆𝑦𝑦)−

1

2
√(𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦)

2
+4(𝑆𝑆𝑥𝑦 )

2

𝑆𝑆𝑥𝑦 
= −𝐵 − √𝐵2 + 1  (13) 

where 𝐵 = (𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦)/(2 𝑆𝑆𝑥𝑦 ). The 𝑥 and 𝑦 components of the vectors are represented 

by 𝑣1,𝑥 and 𝑣1,𝑦, respectively. The slopes of the two eigenvectors are perpendicular to one 

another. We show in the next section that 𝑅𝑚𝑎𝑥
2  describes the scatter of the data about a line 

found by least squares using perpendicular offsets. In Fig. 4, a data set is originated on a given 

line, and then systematically spread out from the line in a sequence of plots. Since the line does 

not lie along the 45˚ line, the values of 𝑅2 and 𝑅𝑚𝑎𝑥
2  are not in general equal, but are only equal 

when either the data points have no scatter and both values are unity, or when there is no 

preferred direction and both values are zero. In Fig. (4f), the points are now scattered about a 

line that is perpendicular to the initial line. We have colored four of the points so that the 

relative configuration can be discerned as the points are moved. 

§2 Fitting linear data with perpendicular offsets 

The problem of fitting a line to a data set has been extensively studied and has broad 

application. For a typical set of data (𝑥𝑖, 𝑦𝑖), this problem can be solved using vertical offsets. It 

is appealing to use perpendicular offsets because this leads to the absolute minimum residual 

error. For perpendicular offsets, the sum of the square residuals for 𝑛 data points is given by 

Weisstein10 

    𝜙⊥ = ∑
[𝑦𝑖−(𝑎 𝑥𝑖+𝑏 )]2

1+𝑎2
𝑛
𝑖=1      (14) 

where 𝑎 is the slope and 𝑏 is the intercept of the fitted line. To find the extrema for 𝜙⊥ , the 

derivatives with respect to 𝑎 and 𝑏 yield 

𝑎 = −𝐵 ± √𝐵2 + 1 where 𝐵 =
𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦

2𝑆𝑆𝑥𝑦 
    (15) 

𝑏 = 〈𝑦𝑖〉 − 𝑎〈𝑥𝑖〉      (16) 

This is a well-known solution, so we do not repeat the derivation here. Notice that the two 

slopes given by Eq. (15) are identical to the slopes of the eigenvectors in Eqs. (12) and (13). The 

problem remains that the sign in front of the radical that leads to the appropriate value for the 
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minimum error 𝜙⊥ cannot be determined a priori. To determine the sign in Eq. (15), we use the 

second partial derivative test.11 This requires evaluating the four second partials of Eq. (14) with 

respect to the slope and intercept. These are given below: 

𝜕2𝜙⊥

𝜕𝑎2 = 2
(𝑏2−2𝑏〈𝑦𝑖〉+〈𝑦𝑖

2〉−〈𝑥𝑖
2〉)(3𝑎2−1)+2𝑎(𝑎2−3)(𝑏〈𝑥𝑖〉−〈𝑥𝑖𝑦𝑖〉)

(𝑎2+1)3    (17) 

𝜕2𝜙⊥

𝜕𝑏2 =
2

𝑎2+1
      (18) 

𝜕2𝜙⊥

𝜕𝑎𝜕𝑏
=

𝜕2𝜙⊥

𝜕𝑏𝜕𝑎
= 2

〈𝑥𝑖〉(1−𝑎2)+2𝑎(〈𝑦𝑖〉−𝑏)

(𝑎2+1)2
     (19) 

Because Eq. (18) is always positive, the test depends only on the discriminant given by: 

𝐷(𝑎, 𝑏) =
𝜕2𝜙⊥

𝜕𝑎2

𝜕2𝜙⊥

𝜕𝑏2
−

𝜕2𝜙⊥

𝜕𝑎𝜕𝑏

𝜕2𝜙⊥

𝜕𝑏𝜕𝑎
     (20) 

where the slope and intercept are evaluated according to Eqs. (15) and (16). After considerable 

simplification, this gives the discriminant for both possible solutions as: 

𝐷± = 2 {(𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦) (
(𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦)

2
+3(𝑆𝑆𝑥𝑦 )

2

(𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦)
2

+4(𝑆𝑆𝑥𝑦 )
2) ±

𝑆𝑆𝑥𝑦 

|𝑆𝑆𝑥𝑦 |

((𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦)
2

+(𝑆𝑆𝑥𝑦 )
2

)

√(𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦)
2

+4(𝑆𝑆𝑥𝑦 )
2
} (21) 

The plus/minus sign in Eq. (21) corresponds to the plus/minus sign in Eq. (15) and represents 

two discriminants for the two possible solutions. To demonstrate that 𝐷+ and 𝐷− always have 

opposite signs, we take the product of the two discriminants. 

