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Abstract
In a protein, nearby titratable sites can be coupled:
the (de)protonation of one may affect the other. The
degree of this interaction depends on several factors and
can influence the measured pKa. Here, we derive a
formalism based on double free energy differences (∆∆G)
for quantifying the individual site pKa values of coupled
residues. As ∆∆G values can be obtained by means of
alchemical free energy calculations, the presented approach
allows for a convenient estimation of coupled residue
pKas in practice. We demonstrate that our approach and
a previously proposed microscopic pKa formalism, can
be combined with non-equilibrium (NEQ) alchemical free
energy calculations to resolve pH-dependent protein pKa
values. Toy models and both, regular and constant-pH
molecular dynamics simulations, alongside experimental
data, are used to validate this approach. Our results
highlight the insights gleaned when coupling and microstate
probabilities are analyzed and suggest extensions to more
complex enzymatic contexts. Furthermore, we find that
näively computed pKa values that ignore coupling, can be
significantly improved when coupling is accounted for, in
some cases reducing the error by half. In short, our results
suggest that free energy methods can resolve the pKa values
of both uncoupled and coupled residues.

Introduction
Protein function is known to depend on the acidity
of the medium.1–5 Such a pH dependence is
caused by the (de)protonation of amino acid
residues, whereby a proton is added or removed
from an amino acid side chain. As this process is
pH-dependent, at certain pH levels, the event will
be more or less favorable and, by definition, at the
pKa, it will be equally probable (i.e., ∆Gprot = 0).
Knowledge of the residue pKa values in a protein
is essential for understanding function. It not only
allows for a rationalization of protein properties
(e.g., stability,6 solubility,7 etc.) and interactions
at a specific pH,8,9 but in the context of enzymatic
and redox reactions, pKa values can provide
insight into how favorable a proton transfer will
be under certain conditions.10

As alluded to, the pKa is fundamentally a free
energy relationship; for an isolated, protonatable
group, the value is proportional to the free energy
of protonation:

∆Gprot = RT log (10) (pH – pKa) . (1)

This relationship suggests that the free energy
is linearly dependent on the solution pH; as the
pH moves farther away from pKa, the free energy
required to (de)protonate also shifts. A purely
linear relationship between pH and ∆G implies a
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joint relationship with the probability of finding a
protonatable group i in a given state; this follows
from the rearranged Henderson–Hasselbalch
(HH) equation:

pKi
a = pH + log10

(
⟨xi⟩

1 – ⟨xi⟩

)
, (2)

where ⟨xi⟩ is the probability that residue i is
protonated. However, such a curve, when
computed from experiment, may be flatter
or irregularly shaped, often necessitating the
application of specialized fitting procedures.11

In such cases, not only does the curve suggest
a non-linear dependence, an analysis of the
complete pH-dependent behaviour is often more
insightful than defining the residue by a single pKa
value.

In proteins and, in particular, enzymes,
protonatable residues can, in only a few cases,
be separated from their interactions with one
another.12–14 Although these associations will
be more pronounced at an active site, even
more distant residues can experience some
degree of coupling,15 interacting more or less
strongly depending on their microenvironment,
the pH of the solution, and their own protonation
state. Indeed, this could result in a more
challenging resolution of “the pKa”;11 however,
such interactions may provide insight into a
reaction mechanism or suggest the functional
importance of a residue pair. In these scenarios,
a modified HH-curve may still yield two clear
inflection points; however, the assignment of
pKa values to specific residues could remain a
challenge. Moreover, the protonation probability
of a coupled residue, although potentially
described by an HH-curve, is nonetheless a
composite probability of microstates. As Edsall
and Wyman16 and later Alexey Onufriev17

and G. Matthias Ullmann18 helped formalize,
these states are in a pH-dependent equilibrium
with each other and collectively comprise the
macroscopic probability observed experimentally.
This knowledge gap between the measurable
macrostates and the cryptic microstates suggests
a potential role for theoretical and computational
methods, which may help to resolve both the
macroscopic pKa and the microscopic pKa values;

we consider one of these methods here.
In summary, titration curves and pKa values

may exhibit diverse pH-dependent behaviors due
to the coupling of titratable sites. The pKas
of such coupled site residues may be difficult
to resolve, and even if a curve is resolved, a
singular pKa may overlook unique functionally
relevant microstates. Probing these states and
the microscopic pKa values between them using
free energy calculations based on a rigorous
formalism may be a worthwhile approach to
provide additional insight into this key biophysical
phenomenon. In this work, we derive a formalism
to quantify individual site pKas in coupled residues
starting from double free energy differences. This
is particularly convenient, as such∆∆G values can
be efficiently computed by means of alchemical
free energy calculations.

We begin by considering the relationship
between free energies and pKa values, introduce
our thermodynamic cycle-based formalism, and
outline the concept of microscopic pKa values.
We then demonstrate the applicability of these
concepts to non-equilibrium, alchemical pKa
calculations, and show how these can provide
insight beyond what could be obtained from a
näive approach without taking into account residue
couplings.

Theory

pKa values and free energies
Consider the thermodynamic cycle given in
Figure 1. To calculate the absolute protein pKa
value of a single residue (A), we must consider
the free energy of proton transfer from the gas (g)
phase into the solution (s) phase and then from
the solution into the protein (p) phase. However,
for many model compounds, the free energy
associated with the proton transfer in solution
is known. Using this reference pKa value (pK◦

a)
allows us to only consider the free energies
associated with the rightmost cycle, thus reducing
our problem to solving ∆∆Gs,p(AH, A-) — the free
energy associated with moving the charge from
the solution site to the protein site — which is
related to the protein pKa by

2
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Figure 1: Complete pKa thermodynamic cycle. The horizontal arrows mark the transfer of a titratable
residue (A) between different environments: gas (g), solution (s), protein (p). The vertical arrows denote
the free energy difference between the deprotonated and protonated form in a corresponding environment.

pKa(protein) = pK◦
a +

∆Gs,p(A-) – ∆Gs,p(AH)
RT log (10)

= pK◦
a +

∆∆Gs,p(AH, A-)
RT log (10)

. (3)

Equation 3 implicitly contains two terms,
which we here call ∆∆Genv

s,p and ∆Gtitr
s,p. The

first (∆∆Genv
s,p ) represents the free energy of

dissociating a proton within a protein relative to
the solvent environment, which we represent by a
capped peptide. It is assumed that the protein
is fixed in some protonation state and, based
on Tanford and Kirkwood,19 has been taken to
be the state in which all titratable sites in the
protein are neutralized. Because these sites
are fixed to their neutral state, this free energy
is pH-independent. The second free energy
component (∆Gtitr

s,p) reintroduces pH dependence
by capturing how the free energy of dissociating
the proton within the protein will be more or less
favorable, depending on the states of the other
protonatable sites.

