Development of fluorochromic polymer doped materials as platforms for temperature sensing using three dansyl derivatives bearing a sulfur bridge.

Frederico Duarte a, Georgi Dobrikov b*, Atanas Kurutos b,c, Jose Luis Capelo-Martinez a,d, Hugo M. Santos a,d, Elisabete Oliveira a,d*, Carlos Lodeiro a,d*

a BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.

b Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113 Sofia, Bulgaria.

c University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski blvd, 1756 Sofia, Bulgaria.

* Corresponding authors: Georgi.Dobrikov@orgchm.bas.bg (GD); ej.oliveira@fct.unl.pt (EO) and cle@fct.unl.pt (CL)
Abstract

Three novel bis-dansyl derivatives bearing a sulfur bridge have been synthesized, fully characterized, and their photophysical characterization studied in solution, as well as, in the solid state. All compounds exhibit fluorescence emission with quantum yields up to 60%, which vary significantly depending on the solvent used, and the inherent molecular structure. Moreover, these compounds demonstrate positive solvatofluorochromic behaviour emitting from bluish-green to yellow. Kamlet-Taft studies were performed to better understand the solute-solvent interactions. Due to the intrinsic characteristics of the compounds, efforts were made to understand their potential usefulness for environmental remediation and thus metal ion sensing studies were investigated. Compounds L1 and L2 showed high sensitivity to Cu$^{2+}$ and Hg$^{2+}$ ions and were found to modulate their emission extensively, with L2 capable of detecting and quantifying up to 4 µM of Hg$^{2+}$. Considering the solid-state emission of these compounds, the application towards temperature sensing was put forth. L3 was found to quench its emission in a linear relation with temperature up to 170 ºC. Several doped polymer thin films were fabricated, which served as a platform to establish a linear relation with temperature
beyond their melting point. Polymethylmetacrylate (PMMA) films emitted up to temperatures of 218 ºC, which could be fully restored at room temperature. These results suggest the potential application of these bis-chromophoric compounds as molecular thermometers.

Keywords: Polymers, dansyl derivatives, metal ions, sensors, solvatochromism, temperature.

1. **Introduction**

Probes and sensors conceptualized using fluorescent dyes offer inherent value due to their remarkable optical properties.[1–3] Among them, compounds based on 1-(dimethylamino)-naphthalene-5- sulfonyl or dansyl derivatives, have received consistent attention since they often exhibit broad emission spectra, high quantum yields and are robustness enough under different external conditions.[4–9] This brought up to light a multitude of possible applications, ranging from biological targets such as the detection of oxygen reactive species[10], imaging[8,11–15], and monitoring of organ systems[6], to the detection of heavy and transition metal ions[12–20] and even water traces[4].

Our group has been working on metal ion detection for the last fifteen years[21–24]. Among them, the heavy and transition metal ions including Hg$^{2+}$ and Cu$^{2+}$ have gathered considerable attention. Hg$^{2+}$ is a potential hazardous and toxic environmental pollutant that cause immunotoxic and neurotoxic effects in humans, leading to damage of the central nervous system and organ failure. On the other hand, Cu$^{2+}$ is abundant in the body and plays a crucial role in diverse biological processes and cellular functioning. Abnormal concentration of Cu$^{2+}$ may lead to the disruption of metabolic processes and neurodegenerative diseases such as Alzheimer's and Wilson diseases.[14,17,25] The U.S.
Environmental Protection Agency has set admissible levels of Hg$^{2+}$ and Cu$^{2+}$ in drinking water to be 10 nM and 20 mM, respectively. Therefore, the development of fluorescent sensors for the detection of these transition metals is of utmost importance.\[12,17\]

Considering the constant search for improved sensors for metal ions, Anna Aliberti et. al. designed several dansyl-amino acids capable of detecting Hg$^{2+}$. Among them, N-dansylated methionine was the chemosensor that showed the best performance in terms of sensitivity, with an LOD value of 140 nM. To improve the LOD of this chemosensor, a portable experimental set-up based on an optical fiber probe was developed, which was able to increase the LOD to 5 nM, meeting the requirements of the Environmental Protection Agency. However, application to water-based matrices was found to be unfruitful due to the coordinating ability of chloride anions towards Hg$^{2+}$.\[16\] Similarly, Bhawna Uttam et. al. developed a dansyl appended calix[4]arene on the lower rim, which selectively detected Hg$^{2+}$ with a LOD value of 560 nM. MMT assay was performed using HeLa cells confirming its biocompatibility, and strong fluorescence was visualized by confocal microscopy. The removal of Hg$^{2+}$ from water sources was also addressed by embedding the sensor on a zeolitic imidazolate framework with 5% encapsulation. ICP-MS studies suggested a 95% removal of Hg$^{2+}$ from water using the hybrid MOF, displaying excellent selectivity even in the solid state.\[13\]