(𝐷+)(𝐷−) = −16
(𝑆𝑆𝑥𝑦 )

6

((𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦)+4(𝑆𝑆𝑥𝑦 )
2

)
2 ≤ 0   (22) 

This confirms that one solution from Eqs. (15) and (16) corresponds to a minimum and the 

other to a saddle point according to the second partial test. 

The discriminant in Eq. (21) is very useful for fitting data numerically. It allows the 

selection of the correct solution automatically without having to visually refer to a plot of the 

data. Unfortunately, the discriminant in Eq. (21) is somewhat unwieldy. We now demonstrate 

that a simpler method can be used to derive the results above for fitting a line to data using 

perpendicular offsets and leads to a simpler discriminant. 

In this method, we fit the data with vertical offsets using a horizontal line such that 𝑦̂ =

𝑏̂ where 𝑏̂ is a constant for a given value of 𝜃 according to the rotation transformation given in 

Eq. (2). As in §1, the circumflexes on the symbols signify that we are in a frame that has been 

rotated about the origin by an angle of 𝜃. The sum of the square residuals for 𝑛 data points in 

the rotated frame is given by: 

𝜙0 =
1

𝑛
∑ (𝑏̂ − 𝑦̂𝑖)

2𝑛
𝑖=1       (23) 
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where 𝑏̂ = 〈𝑦̂𝑖〉 = 〈𝑥𝑖〉 sin 𝜃 + 〈𝑦𝑖〉 cos 𝜃 is the well-known least-squares fit for a zero-order 

polynomial using vertical offsets. The subscript zero on 𝜙0 indicates the order of the polynomial 

being fit. Also, we replace 𝑦̂𝑖 = 𝑥𝑖 sin 𝜃 + 𝑦𝑖 cos 𝜃 according to Eq. (2). Making these 

substitutions into Eq. (23) and performing the squaring operation leads to 

𝜙0 =
1

𝑛
∑ (〈𝑦𝑖〉

2 + 𝑦𝑖
2 − 2〈𝑦𝑖〉 𝑦𝑖) cos2 𝜃𝑛

𝑖=1 + 2(〈𝑥𝑖〉〈𝑦𝑖〉 − 〈𝑦𝑖〉𝑥𝑖 − 〈𝑥𝑖〉 𝑦 +

𝑥𝑖  𝑦𝑖) sin 𝜃 cos 𝜃 + (〈𝑥𝑖〉
2 + 𝑥𝑖

2 − 2〈𝑥𝑖〉 𝑥𝑖) sin2 𝜃    (24) 

After performing the summation and converting to double-angle trigonometric functions, Eq. 

(24) simplifies to: 

𝜙0 = −
1

2
[𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦] cos 2𝜃 + 𝑆𝑆𝑥𝑦 sin 2𝜃 +

1

2
[𝑆𝑆𝑥𝑥 + 𝑆𝑆𝑦𝑦]  (25) 

Eq. (25) gives the sum of the squared residuals for a horizontal line fit to the data using vertical 

offsets as a function of the angle of rotation. This means that the offsets are also perpendicular 

to the line. We wish to determine the angle 𝜃 that gives the minimum error 𝜙0(𝜃). The 

derivative with respect to 𝜃 can easily be found and set to zero. 

𝑑𝜙0

𝑑𝜃
= [𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦] sin 2𝜃 + 2 𝑆𝑆𝑥𝑦 cos 2𝜃 = 0   (26) 

Solving Eq. (26) for the angles that give extrema yields: 

𝜃𝑘 =
1

2
tan−1 (−

2𝑆𝑆𝑥𝑦 

𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦
) +

𝑘 𝜋

2
=

1

2
tan−1 (−

1

𝐵
) +

𝑘 𝜋

2
   (27) 

where 𝑘 is again an arbitrary integer and 𝐵 is defined in Eq. (15). We now reverse the rotation 

for the horizontal line 𝑦̂ = 𝑏̂ to the original frame so that 𝑥 sin 𝜃 + 𝑦 cos 𝜃 =  〈𝑥𝑖〉 sin 𝜃 +

〈𝑦𝑖〉  cos 𝜃 or  

   𝑦 = −(tan 𝜃)𝑥 +  (tan 𝜃)〈𝑥𝑖〉  + 〈𝑦𝑖〉     (28) 

so that the slope is 𝑎 = − tan 𝜃 and the intercept is 𝑏 = (tan 𝜃)〈𝑥𝑖〉  + 〈𝑦𝑖〉. This is a very 

simple result and yields the same pair of solutions as given in Eqs. (15) and (16).  