The contribution of the free energy component
∆∆Genv

s,p is determined by the difference in

the solvation free energies of the species
(i.e., ∆∆Genv

s,p = ∆Genv
p – ∆Genv

s ). In the case of
the peptide (∆Genv

s ), the contribution is governed
almost entirely by the solvent; however, in the
protein (∆Genv

p ), van der Waals and electrostatic
interactions with permanent dipoles dominate.20

Note that while the desolvation penalty of moving
the proton out of the solution and into the protein
may be large — depending on the solvent
exposure of the residue in the protein — favorable
interactions between neighboring residues can
compensate for this, stabilizing the buried residue
in its charged or neutral state.

Once a reference protonation state is set, the
∆∆Genv

s,p can be resolved and an intrinsic pKa
(pKint) can be defined:

pKint = pK◦
a +

∆∆Genv
s,p

RT log (10)
. (4)

Again, note that this is pH-independent as all other
residues are in a fixed protonation state without
the ability to titrate. The true pKa for a residue in
a protein will depend on the dynamic protonation
state of these other residues and will have a pH
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dependence:

pKa(protein) = pKint +
∆Gtitr

s,p(pH)
RT log (10)

. (5)

Although the pKint is pH-independent, it may
still provide a strong estimate of the true pKa
depending on the reference protonation state
assigned to the protein. Nevertheless, the
assumption that pKa ≈ pKint will fail in some
instances and only by considering ∆Gtitr

s,p(pH) can
an accurate pKa(protein) be resolved.

If all protonatable residues were allowed to
titrate, then computing ∆Gtitr

s,p(pH) would require
a consideration of all pairs of relevant interactions.
Inevitably, most of these will contribute very little
to this energy, potentially resulting in frivolous
calculations. Instead, one might assume that
all distant protonatable residues are fixed to
their model states at pH 7.4 (i.e., Asp/Glu:
deprotonated, Lys/Cys: protonated), and that
the only relevant contribution of ∆Gtitr(pH) with
respect to some protonatable group A, comes
from the nearest protonatable group B, given that
A and B are close to each other (e.g., rAB <
0.5 nm). Under these assumptions, one improves
computational efficiency and may not sacrifice
an accurate solution. Here, we will consider
these two approaches for resolving the pKa of
residue A: 1) we assume pKa = pKint and 2) we
assume pKa = pKint + ∆Gtitr(pH)

RT log (10) and that only the
protonatable residue closest to A is titratable. In
both cases, we assume that all residues in the
protein are assigned to their corresponding model
states at pH 7.4.

We begin with a discussion of the application of
non-equilibrium (NEQ) free energy calculations to
the problem of computing the two aforementioned
values, namely: ∆∆Genv and ∆Gtitr(pH).

NEQ free energies and a thermodynamic
cycle-based formalism
NEQ alchemical free energy calculations are
particularly well suited for computing ∆∆Genv

s,p
in Equation 3. Within the NEQ framework,
fully atomistic molecular dynamics simulations
are used in conjunction with thermodynamic

integration to compute the non-equilibrium,
alchemical work distributions associated with
transforming a structure in one state into a
structure in another state. The simulations are
set up in such a way that within a single system,
both the residue of interest (Ap), situated in
a protein, and the same residue in a blocked
peptide (As) are present. These are restrained
to prevent consequential interactions, and then
the work required to alchemically transform (i.e.,
AH

p → A-
p and A-

s → AH
s ) these residues into

their complement (i.e., (de)protonated form) is
computed. This construct ensures a neutral
simulation box at all times during an alchemical
transition.21

Given two equilibrium ensembles (e.g., Ap and
As), the distributions of work values generated
by rapidly transforming residues from the first
ensemble into residues from the second (and
vice versa) allow one to estimate the free energy
difference. Here, the transformation is alchemical,
the transitions are on the order of 100 ps, and the
free energy difference is estimated using Bennett’s
acceptance ratio22,23 (BAR) relying on the Crooks
fluctuation theorem24 (CFT). Previous work has
demonstrated the ability of this NEQ approach
to resolve folding free energies25 and binding
affinities26,27 within experimental uncertainty.

AH
p + BH

p A-
p + BH

p

AH
p + B-

p A-
p + B-

p

∆∆G0

∆∆G1 ∆∆G2
∆∆G3

Figure 2: Scheme I: free energy cycle for a
coupled residue scenario. The branches report
the free energy change associated with the
deprotonation of one residue, while the other is
kept fixed with respect to the free energy change
associated with the corresponding deprotonation
in a capped peptide.

As we have mentioned in the preceding section,
given the coupling between protonatable residues,
∆∆Genv

s,p alone may be insufficient for an accurate
calculation of pKa(protein), and the pH-dependent
∆Gtitr

s,p should also be considered. To illustrate
this, we consider the coupling scenario in Figure 2:
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residues A and B are close together, and their
protonation free energies depend on the state of
the other residue.

Here, ∆∆G0 corresponds to ∆∆Genv: the
free energy of deprotonating residue A while in
the presence of protonated B. Similarly, ∆∆G3
corresponds to the deprotonation of A in the
presence of deprotonated B. In both cases, the
remaining protonatable sites in the protein are
fixed to their model states at pH 7.4 (i.e., Asp/Glu:
deprotonated, Lys/Cys: protonated). We also
have ∆∆G1 and ∆∆G2, which will shift the
populations of “reactants” and “products” with
respect to ∆∆G0 and ∆∆G3. Note that because
of the presence of Bp, which can (de)protonate as
a function of pH, this equilibrium shift depends on
the pH non-linearly.

To further formalize the pKa calculations for
coupled residues, we begin by considering the
thermodynamic cycle in Figure 3, where the
protonation/deprotonation events are separated
for the protein (p) and peptide (s) environments.
In this case, we focus on the overall ∆pKa
for the deprotonation of residue A by explicitly
considering all possible protonation states of
residue B.

We define ∆G of the upper branch of the cycle
as

∆Gprotein = ∆G0 +
1
β

log
(
1 + e–β∆G1

)
–

1
β

log
(
1 + e–β∆G2

)
(6)

and the lower branch as

∆Gsolution = ∆G3 +
1
β

log
(
1 + e–β∆G4

)
–

1
β

log
(
1 + e–β∆G5

)
, (7)

with β = 1
RT . Observing that ∆G4 = ∆G5 allows

us to write Equation 7 as

∆Gsolution = ∆G3. (8)

Considering the definition∆∆G = ∆Gprotein – ∆Gsolution

we can combine Equations 6 and 8:

∆∆G = ∆G0 – ∆G3 +
1
β

log
(
1 + e–β∆G1

)
–

1
β

log
(
1 + e–β∆G2

)
. (9)

When considering the free energy difference
between protonation in a folded protein and
protonation in a capped peptide, one can resolve
∆∆G30 = ∆G0 – ∆G3; however, we can
also resolve ∆G1 and ∆G2 from ∆∆G41 and
∆∆G52, respectively. Recall that for an isolated
protonatable group (e.g., capped peptide) with
a known reference pK◦

a, the free energy of
deprotonation is linearly related to the pH via

∆G(pH) = RT log (10)
(
pK◦

a – pH
)

. (10)

It follows that

∆G1(pH) = ∆∆G41 + ∆G4
= ∆∆G41 + RT log (10)

(
pK◦

a – pH
)
(11)

and

∆G2(pH) = ∆∆G52 + ∆G5
= ∆∆G52 + RT log (10)

(
pK◦

a – pH
)

.
(12)

We can substitute Equations 11 and 12 into
Equation 9 and obtain ∆∆G as a function of pH.
Note that while maintaining the correspondence,
we can directly relate this back to Equations 4 and
5 by simply relabelling the components:

∆∆G(pH) = ∆G0 – ∆G3 +
1
β

log
(
1 + e–β∆G1(pH)

)
–

1
β

log
(
1 + e–β∆G2(pH)

)
(13)

∆∆Gs,p(pH) = ∆∆Genv + ∆Gtitr(pH) (14)
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AH
p + BH

p A-
p + BH

pAH
p + B-

p A-
p + B-

p

AH
s A-

sBH
s BH

s B-
sB-

s

∆G0∆G1 ∆G2

∆G3 ∆G5∆G4

Figure 3: Scheme II: detailed free energy cycle for a coupled residue scenario. The upper branches report
the free energy change associated with the deprotonation of one residue while the other is kept fixed in
the protein (p), while the lower branches report the corresponding deprotonation in a capped peptide in
solution (s). Note that the differences between paired upper and lower free energies are the ∆∆Gs of
deprotonation indicated in Figure 2.

where we see the equivalence between

∆∆Genv = ∆G0 – ∆G3, and

∆Gtitr(pH) =
1
β

log
(
1 + e–β∆G1(pH)

)
–

1
β

log
(
1 + e–β∆G2(pH)

)
.

It follows that ∆Gprotein can be expressed as a
function of pH:

∆Gprotein(pH) = ∆∆G(pH) + ∆G3(pH). (15)

Equation 15 provides a family of solutions that
depend on the pH value. In order to determine the
pKa, we find the point where ∆Gprotein(pH) = 0;
this pH corresponds to the pKa that would be
observed in a titration experiment. The result
follows from the Henderson-Hasselbalch equation
(Equation 2), which states that the pKa of a
residue is the pH value at which the populations
of the protonated and deprotonated forms of
that residue are equal (i.e., ∆G = 0; the
inflection point of the HH-curve). Computationally,
we also have access to the whole set of pKa
solutions which are not necessarily limited by
this Hesenderson-Haselbalch relation. We can
combine Equations 3 and 15 and compute these
pKa values at various pH:

pKa(protein) = pK◦
a +

∆Gprotein(pH) – ∆G3(pH)
RT log (10)

(16)
Moreover, instead of solving for a single pKa
value, we can also consider how the pKa(protein)
changes as a function of pH. By defining a

reference state, we compute the pKa(protein)
between states and observe how the probability
of microstates changes with the pH; this is the
subject of consideration in the following section.

Microscopic definitions of pKa

Complementary to the thermodynamic cycle and
free energy formalisms of the preceding section
is a framework based on partition functions.18 It
should be observed that the (de)protonation of
the sidechain of an amino acid can be described
using a standard equilibrium binding formalism.
Specifically, the “binding” of protons can be fully
described by the proton concentration (c) and the
binding constant (K), from which it follows that the
grand partition function is ξ = 1 + Kc and the
fractional occupation of the side chain by a proton
is

Θ =
Kc

1 + Kc
. (17)

Here, the concentration of protons in solution is
related to the pH by c = 10–pH and the binding
constant is related to the pKa via pKa = – log10(K).