To determine the minimum error, we take the second derivative of 𝜙0 with respect to 𝜃  

𝑑2𝜙0

𝑑𝜃2
= 2[𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦] cos 2𝜃 − 4 𝑆𝑆𝑥𝑦 sin 2𝜃   (29) 

After substitution of Eq. (27) into Eq. (29), the second derivative simplifies to 

𝑑2𝜙0

𝑑𝜃2 = 2(−1)𝑘[𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦]√
4 𝑆𝑆𝑥𝑦 

2

(𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦)
2 + 1   (30) 

Because the radical and the factor of two are always positive, the discriminant for the desired 

minimum of  𝜙0 can be expressed as 
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If [𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦] > 0 Then 𝑘 is even, for example, 𝑘 = 0   (31a) 

If [𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦] < 0 Then 𝑘 is odd, for example, 𝑘 = 1   (31b) 

where other values of 𝑘 are redundant. Comparing this result with Eq. (21), the discriminant for 

the traditional method, the inequalities in Eqs. (31a,b) are much simpler to apply. The method 

is illustrated in Fig. 5a where a set of data points in the fixed coordinates is represented by the 

solid circles. Four possible rotations of the data are shown including the angles that give the 

minimum and maximum values of 𝜙0.  In Fig. 5b, the rigid rotation returning the points from 

the optimal angle to the original position is shown. Notice that the perpendicular offsets are 

preserved when the data is again in its original position.  

The slope of the fitted line can be expressed in terms of 𝐵 by substitution of Eq. (27) 

into the expression for the slope: 

Figure 5 Rotational method to obtain line of best fit with perpendicular offsets by minimizing 

𝜙0. The horizontal, zero-order line 𝑦̂ = 𝑏̂ is shown for each angle. a) Original data set, shown 
as solid circles, can be rotated about the origin by any given angle 𝜃; several are displayed as 
hollowed data points.  𝜙0 can be calculated for each data set by taking the vertical offsets 
with respect to a horizontal line passing through the centroid. 𝜙0 is found to be minimized 
when the data set is rotated horizontally, depicted by hollow-circle data set, thus giving 𝜃𝑚𝑖𝑛. 
b) The minimized data set and its horizontal fit can be rotated back −𝜃𝑚𝑖𝑛 to give a fit now 
based off perpendicular offsets for the original data set. 
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𝑎⊥ = −(tan 𝜃) = − (tan [
1

2
tan−1 (−

1

𝐵
) +

𝑘 𝜋

2
]) = −𝐵 ± 𝐵√1 +

1

𝐵2 (32) 

where the last expression on the right was derived using the following two trigonometric 

identities: 

tan(𝛼 + 𝛽) =
tan 𝛼+tan 𝛽

1−tan 𝛼 tan 𝛽
  and tan [

1

2
tan−1(𝑥)] =

−1±√1+𝑥2

𝑥
  (33) 

We have added the subscript ⊥ to the slope 𝑎⊥ to indicate the offsets are perpendicular. This 

expression for the slope in Eq. (32) is very similar to the expression for the slope in Eq. (15) with 

the simplification that the correct sign in front of the radical is easily determined by the 

discriminant [𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦]. 

𝑎⊥ = −𝐵 + 𝐵√1 +
1

𝐵2     if      [𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦] > 0     (34a) 

𝑎⊥ = −𝐵 − 𝐵√1 +
1

𝐵2     if       [𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦] < 0     (34b) 

𝑏⊥ = 〈𝑦𝑖〉 − 𝑎⊥〈𝑥𝑖〉      (35)  

Notice that the expression above preserves the sign of 𝐵 in front of the radical. This factor of 𝐵 

could be absorbed into the radical to give the same expression as in Eq. (15), but the sign 

information would be lost. It is this additional information that leads to the simpler form of the 

discriminant. Clearly, this new formulation is easier to apply. Equation (35) is known as the 

centroid equation. 

Finally, it can be proven that the result of Eq. (5a) rotates the data set such that the 

perpendicular offset fitted line lies at a 45˚ angle to the axes. If we recognize that Eq. (5a) can 

be written without loss of generality as 𝜃 =
1

2
tan−1(𝐵), we then add this pure rotation to the 

angle of the fitted line to get 

   tan−1(−𝐵 ± √𝐵2 + 1) +
1

2
tan−1(𝐵) =  ±

𝜋

4
    (36) 

which is a trigonometric identity. This proves the above statement. 

§3 Fitting linear data with arbitrary offsets 

We now turn our attention to fitting data with offsets of arbitrary orientation to the 

axes. To achieve this goal, we follow the method used in the previous section starting with Eq. 

(23). However, rather than fitting a horizontal line to the data as it is rotated, we fit a straight 

line 𝑦̂ = 𝑎̂𝑥̂ + 𝑏̂ where 𝑎̂ is the slope and 𝑏̂ is the intercept for the line fitted to data rotated by 

an angle 𝜃 (see Fig. 6). The sum of the square residuals for 𝑛 data points in the rotated frame is 

given by: 
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𝜙1 =
1

𝑛
∑ (𝑎̂𝑥̂𝑖 + 𝑏̂ − 𝑦̂𝑖)

2𝑛
𝑖=1      (37) 

where the values of  𝑎̂  and 𝑏̂ are calculated in the rotated frame using offsets that are vertical 

with respect to the rotated axes. 