Consider a second example, involving a coupled
residue system in which the protonation of one site
can influence the other; specifically consider the
cycle in Figure 4. Here, we have four microstates
and four corresponding dissociation constants. In
the fully uncoupled case, K1 = K4 and K2 = K3,
and each (de)protonation event can be considered
separately; this is not true when K1 , K4 and K2 ,
K3. In this case, we have a more complex partition
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[11]
AH

p + BH
p

[01]
A-

p + BH
p

AH
p + B-

p
[10]

A-
p + B-

p
[00]

K1

K2 K3

K4

Figure 4: Two-site protonation dyad. Equilibirum
constants K describe the unbinding of a proton.
Values in brackets indicate the microstate (e.g.,
[11] : doubly protonated, [10] : first residue
protonated, etc.)

function given by

ξ = 1 + K1c + K2c + e–βwK1cK2c. (18)

The form is similar to the partition function of the
single-site case; however, here we include a new
(un)cooperativity term which follows from the fact
that: 1) the cycle is closed (i.e., K1 +K3 = K2 +K4),
and 2) there is an “interaction free energy”, w,
associated with the second (de)protonation event
given the first. When this interaction is zero,
we have a standard two-site binding equilibrium:
the proton can bind to either site, and this is
governed only by the proton concentration and
binding constants; however, when this interaction
is positive or negative, the initial binding to one site
will disfavor or favor the binding of a second proton
to the other site.

This interaction notation, as defined by
T. L. Hill,28 can be related to the microstate free
energy via

e–βw =
e–β∆G◦

00

e–β∆G◦
01e–β∆G◦

10

w = ∆G◦
00 –

(
∆G◦

01 + ∆G◦
10

)
, (19)

where we take ∆G◦
11 = 0 and rely on the fact

that the standard free energy of deprotonation
(i.e., 1 M H+; pH = 0) can be related to to K via

K = e–β∆G◦
. (20)

When w (Equation 19) is negative, e–βw is
greater than one and the unbinding of the
second proton is enhanced by the first. On

the contrary, when w is positive, e–βw is less
than one and the second unbinding is impaired
given the first. The energy of interaction, w,
depends on structural changes in the protein
and through-space interactions between sites.
In the cases at hand, (de)protonation has only
limited structural consequences and electrostatic
and van der Waals were found to be dominant.
Furthermore, given the repulsion of like charges,
here, the unbinding of the first proton always
disfavours the unbinding of the second.

Consider that we can define ∆G◦(pH) = ∆G(0)–
µH+ , where µH+ is the chemical potential of the
protons in solution: µH+ = RT log (10)pH. We then
have

ξ = 1 + e–β
(
∆G◦

01(0)–µH+
)

+ e–β
(
∆G◦

10(0)–µH+
)

+ e–β
(
∆G◦

00(0)–2µH+
)
,

with corresponding probabilities

⟨AHBH⟩ =
1
ξ

,

⟨A-BH⟩ =
e–β

(
∆G◦

01(0)–µH+
)

ξ
,

⟨AHB-⟩ =
e–β

(
∆G◦

10(0)–µH+
)

ξ
, and

⟨A-B-⟩ =
e–β

(
∆G◦

00(0)–2µH+
)

ξ
.

As Ullmann notes,18 from these we can resolve
both the protonation probability of an individual
site as a function of pH (e.g., probability of AH =
⟨AHBH⟩ + ⟨AHB-⟩), but also the probability of
microstates. Observe that while in the preceding
section we resolved the pKa(protein) at a single pH
for comparison with experiment, we can instead
consider the family of pH-dependent solutions,
substitute these into the partition function above,
and thus resolve the probabilities of the individual
species as a function of pH.

7



Methodology

Non-equilibrium alchemy
pmx29 was used for the system setup, hybrid
structure and topology generation, and analysis.
Initial structures: ∆+PHS Staphylococcal
nuclease (SNase) variant30 (PDB: 3BDC30)
and protein deglycase DJ-131 (PDB: 1P5F32),
were taken from the PDB database. A double
system in a single box setup was used, with a
3 nm distance between the protein and peptide
(ACE-AXA-NH2); this ensured charge neutrality
during the alchemical transition.21 To prevent
consequential protein–peptide interactions, a
single Cα in each molecule was positionally
restrained. We used the CHARMM36m33 (with
CHARMM-modified TIP3P34) force field. A salt
concentration consistent with the experimental
setup was used. If no salt concentration was
reported only K+ or Cl– counterions were added.

For all systems, an initial minimization using
the steepest descent algorithm was performed.
A constant temperature corresponding to the
reference experimental setup was maintained
implicitly using the leap-frog stochastic dynamics
integrator35 with an inverse friction constant of
γ = 0.5 ps–1. The pressure was maintained at
1 bar using the Parrinello-Rahman barostat36

with a coupling time constant of 5 ps. The
integration time step was set to 2 fs. Long-range
electrostatic interactions were calculated using the
Particle-mesh Ewald method37 with a real-space
cut-off of 1.2 nm and grid spacing of 0.12 nm.
Lennard-Jones interactions were force-switched
off between 1.0 and 1.2 nm. Bonds to hydrogen
atoms were constrained using the Parallel LINear
Constraint Solver.38

To improve sampling, systems were run for 50 ns
in 4 independent replicas, and the first 10 ns of
each simulation was discarded as equilibration.
From the remaining 40 ns, 400 non-equilibrium
transitions of 500 ps each were generated and
work values from the forward and backward
transitions were collected using thermodynamic
integration. These values were then used to
estimate the corresponding free energy difference
with Bennett’s acceptance ratio22 as a maximum
likelihood estimator relying on the Crooks

Fluctuation Theorem.24 Bootstrapping was used
to estimate the uncertainties of the free energy
estimates,21,39 and these were propagated when
calculating ∆∆G values.

Application in practice
We describe how to compute the pKa corresponding
to the upper branch in Figure 2.

1. We run three simulations using the double-
system single box setup. This yields three
explicit ∆∆G values (e.g., ∆∆G0, ∆∆G1,
and ∆∆G2) and a fourth by necessity of
cycle closure. These correspond to the free
energy differences between deprotonation
in the protein and in the capped peptide.

2. Observe that in the absence of any coupling,
as the pH changes the free energy of
deprotonation in the protein shifts according
to

∆G(pH) = ∆∆G + RT log (10)(pK◦
a – pH)

where pK◦
a is the reference pKa of the

residue under consideration. We use this
relationship to calculate

∆G1(pH) = ∆∆G1 + RT log (10)
(
pK◦

a – pH
)

and

∆G2(pH) = ∆∆G2 + RT log (10)
(
pK◦

a – pH
)

.

3. We can then resolve ∆Gprotein according to

∆Gprotein(pH) = ∆∆G(pH) + ∆G3(pH)

where

∆∆G(pH) = ∆∆G0 +
1
β

log
(
1 + e–β∆G1(pH)

)
–

1
β

log
(
1 + e–β∆G2(pH)

)
.

and

∆G3(pH) = RT log (10)
(
pK◦

a – pH
)

.

4. We can find the pH at which ∆Gprotein(pH) =
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0; this pH will correspond to the apparent
pKa.
We can also compute the pKa(protein) at
arbitrary pH and construct a pH-dependent
curve via

pKa(protein) =

pK◦
a+

∆Gprotein(pH) – ∆G3(pH)
RT log (10)

.

(Note that if we are only interested in
the pKa, we can stop here. In order to
resolve the individual site and microstate
probabilities we need to follow the next three
steps.)

5. Consider that we can compute standard
protonation free energies via

∆G◦ = ∆G(0) – µH+ ,

where ∆G values are from Step 2 of this
protocol and µH+ is the chemical potential
of the protons in the solution: µH+ =
RT log (10)pH.

6. We then have direct access to the partition
function

ξ = 1 + e–β (∆G0(0)–µH+)

+ e–β (∆G1(0)–µH+)

+ e–β (∆G0(0)+∆G2(0)–2µH+),

and corresponding microstate probabilities

⟨AHBH⟩ =
1
ξ

,

⟨A-BH⟩ =
e–β (∆G0(0)–µH+)

ξ
,

⟨AHB-⟩ =
e–β (∆G1(0)–µH+)

ξ
, and

⟨A-B-⟩ =
e–β (∆G0(0)+∆G2(0)–2µH+)

ξ
.

7. The overall protonation probability for an

individual site can be computed from:

⟨AH⟩ = ⟨AHBH⟩ + ⟨AHB-⟩
⟨BH⟩ = ⟨AHBH⟩ + ⟨A-BH⟩

Constant-pH simulations
Constant-pH (CpHMD) simulations were performed
using a recent GROMACS 2021 implementation
with a modified CHARMM36m force field.40 The
system setup was similar to that discussed in
the above section; however, to agree with the
recommended CpHMD setup, both the leapfrog
integrator and velocity rescaling with a 0.5 ps
coupling time, as well as a PME Fourier spacing
of 0.14 nm were used. Because only aspartate
and glutamate were considered, a single-site
representation (i.e., the proton can be bound
to only one heavy atom in the residue) was
employed; here, the A and B states represent
the protonated and deprotonated forms of the
titratable residue. The mass of the λ particle was
set at 5 AU, and its temperature was maintained at
300 K using velocity rescaling with a 2 ps coupling
time. The barrier height of the double-well
potential was set at 5.0 kJ/mol. For all systems,
a minimization was performed using the steepest
descent algorithm followed by a 100 ns simulation
in the NpT ensemble.

We considered three SNase dyads and one DJ-1
dyad, resulting in four sets of simulations. SNase
simulations were performed at pH values from -1
to 7 with 0.25 pH increments and from 7 to 14 with
0.5 pH increments, while DJ-1 simulations were
performed from 0 to 14 with 0.5 pH increments.
Regarding SNase, both residues in the dyad (i.e.,
D21–D19, D21–D40, and D21–D83) were allowed
to (de)protonate as a function of pH, which in two
cases resulted in non-sigmoidal curves. In the
case of DJ-1, we allowed only E18 to titrate, while
holding C106 fixed to a protonated or deprotonated
state; this resulted in sigmoidal curves.

Block averaging was used to determine the
protonation probabilities and standard deviations
at each pH value. Fittings to both a single
and double Henderson-Hasselbalch (HH) curve
were performed via bootstrap; specifically, each
protonation probability was normally expanded
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about its mean and a point was randomly selected
from the distribution. The resultant set of points
was fit to a single:

⟨x⟩ =
10n(pH–pKa)

1 + 10n(pH–pKa) (21)

and a double HH function:

⟨x⟩ = 0.5
10n(pH–pKa1)

1 + 10n(pH–pKa1) + 0.5
10n(pH–pKa2)

1 + 10n(pH–pKa2) ,
(22)

and the Bayesian information criteria of each fit
were used for model selection. Here, n is the
Hill coefficient and controls the steepness of the
titration inflection; unless otherwise stated, this is
taken to be n = 1.

Results

Toy models
We first consider several systems consisting of two
coupled residues (R1, R2), of type A, B, or C,
with corresponding reference pK◦

a values of 3, 4,
and 8, respectively. ∆∆G values can be related to
the dissociation constants that link microstates via
Equation 5.

Model 1: Similar reference pK◦
a values: no

coupling

Consider the system given in Figure 5. Note

AH
1 + BH

2 A-
1 + BH

2

AH
1 + B-

2 A-
1 + B-

2

0

–8 –8
0

Figure 5: Thermodynamic cycle for Toy Model
1. ∆∆G values (kJ/mol) are indicated along the
branches.

that the interaction energy between the states is
zero, as evidenced by the equality of opposite
paths; the protonation of A1 has no effect on
the free energy required to protonate B2 and
vice-versa. It follows that ∆Gtitr(pH) is zero for all

pH and ∆Gprotein(pH) is constant, implying pKa =
pKint (Figure 7a). Computing the pKa, we obtain
values of approximately 3 and 2.6 for A1 and B2,
respectively, unchanged and decreased from their
reference values according to Equation 16.