𝑎̂ =
𝑆𝑆𝑥̂𝑦̂ 

𝑆𝑆𝑥̂𝑥̂
=

𝑆𝑆𝑥𝑦 cos 2𝜃+
1

2
[𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦] sin 2𝜃

1

2
[𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦]𝑐𝑜𝑠2𝜃−𝑆𝑆𝑥𝑦 𝑠𝑖𝑛2𝜃+

1

2
[𝑆𝑆𝑥𝑥+𝑆𝑆𝑦𝑦]

   (38) 

 

𝑏̂ =
〈𝑦̂𝑖〉𝑆𝑆𝑥̂𝑥̂−〈𝑥̂𝑖〉𝑆𝑆𝑥̂𝑦̂ 

𝑆𝑆𝑥̂𝑥̂
=

(〈𝑥𝑖
2〉〈𝑦𝑖〉−〈𝑥𝑖𝑦𝑖〉〈𝑥𝑖〉) cos 𝜃+(〈𝑦𝑖

2〉〈𝑥𝑖〉−〈𝑥𝑖𝑦𝑖〉〈𝑦𝑖〉) sin 𝜃
1

2
[𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦]𝑐𝑜𝑠2𝜃−𝑆𝑆𝑥𝑦 𝑠𝑖𝑛2𝜃+

1

2
[𝑆𝑆𝑥𝑥+𝑆𝑆𝑦𝑦]

  (39) 

Equations (38) and (39) represent the slope, 𝑎̂,  and intercept, 𝑏̂,  in the rotated frame using 

vertical offsets with respect to the rotated axes. This slope and intercept have also been 

expressed in terms of the averages and variances in the fixed frame and the angle of rotation 𝜃. 

The result of this rotation is shown in Fig. 6 for the identical four rotations as in Fig. 5a from the 

Figure 6 A fitted line 𝑦̂ = 𝑎̂𝑥̂ + 𝑏̂ using vertical offsets for a data set that has been rotated 
about the origin by angle 𝜃. The original data set is shown as solid circles. The hollowed data 
sets have been rotated by the same angles found in Figure 5. 
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previous section. Notice that the rotation through 𝜃3 leads to perpendicular offsets and the 

same fit as a rotation through 𝜃𝑚𝑖𝑛 in Fig. 5a. Also, in Fig. 6, the rotation 𝜃1 brings the data to a 

vertical inclination; however, the use of vertical offset leads to a horizontal fitted line. This is a 

peculiarity of the least squares method but does indeed represent the minimum error for that 

angle. Other rotations give lines with offsets that are not perpendicular. If we substitute  𝑥̂𝑖 =

𝑥𝑖 cos 𝜃 − 𝑦𝑖 sin 𝜃 and 𝑦̂𝑖 = 𝑥𝑖 sin 𝜃 + 𝑦𝑖 cos 𝜃 along with Eqs. (38) and (39) into Eq. (37) and 

we perform the summation, the result can be simplified to: 

 

𝜙1 =
2〈𝑥𝑖𝑦𝑖〉〈𝑥𝑖〉〈𝑦𝑖〉−〈𝑥𝑖𝑦𝑖〉2−〈𝑥𝑖

2〉〈𝑦𝑖〉2−〈𝑦𝑖
2〉〈𝑥𝑖〉2+〈𝑥𝑖

2〉〈𝑦𝑖
2〉

1

2
[𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦]𝑐𝑜𝑠2𝜃−𝑆𝑆𝑥𝑦 𝑠𝑖𝑛2𝜃+

1

2
[𝑆𝑆𝑥𝑥+𝑆𝑆𝑦𝑦]

  (40) 

This result can be differentiated with respect to 𝜃 and set equal to zero to give the same result 

as Eq. (27) from the previous section using the horizontal line to fit the data. This is not a 

surprising result. The quantity 𝑆𝑆𝑥̂𝑦̂  is zero when evaluated at the extrema which means the 

slope 𝑎̂ is zero and the intercept 𝑏̂ = 〈𝑦̂𝑖〉 as in the previous section. See Eqs. (38) and (39). 

Instead, we are interested in developing expressions for the slope 𝑎 and intercept 𝑏 for any 

arbitrary rotation, and hence, an arbitrary slope of the offset. This can be achieved by 

substituting Eqs. (38) and (39) along with 𝑥̂ = 𝑥 cos 𝜃 − 𝑦 sin 𝜃 and 𝑦̂ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃 into 

the equation 𝑦̂ = 𝑎̂𝑥̂ + 𝑏̂ and simplifying to: 

𝑦 = (
𝑆𝑆𝑥𝑦 cos 𝜃−𝑆𝑆𝑦𝑦 sin 𝜃

𝑆𝑆𝑥𝑥 cos 𝜃−𝑆𝑆𝑥𝑦 sin 𝜃
) 𝑥 + 〈𝑦𝑖〉 − (

𝑆𝑆𝑥𝑦 cos 𝜃−𝑆𝑆𝑦𝑦 sin 𝜃

𝑆𝑆𝑥𝑥 cos 𝜃−𝑆𝑆𝑥𝑦 sin 𝜃
) 〈𝑥𝑖〉   (41) 

so that  

𝑎 =
𝑆𝑆𝑥𝑦 cos 𝜃−𝑆𝑆𝑦𝑦 sin 𝜃

𝑆𝑆𝑥𝑥 cos 𝜃−𝑆𝑆𝑥𝑦 sin 𝜃
         and        𝑏 = 〈𝑦𝑖〉 − 𝑎〈𝑥𝑖〉   (42a,b) 

Notice that Eq. (42b) is the centroid equation for the intercept. 