Model 2: Similar reference pK◦
a values: weak

coupling

Consider the system given in Figure 6. In this

AH
1 + BH

2 A-
1 + BH

2

AH
1 + B-

2 A-
1 + B-

2

0

–8 1
9

Figure 6: Thermodynamic cycle for Toy Model
2. ∆∆G values (kJ/mol) are indicated along the
branches.

example, unlike in the first, the interaction energy
is non-zero. The free energies suggest that the
first deprotonation event results in a less favorable
second deprotonation. This is to be expected for
nearby coupled residues, where the electrostatic
repulsion associated with the introduction of a
second negative charge would result in a less
favorable free energy change. Instead of reporting
a linear dependence, the ∆Gprotein(pH) curves
each have an inflection point and two asymptotic
values, corresponding to the protonation free
energy of one residue, while the other residues
remain in the same protonation state (Figure 7b,
top). These asymptotic values correspond to the
microscopic pKa values (Figure 7b, middle), which
put a bound on the range of computed pKa values.

At low pH, both A1 and B2 are protonated,
with large, unfavorable ∆G values (Figure 7b,
top). As the pH increases, ∆G of deprotonating
B2 becomes more favorable, reaching ∆G =
0 near pH ≈ 3; at this point, B2 begins to
deprotonate. This deprotonation will result in a
more unfavorable protonation free energy for A1,
as evidenced by the flattening in the ∆G curve
and an increase in the apparent pKa of A1: the
formation of B-

2 makes the formation of A-
1 less

favorable. Because the reference pK◦
a values of

A1 and B2 are similar, this flattening occurs almost
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Figure 7: pH-dependent free energy, pKa, and protonation probability curves: toy systems. The upper
plots (dashed) depict ∆Gprotein(pH) (Equation 15), which varies as a function of pH between its asymptotic
values (dotted). The zero point of this curve (single dot) is used to resolve the corresponding pKa
value. The middle plots (dashed) depict the pH-dependent pKa value (Equation 16). Each residue
has two limiting pKa values (dotted) which correspond to the cases when the other coupled residue is
protonated or deprotonated. As the pH changes, the probability that the other residue is deprotonated
shifts, resulting in a pH-dependent pKa. The lower plots depict several probabilities. The dashed lines
correspond to the protonation probabilities of the individual sites; these are a composite probability of
the doubly protonated (i.e., ⟨AHBH⟩) and singly protonated (i.e., ⟨AHB-⟩) microstates (see Equation 18).
Singly protonated probabilities are indicated with dashed-dotted lines. The solid lines correspond to the
standard Henderson-Hasselbalch curve computed for the pKa determined by the zero point of ∆Gprotein.
Because we resolve the pKa at a single pH, these curves are sigmoidal. Observe that with no coupling
(left column), the pKa values are constant; however, when coupling is introduced, this is no longer the
case. Columns a–d correspond to four different coupling scenarios.

simultaneously with that of B2. In this regime, the
∆Gprotein for both residues changes slower and, in
this example, remains relatively close to zero. We
can think of this as the pH range over which the
groups buffer each other, altering the favourability
of protonation. As the pH continues to increase,
a linear dependence is restored. Construction of
the titration curves computed from the microscopic
pKa values reveals the coupling between residues
(Figure 7b, bottom). The non-sigmoidal form of
the curves follows from the fact that the singly
protonated microstates for both residues occur
with a similar probability.

Model 3: Different reference pK◦
a values: weak

coupling

Consider the system given in Figure 8. In this
example, the ∆∆G values along the branches
are the same as in Example 2; however, the
reference pK◦

a values have changed. We now
consider the coupling between a residue C that
has a reference value 5 pK units higher than B.
Although ∆Gprotein(pH) does report a non-linear
dependence, the large difference in reference
values means that the pH effects dominate; both
inflection points of the free energy curves and the
inflection point of the pH-dependent pKa values
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CH
1 + BH

2 C-
1 + BH

2

CH
1 + B-

2 C-
1 + B-

2

0

–8 1
9

Figure 8: Thermodynamic cycle for Toy Model
3. ∆∆G values (kJ/mol) are indicated along the
branches.

occur far from one another. As a result, the titration
curves computed from the microscopic pKa
values suggest that there is no coupling between
residues. The singly protonated microstates for
each residue occur with a dramatically different
probability, that is, residue B2 is never protonated
while C1 deprotonates.

Model 4: Different reference pK◦
a values:

strong coupling

Consider the system given in Figure 9. Relative to

CH
1 + BH

2 C-
1 + BH

2

CH
1 + B-

2 C-
1 + B-

2

–18

8 28
2

Figure 9: Thermodynamic cycle for Toy Model
4. ∆∆G values (kJ/mol) are indicated along the
branches.

Example 3 we have altered the ∆∆G values along
the branches, while maintaining the reference pK◦

a
values. Here, the interaction between the residues
is much stronger and a more favorable ∆∆G is
assigned to the initial deprotonation of C1. Unlike
in Example 3, where the titration events occurred
far from one another, both the ∆G and pKa curves
resemble those in Example 2. However, unlike
Example 2 the reference pK◦

a values differ by 5
pK units; in this case, the reference pKa gap
is compensated by significant shifts in the ∆∆G
values. Here, also note that the buffer region over
which coupling occurs is larger than in Example 2
(Figure 7b, middle). In this region, the effect of pH
on ∆G is much less pronounced, and the ∆G of

protonation remains relatively constant (i.e., slope
of ∆Gprotein is zero), within 1 pK unit of zero.

As in Example 2, constructing the titration
curves computed from the microscopic pKa values
reveals the coupling between residues (Figure 7c,
bottom). Here, plateaus are evident for both
residues over pH ∈ [6, 9], implying the existence
of both singly protonated microstates. Moreover,
the residue with the higher reference pK◦

a, perhaps
counterintuitively, titrates first.

DJ-1 (2P5F)

SNase Δ+PHS (3BDC)

D83

D40

D19

D21

E18

C106

β1
β2β3

β5

β4

T1

α1

α4

α1

Figure 10: Coupled residues considered. Upper:
∆ + PHS SNase (PDB: 3BDC); lower: monomeric
DJ-1 (PDB: 2P5F). Carbon atoms are shown in
blue, oxygen atoms in red, and sulfur atoms
in yellow. Residue dyads are considered
independently and are indicated with dashed lines.