The least squares slope and intercept for offsets of any arbitrary slope are given by the 

expressions above. Notice that for 𝜃 = 0 the vertical offset expressions for 𝑎 and 𝑏 are 

recovered, and for 𝜃 = ±
𝜋

2
 the expressions for horizontal offsets are recovered. Also, by 

inserting Eq. (27) into Eqs. (42a) and (42b), the results for perpendicular offsets can be 

recovered. This rotation back to the original data position is shown in Fig. 7 for each of the four 

rotations in Fig. 6. In Fig. 7c, the perpendicular offset result from §2 is reproduced. The plot in 

Fig. 7b illustrates the fit for offsets that have been rotated from the vertical by −𝜃3. In Fig. 7d, a 

90° rotation yields a fit using horizontal offsets.  Finally, in Fig. 7a we have parallel offsets.  This 

leads to a very poor fit of the data and can be avoided. To explain this situation, Fig. 8 shows 

the slope 𝑎̂ and intercept 𝑏̂ in the rotated frame as a function of the angle of rotation. Also 

shown is the error 𝜙1. Starting at 𝜃 = 0 and rotating in the positive (counterclockwise) 

direction, the slope increases as the data becomes more vertical. This also increases the values 
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of 𝜙1. Eventually, the vertical offsets become more and more parallel to the fitted line causing 

the error to dramatically increase. The minimization problem leads to a fitted line that becomes 

horizontal which gives the minimum error.  

Figure 7 Transformation of rotated data set and line of best fit with vertical offsets back to 
non-rotated coordinate system. a) Shows worse-case scenario where vertical offsets are 
taken for a vertically oriented data set. b) Intermediate case of offset results that are 
between vertical and perpendicular fits. c) Perpendicular offsets acquired after transforming 
back from horizontal oriented data. d) Horizontal offsets result when rotation transformation 
of π/2 is used.  
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We now relate the offsets to the relative confidence levels of the data. We use the 

results of Neri12 in which Eq. (14) is modified by a weighting factor 𝑊𝑖 derived using the 

propagation of error law such that 

𝜙𝜎𝑖
= ∑ 𝑑𝑖

2𝑛
𝑖=1 = ∑

[𝑦𝑖−(𝑎 𝑥𝑖+𝑏 )]2

1+𝑎2 𝑊𝑖 = ∑
[𝑦𝑖−(𝑎 𝑥𝑖+𝑏 )]2

𝜎𝑦,𝑖
2 +𝜎𝑥,𝑖 

2 𝑎2
𝑛
𝑖=1

𝑛
𝑖=1     where  𝑊𝑖 =

1+𝑎2

𝜎𝑦,𝑖
2 +𝜎𝑥,𝑖 

2 𝑎2  (43)  

For the purpose of this paper, the uncertainties in 𝑥𝑖and 𝑦𝑖, independent from one another, are 

assumed equal for 𝑥𝑖  to give 𝜎𝑥,𝑖 
2 = 𝜎𝑥

2 where 𝜎𝑥
2 a constant and equal for 𝑦𝑖 to give 𝜎𝑦,𝑖

2 = 𝜎𝑦
2 

where 𝜎𝑦
2 a constant. This assumption means that all offsets will have the same slope. Under 

these conditions, Eq. (43) simplifies to: 

𝜙𝜎 = ∑
[𝑦𝑖−(𝑎 𝑥𝑖+𝑏 )]2

𝜎𝑦
2+𝜎𝑥 

2 𝑎2
𝑛
𝑖=1       (44) 

These uncertainties can be related to an offset of some orientation to the axes and a weighting 

factor which can be determined. At zero uncertainty in 𝑥-data, when 𝜎𝑥
2 → 0, the least squares 

vertical offset is recovered; conversely, at zero uncertainty in 𝑦-data, when 𝜎𝑦
2 → 0, the least 

squares horizontal offset is recovered.  Lastly, when both the 𝑥 and 𝑦 uncertainties are equal, 

𝜎𝑥
2 = 𝜎𝑦

2, perpendicular offsets are obtained.  

We now wish to derive a similar expression to Eq. (44) in terms of slope and intercept of 

the fitted line and the slope of the offset. The sum of the square residuals for an arbitrary offset 

can be derived by first determining the square distance from the data point (𝑥𝑖, 𝑦𝑖) and the line 

Figure 8 Relationship of the line of best fit (using vertical offsets) slope, 𝑎̂; line of best fit 

intercept, 𝑏̂; and the sum of the square residuals with respect to the angle of rotation 𝜃. 



17 
 

𝑦 = 𝑎𝑥 + 𝑏 using an offset with slope 𝛾 = (𝑦 − 𝑦𝑖)/(𝑥 − 𝑥𝑖). By combining these relations 

with the distance formula, 𝑑𝑖
2 = (𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)

2 and after simplification yields: 

𝜙𝑣 = ∑ 𝑑𝑖
2𝑛

𝑖=1 = ∑
[𝑦𝑖−(𝑎 𝑥𝑖+𝑏 )]2

(𝑎−𝛾)2

1+𝛾2

𝑤𝑛
𝑖=1     (45) 

where we have added a weighting factor of 𝑤 to account for the fact that the uncertainties in 

Eq. (43) change both the slope of the offset and multiply in a weighting factor. Equating the 

expressions 𝜙𝜎 and  𝜙𝑣 in Eqs. (44) and (45) can be done in at least two ways: 

(𝑎−𝛾)2

1+𝛾2
= 1 + 𝜎2𝑎2    for 𝜎2 ≤ 1  where   𝑤 =

1

 𝜎𝑦
2   (46a) 

(𝑎−𝛾)2

1+𝛾2 =
1

𝜎2 + 𝑎2  for 𝜎2 ≥ 1    where   𝑤 =
1

 𝜎𝑥
2   (46b) 

where 𝜎2 = 𝜎𝑥 
2 /𝜎𝑦

2  is the ratio of the uncertainties. The equations above lead to two 

expressions for 𝜎2. We recognize that the rotational method gives the slope of the offsets 

as 𝛾 = cot 𝜃. This relation can be used in Eq. (42a) for the slope of the line 𝑎 to eliminate 𝜃 and 

combine the result with Eqs. (46a) and (46b) to eliminate 𝛾. Hence, expressions for 𝜎2 can be 

derived. 

Figure 9 Relationship of the slope of the line of best fit (using vertical offsets) to the ratio of 
uncertainties, 𝜎2.  The solid line represents the solution given from Eq. 47a for 𝜎2 ≤ 1; the 
dashed line represents the solution for Eq. 47b for 𝜎2 ≥ 1.  The transition between the two 
solutions at 𝜎2 = 1 is continuous and smooth.  Additionally, when the lines meet at 𝜎2 = 1, 
perpendicular offsets with equal uncertainties is recovered. 
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𝜎2 =
[𝑎2−1]−2𝑎(𝑆𝑆𝑦𝑦−𝑎𝑆𝑆𝑥𝑦)/(𝑆𝑆𝑥𝑦−𝑎𝑆𝑆𝑥𝑥)

𝑎2(1+[(𝑆𝑆𝑦𝑦−𝑎𝑆𝑆𝑥𝑦)/(𝑆𝑆𝑥𝑦−𝑎𝑆𝑆𝑥𝑥)]
2

)
    for 𝜎2 ≤ 1  where  𝑎𝑣 ≤ 𝑎 ≤ 𝑎⊥ (47a) 

𝜎2 =
1+[(𝑆𝑆𝑥𝑦−𝑎𝑆𝑆𝑥𝑥)/(𝑆𝑆𝑦𝑦−𝑎𝑆𝑆𝑥𝑦)]

2

[1−𝑎2]−2𝑎(𝑆𝑆𝑥𝑦−𝑎𝑆𝑆𝑥𝑥)/(𝑆𝑆𝑦𝑦−𝑎𝑆𝑆𝑥𝑦)
    for 𝜎2 ≥ 1  where  𝑎⊥ ≤ 𝑎 ≤ 𝑎ℎ (47b) 

Here 𝑎𝑣 = 𝑆𝑆𝑥𝑦 /𝑆𝑆𝑥𝑥 is the slope for vertical offsets while 𝑎ℎ = 𝑆𝑆𝑦𝑦 /𝑆𝑆𝑥𝑦 is the slope for 

horizontal offsets. The results are shown in Fig. 9.  The solid line shows how the slope changes 

with relative uncertainty. For 𝜎2 = 0 the vertical offset slope is recovered and as 𝜎2 → ∞ the 

slope for horizontal offsets is recovered. The curves for Eq. (47a) meets that of Eq. (47b) at 

𝜎2 = 1 when the offsets are perpendicular. These equations give the complete relation 

between 𝜎2 and the slope of the fitted line. The method illustrated above demonstrates how 

relative uncertainty in data effects the slope of the fitted line. The intercept can be calculated 

using the centroid equations as usual. 