Application to proteins
Non-equilibrium alchemy

We consider four potential dyads: three from the
SNase variant30 (PDB: 3BDC30) and one from
protein deglycase DJ-131 (PDB: 1P5F32). These
pairs are D19–D21, D21–D40, and D21–D83 in
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SNase and E18–C106 in DJ-1. In SNase, D19
and D21 are spatially adjacent to each other within
the turn (T1) between β1 and β2, while D40 is
located in the turn between β3 and α1, which
puts it close to D21 but farther away than D19
(Figure 10, top). D83 is located in the long linker
between β4 and β5, and is the farthest from D21 of
the dyads considered here. Although sequentially
distant, E18 and C106 in DJ-1, located within α1
and near α4, respectively, are directly adjacent in
space (Figure 10, bottom).

The three SNase pairs exhibited different levels
of coupling: the D21–D83 dyad showed almost
no coupling (Figure 11a), as evidenced by the
absence of inflection points in the ∆G and pKa
curves, the D21–D40 showed moderate coupling
(Figure 11b), and the D21–D19 dyad showed
significant coupling (Figure 11c). In this latter
case, as in the second toy example, the residues
clearly acted to buffer one another, resulting in a
flattening of∆G for both curves around pH ∈ [3, 5].
Moreover, computing protonation probabilities for
the individual sites revealed a non-sigmoidal form
of the curves. We note that the coupling of these
residues was also observed in the experiment.
The calculated pKa values for SNase were: D19:
3.69 ± 0.09, D21: 5.34 ± 0.16, D40: 3.88 ±
0.05, D83: 1.17 ± 0.16, in good agreement with
experiment (D19: 2.21 ± 0.01, D21: 6.54 ± 0.02,
D40: 3.87 ± 0.09, and D83: < 2.2) (Figure 12a).

In the case of E18–C106, again a flattening in
the ∆G buffer region and, evidently, non-sigmoidal
individual site pK titration curves suggested a
coupling between the residues (Figure 11d). Here,
computing the adjusted pKa downshifts C106 from
12.18 ± 0.07 to 8.84 ± 0.04, bringing the estimate
closer to the experimental value of 5.4 ± 0.2
(Figure 12a). However, this still leaves more
than a 3 pK unit discrepancy between calculation
and experiment. Previous work on homodimeric
DJ-1 has revealed that two arginine residues
(R48 and R28 from the other monomer) facilitate
anion binding, which results in pKa elevation31

(Figure S1, right). In our simulations only positive
counterions (i.e., no salt concentration) were
present; however, through-space interactions as a
result of a second arginine may also play a role in
affecting the pKa. To this end, we probed the pKa
of monomeric DJ-1. We found similar qualitative

agreement in the curves between the dimeric and
monomeric forms; however, rather than raising the
pKa, the elimination of the second arginine shifted
the pKa of C106 down to 6.78 ± 0.19 (Figure S1,
left).

We note that in both cases an exceptionally high
pKa for E18 is predicted. While previous work
on DJ-1 has suggested that E18 is protonated
over the titration regime of C10331 and glutamate
residues have been reported with pKa values
greater than 9,41 it would seem improbable that
the pKa is actually this high. Structurally, a second
glutamate (E18) and a nearby histidine (H126)
likely play roles within the lower pH regime (i.e., <
7). We preface the following section by noting that
a high glutamate pKa value is also suggested by
the CpHMD simulations and PropKa as described
further.

Constant-pH molecular dynamics and PropKa

To further investigate the reliability of our
approach, we performed constant-pH molecular
dynamics simulations of the same systems. Here,
we found good agreement with the alchemical
calculations. In the case of D21–D83, a single
inflection point was implied by the model selection
(Equation 21), whereas for D21–D40 and
D19–D21, a double fit, rather than a single fit to
the Henderson-Hasselbalch curve (Equation 22)
was implied (Figure S2). Resolving the pKa values
implied by the fits, we computed: 0.62 ± 0.10 pK
for D83, 3.08 ± 0.07/4.48 ± 0.06 pK for D40, and
2.47 ± 0.08/4.94 ± 0.16 pK for D19. In each case,
different values for D21 were calculated: 5.44 ±
0.15 (coupled with D83), 3.86 ± 0.11/7.96 ± 0.81
(coupled with D40), and 3.25 ± 0.09/6.24 ± 0.26
(coupled with D19). Assigning the double fit pKa
values to the individual residues and averaging
over D21, we have a tentative assignment: D19:
2.86 ± 0.09 pK, D21: 6.55 ± 0.41 pK, D40:
3.47 ± 0.07 pK, D83: 0.62 ± 0.10 pK, which
was in very good agreement with experiment
(Figure 12a).

Regarding DJ-1, the large pKa value of E18
implied by free energy calculations is also
suggested by the constant-pH simulations on
monomeric DJ-1, where values of 9.48 ± 0.42 pK
and 20.99 ± 0.05 pK were calculated in the cases
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Figure 11: pH-dependent free energy, pKa, and protonation probability curves: protein systems. The
upper plots (dashed) depict ∆Gprotein(pH) (Equation 15), which varies as a function of pH between its
asymptotic values (dotted). The zero point of this curve (single dot) is used to resolve the corresponding
pKa value. The middle plots (dashed) depict the pH-dependent pKa value (Equations 16). Each residue
has two limiting pKa values (dotted) which correspond to the cases when the other coupled residue is
protonated or deprotonated. As the pH changes, the probability that the other residue is deprotonated
shifts, resulting in a pH-dependent pKa. The lower plots depict several probabilities. Dashed lines
correspond to the protonation probabilities of the individual sites; these are a composite probability of
the doubly protonated (i.e., ⟨AHBH⟩) and singly protonated (i.e., ⟨AHB-⟩) microstates (see Equation 18).
The singly protonated probabilities are indicated with dashed-dotted lines. Solid lines correspond to the
standard Henderson-Hasselbalch curve computed for the pKa determined by the zero point of ∆Gprotein.
Because we resolve the pKa at a single pH, these curves are sigmoidal. Observe that with no coupling
(left column), the pKa values are constant; however, when coupling is introduced, this is no longer the
case. Vertical spans in the lower row indicate experimental pKa values and uncertainties (note that D83
has a pKa < 2.2). Error bands were bootstrapped. a–c correspond to the SNase + ∆PHS system, while
d corresponds to the DJ-1 system.