§4 Quality of fit for arbitrary offsets 

In §1, we establish that 𝑅𝑚𝑎𝑥
2  is a measure of how well a data sets conforms to a straight 

line independent of the orientation of the data. We were able to interpret 𝑅𝑚𝑎𝑥
2  in geometric 

terms using the eigenvalues of the covariance matrix. In §2, we established that the fit using 

perpendicular offsets was the line for which 𝑅𝑚𝑎𝑥
2  represented the quality of fit. In §3, we 

generalized our method to fit data with lines of arbitrary offsets. We now wish to generalize Eq. 

(11) for 𝑅𝑚𝑎𝑥
2  to represent the quality of fit for these fits with arbitrary offsets. As shown in Fig. 

10, these lines will pass through the centroid point of the data. In general, they will have a slope 

different from the slope given by a perpendicular offset fit. The angle 𝜓 between the line fit 

with perpendicular offsets and the line fit with arbitrary offsets is given by 𝑚 ≡ tan 𝜓 =
𝑎−𝑎⊥

1+𝑎𝑎⊥ 
 

where 𝑎⊥ is the slope for of the line fit with perpendicular offsets and 𝑎 is the slope of the line 

fit with arbitrary offsets. Using the eigenvalues 𝜆1 and 𝜆2 as the major and minor axes of the 

ellipse, respectively, the distance traced across the ellipse by the line fit with arbitrary offsets 

can be found as: 

 Λ1 = √
(1+𝑚2)𝜆1 

2 𝜆2 
2

𝑚2𝜆1 
2 + 𝜆2 

2    where  𝑚2 = (
𝑎−𝑎⊥

1+𝑎𝑎⊥ 
)

2

  (48) 

We now define a generalized quality of fit 𝑄2 based on Eq. (11) where 𝜆1 is replaced by Λ1: 

𝑄2 = (
Λ1−𝜆2

Λ1+𝜆2
)

2

= (
𝜆1√1+𝑚2−√𝑚2𝜆1 

2 +𝜆2 
2

𝜆1√1+𝑚2+√𝑚2𝜆1 
2 +𝜆2 

2
)

2

   (49) 

In Fig. 11 we show a plot of 𝑄2 as a function of 𝜃. Rotating through 90˚ towards the 

perpendicular fit gives a reasonable set of linear fits for a range of offsets from vertical to 

horizontal. The perpendicular offset gives the optimal fit of 𝑅𝑚𝑎𝑥
2  to the data and is recovered 

when 𝑚 = 0 or 𝑎 = 𝑎⊥. Rotating away from the perpendicular fit moves towards suboptimal fit. 
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This includes offsets that lie parallel to the preferred direction of the data and creates fitted line 

that is at a right angle to the perpendicular offset line. This leads to a 𝑄2 of zero because Λ1 =

𝜆2. The quantity 𝑄2 gives a rationale measure of quality of fit for lines of arbitrary slope passing 

through the data through the centroid point. This quantity can be used in place of 𝑅2 which is 

not appropriate as a measure of quality of fit. 

Conclusions 

The common practice of fitting data with linear least squares using vertical offsets and 

describing the quality of the fit with the determination coefficient 𝑅2 can be misleading. We 

Figure 10 Comparison of arbitrary fits using non-perpendicular offsets to a fit using 
perpendicular offsets.  All fits pass through a common centroid point.  The angle between the 
perpendicular offset fit and the arbitrary non-perpendicular offset fit is represented by 𝜓.  𝜆1 
and 𝜆2 are the principle axes of the ellipse given by the perpendicular offset fit; 𝛬1is the first 
principle axis of the ellipse using any arbitrary offset. 
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have shown that the determination coefficient can severely under-estimate the quality of the 

fit of a given line to the data. When no information about confidence levels is known, it would 

be preferable to use perpendicular offsets which assume equal confidence levels and gives the 

highest quality of fit. When the confidence levels are available, or at least a good estimate of 

them, then more appropriate offsets could be used allowing for more adjustability in the lower 

confidence level variable. 

In this paper, we have presented 𝑄2, a more meaningful measure for the degree of 

scatter in a data set which was derived using a pure rotation to a data set. This quantity is 

invariant to the slope or inclination of the data with the axes and describes the scatter of the 

data about the best fit line given offsets. The quantity 𝑄2 varies from zero to one and can be 

interpreted much like the coefficient of determination; however, the interpretation is not 

clouded by the effects of the slope of the data. This leads to more meaningful and reliable 

comparisons of the quality of fit of data. We do recognize that the degree of scatter is particular 

to the scatter about the line found using perpendicular offsets. Although there are ways to 

account for the discrepancy causes by using offsets other than perpendicular, the changes are 

small for typical data sets.  