of protonated C106 and deprotonated C106,
respectively. Here, only a single fit to Equation 21
was performed and the Hill coefficient was not
fixed to n = 1. C106 was not probed as cysteine
residues are not yet supported by the current
CpHMD implementation.40

We close this section by briefly comparing
our results with the popular computational pKa
predictor PropKa.42 Overall, for PropKa, we
find agreement for the SNase dyads, but a
worse accuracy for C106 in DJ-1. Specifically,

estimates from PropKa were: D19: 3.21,
D21: 5.44, D40: 4.30, D83: 1.21, and C106: 14.19
(Figure 12a). In the case of E18 in DJ-1,
PropKa estimates a pKa of 8.73 and 7.38 for the
homodimeric and monomeric forms, respectively.

Here, our NEQ approach provided estimates of
both D40 and C106 that were in closer agreement
with the experimental values while exhibiting
comparable performance on the other three
residues. Considering the overall performance we
found that the introduction of coupling dramatically
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Figure 12: Performance of various methods for
calculating protein pKa values. Three methods are
compared with experiment: NEQ with (solid) and
without (dashed/transparent) coupling accounted
for; constant-pH MD (CpHMD); and PropKa. Note
that the pKa of D83 is < 2.2 pK. a. Residue-wise
performance b. Overall performance with or
without cysteine included. Bootstrapped standard
errors are depicted.

improves agreement with experiment reducing our
NEQ average unsigned error from 2.10±0.42 to
0.69± 0.34 when cysteine is excluded and from
3.05 ± 0.88 to 1.23 ± 0.57 when it is included;
with regard to the former, this performance was
comparable to PropKa (0.63±0.22) (Figure 12b).
We also found that CpHMD could accurately
resolve the four aspartates within 0.5 pK. It is
probable that both a limited training set and a
less frequent dyad (i.e., a large difference in
reference pK◦

a values) results in the markedly
poorer estimate for C106 from PropKa.

Discussion
The importance of accounting for residue coupling
is multifaceted and particularly relevant in the
context of enzymatic active sites that are often
enriched in protonatable residues. The theoretical
formalism to describe such couplings in polyprotic
acids has been detailed by Ullman.18 In his work,
Ullman follows an approach of defining equilibrium
protonation constants for all microstates and

subsequently derives partition functions fully
describing the thermodynamics of these systems.

However, in our work, we follow a different
path and describe the titration of coupled sites
starting from the double free energy difference
of protonation in the protein with respect to
a reference state in water. This approach is
particularly relevant in the context of alchemical
free energy calculations, which give access only
to such ∆∆G values.

Here, we explore both toy examples and
real protein systems where the buffering of a
residue dyad maintained the free energy of
protonation near zero (e.g., DJ-1: C106-E18).
In various protein contexts, tuning the local
residue environment surrounding pairs or groups
of titratable residues to create large buffer regions
over which the ∆G of protonation is close to zero
could make the binding of a substrate more than
sufficient to significantly alter the (de)protonation
of a residue and ultimately the enzymatic activity.

Comparison with a recent GROMACS-based
CpHMD implementation40 revealed a good pKa
prediction accuracy for coupled residues. This
result suggests that both CpHMD and alchemical
free energy methods can resolve pKa values
in both coupled and uncoupled contexts. A
second comparison with PropKa suggested that
although accurate estimates could be made for
SNase, the pKa of C106 in DJ-1 was significantly
overestimated, possibly due to the limited cysteine
data in the PropKa training set and the implicit
assumption that E18 is deprotonated at the pH
where C106 deprotonates.

The role of MD simulations and free energy
calculation methods such as those employed
here may provide insight not readily accessible to
conventional prediction methods. One particular
insight, namely the pKa values of coupled
residues, requires careful consideration of the role
of the protonatable residues nearby. Moreover,
given that these residues are often found at the
active site — frequently the target of engineered
therapeutics — the relevance of this problem
extends beyond basic research.

The ability to seamlessly and consistently
integrate such pH-dependent calculations into
existing alchemical free energy workflows
may prove invaluable for accurately resolving
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binding affinities or enzyme activities and
thermostabilities.

To this end, we have elsewhere investigated
the ability of NEQ free energy calculations to
compute a large number of pKa values in a
variety of protein contexts. As with the results
here, our approach showed strong performance,
further suggesting the potential for a consistent
integration of pH-dependent calculations into a
broader NEQ free energy framework (Manuscript
in preparation).
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Figure S1: Homodimeric and monomeric structures of DJ-1 (PDB: 2P5F) are depicted alongside the
computed pKa values for C106 and E18. The addition of a second nearby arginine (R48) in the homodimer
significantly shifts the pKa values. pH-dependent pKa curves (middle row) and the corresponding
pKa values as determined from the zero point of the ∆Gprotein(pH) curves (upper row). Dotted lines
(upper/middle rows) correspond to the the microscopic values. Protonation probability curves (lower row)
based on the microstate probability equations (dashed), pKint (dotted), and pKa (solid). Vertical spans
in the lower row indicate experimental pKa values and uncertainties. Carbon atoms are shown in blue,
oxygen atoms in red, and sulfur atoms in yellow. Error bands were bootstrapped.
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Figure S2: Solid lines correspond to the CpHMD computed pKa protonation probabilties based on
Equations 21 and 22 in the main text. Dashed lines correspond to the protonation probabilities of the
individual sites; these are a composite probability of the doubly protonated (i.e., ⟨AHBH⟩) and singly
protonated (i.e., ⟨AHB-⟩) microstates (see Equation 18). The singly protonated probabilities are indicated
with dashed-dotted lines. Vertical spans indicate experimental pKa values and uncertainties (note that
D83 has a pKa < 2.2). Error bands were bootstrapped. In the case of E18, CpHMD simulations were run
with C106 protonated (CH) or deprotonated (C-).
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