Figure 11 Correlation of the quality of fit, 𝑄2, with respect to the uncertainty ratio, 𝜎2.  When 
the uncertainty ratio is exactly equal to one, in which the confidence levels in x and y are 
equal, the value of 𝑄2 is obtained that pertains to a perpendicular fit.  When the uncertainty 
ratio is zero or approaches infinity, the 𝑄2 values obtained match that of a vertical or 
horizontal fit, respectively. 
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An extremely simple discriminant has been developed for choosing the correct solution 

of least squares using perpendicular offsets. The method of rotating the data to optimize the fit 

of a horizontal line gives an equivalent result to the traditional method of varying the slope and 

intercept. The rotational method is simpler in that only the angle of rotation is varied which 

leads to a simpler optimization problem. Recasting the problem in this rotation method reveals 

that only the sign of the differences in the variances, namely, 𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦, is needed to 

determine the correct solution. 

The rotation method has been used to find the fits of straight lines using variable 

offsets. The method makes it easy to use offsets with any inclination to the axes including 

horizontal, vertical, perpendicular, or any inclination in between. Moreover, these variable 

offsets can be related to the uncertainties in the data if we assume that all 𝑥-values have equal 

uncertainty and likewise all 𝑦-values have equal uncertainties. Although this is a case of limited 

application, it does allow fitting data and estimating the relative effect of error in one variable 

compared to the other. 

Appendix 

In this appendix, we illustrate the method with an example. We use the same data set 

used to produce Figs. 3, 5, 6, and 7 which consists of the following ten points (𝑥𝑖, 𝑦𝑖): (1, 4.5), 

(2, 11), (3, 8), (4, 13.9), (5, 12), (6,14), (7, 18), (8, 25), (9, 19), and (10, 23.6). Using the 

definitions in the introduction, the averages are: 〈𝑥𝑖〉 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 = 5.5 and 〈𝑦𝑖〉 =

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 =

14.9. The variances and covariance are: 𝑆𝑆𝑥𝑥 =
1

𝑛
∑ (𝑥𝑖 − 〈𝑥𝑖〉)2𝑛

𝑖=1 = 8.25, 𝑆𝑆𝑦𝑦 =
1

𝑛
∑ (𝑦𝑖 − 〈𝑦𝑖〉)2𝑛

𝑖=1 = 38.532, and 𝑆𝑆𝑥𝑦 =
1

𝑛
∑ (𝑥𝑖 − 〈𝑥𝑖〉)(𝑦𝑖 − 〈𝑦𝑖〉)𝑛

𝑖=1 = 16.36. The least 

squares fit using perpendicular offsets can now be found. The quantity 𝐵 =
𝑆𝑆𝑥𝑥−𝑆𝑆𝑦𝑦

2𝑆𝑆𝑥𝑦 
=

−0.9255 and the discriminant [𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑦𝑦] =  −30.282 < 0. Because the discriminate is 

negative, we use Eq. (34b) to calculate the slope, 𝑎⊥ = −𝐵 − 𝐵√1 +
1

𝐵2 = 2.288. Had the 

discriminate been positive, Eq. (34a) would have been applied. Now use the centroid equation 

(Eq. (35)) to calculate the intercept, 𝑏⊥ = 〈𝑦𝑖〉 − 𝑎⊥〈𝑥𝑖〉 = 2.316.  

To calculate the quality of fit when using perpendicular offsets, we need to calculate the 

eigenvalues using Eqs. (9) and (10) respectively to give  𝜆1 = 45.682   and 𝜆2 = 1.100 which 

leads to 𝑄2 = 𝑅𝑚𝑎𝑥
2 = (

𝜆1−𝜆2

𝜆1+𝜆2
)

2

= 0.9082. If there is no information about the relative 

uncertainties for the 𝑥-values versus the 𝑦-values, then it is reasonable to use the 

perpendicular offset slope and intercept along with the 𝑄2 = 𝑅𝑚𝑎𝑥
2  value to describe the 

quality of the fit. 

However, if the relative uncertainty is fixed, then the effect of the uncertainty on the 

slope and intercept can be determined using Eqs. (47a) and (47b). For the example above, the 

uncertainty ratio is 𝜎2 = 1 for the case of perpendicular offsets. We can examine other 
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uncertainty ratios, for example, if 𝜎2 = 0.3, then Eq. (47a) is used to solve for the slope. This 

can be done numerically to give 𝑎 = 2.116 and again using the centroid equation (Eq. 42b) 

gives 𝑏 = 3.262. In contrast, if 𝜎2 = 3.0, then Eq. (47b) is used to determine a slope of 𝑎 =

2.341 which again using the centroid equation gives 𝑏 = 2.025. Notice that varying the 

uncertainty has a significant impact on the fitted line. 

Finally, the quality of the fits must be evaluated for the two uncertainties above. For 

𝜎2 = 0.3, the slopes already calculated above can be used to find 𝑚2 = 0.0008738 which gives 

Λ1 = 28.861 according to Eq. (48). Using Eq. (49) the quality for this case is 𝑄2 = 0.8586 which 

is lower than the optimal value for perpendicular offsets. For 𝜎2 = 3.0, a similar calculation 

yields 𝑄2 = 0.9030 which is again reduced from the optimal value. Using non-perpendicular 

offsets will always reduce the quality of the fit. 
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