On the other hand, solvatochromism is another well-known and fairly common property among dansyl derivatives, as the dipole moment undergoes considerable changes as the solvent polarity increases, resulting in a significant Stokes shift.\[7,26–29\] However, further, research is needed to develop probes with high solvatochromism that do not succumb to aggregation-caused fluorescence quenching (ACQ) effects in hydrophilic and
hydrophobic environments\cite{8,30}. A more prevalent example of the contrast between these two types of environments is within cells, where different regions and organelles exhibit varying affinities for water. Na Li et al. have developed a robust polarity sensor to address this issue, which can track the decrease of lipid droplets when subjected to oxidative stress in live cells. The system involves the covalent bond between dansyl chloride and nile red derivative, capable of sensing polarity changes in both green and red detection channels. The fluorophore was found useful in both environments since the dansyl moiety was resistant to ACQ, while nile red changed the fluorescence in the red channel with high linearity of aqueous composition. This dual emission also provided the experimental results supporting the conclusion that oxidative stress leads to a sharp decrease in lipid droplets\cite{8}.

Fluorescent dye-doped solid support materials have generated great interest, as they have the potential to improve the intrinsic properties of the dye, such as stability against quenchers, sensitivity, fluorescence and prevention of aggregation-caused quenching (ACQ)\cite{31,32}. These multifunctioning materials can be applied as sensors for pH \cite{33,34}, transition metals\cite{17}, temperature and smart materials\cite{34–38} and even low-cost antibacterial polymers for biomedical and food packaging\cite{39}. Given the diverse implementation of dansyl derivatives into multifunctional solid materials \cite{31,40–42}, the three dansyl derivatives L1, L2 and L3 bearing single sulfur bridges were synthesized and fully characterized. Above mentioned ligands were designed in order to demonstrate good complexation ability toward heavy metals. Presence of multiple amide bonds\cite{43} as well as sulfur with aliphatic substituents in one molecule\cite{44,45} ensure chelating effect of the ligands. Discovery of solvatochromic effect was accomplished alongside with their ability
to sense pollutant metal ions, and incorporated into polymer thin films of polystyrene-block-polybutadiene-block-polystyrene (SBS), Poly(methylmethacrylate) (PMMA), Polyvinyl alcohol and poly(styrene-butadiene-styrene) co-polymer (PVA:PVP) and thermoplastic polyurethane (TPU) towards the development of temperature-smart materials.

2. Experimental Section

2.1. Materials

Spectroscopy grade solvents were used for photophysical experiments – ethanol (EtOH), toluene, tetrahydrofuran (THF), acetonitrile (MeCN), dimethylsulfoxide (DMSO), dimethylformamide (DMF), chloroform (CHCl₃). Puriss. p.a. grade solvents were used after distillation for synthesis and purification of compounds – dichloromethane (DCM), petroleum ether (PE), methyl tert-butyl ether (MTBE), ethanol (EtOH).

Trifluoromethanesulfonate salts of Cu(II), Cd(II), Co(II), Ag(I), Pb(II), Zn(II), Ni(II) and Ca(II) have been obtained from Solchemar, while Hg(OTf)₂, dansyl amide and all solvents were purchased from Sigma Aldrich without the necessity of performing additional steps of purification. Poly(methylmethacrylate), PMMA (MW ~ 350,000, Tg 105 °C) polyvinylpyrrolidone, PVP (MW ~40,000, Tg 170 °C), Polyvinyl alcohol (PVA, MW 27,000, Tg 85 °C) and poly(styrene-butadiene-styrene), SBS (Styrene 30 wt %, Tg 95 °C) were purchased from Sigma-Aldrich (St. Louis, MO, USA). The perfluoroalkoxy (PFA) supports for the fabrication of polymer films were purchased to Bohlender, Gmbh, Germany. Mili-Q ultrapure water was used in all experiments. The thermoplastic polyurethane TPU-A92 was offered by Huntsman (Germany)
2.2. Instrumentation

Visualization of the TLC was performed using a Vilber UV Lamp (BVL-6.LC dual wavelength 254 nm/365 nm, operational power of 2x6 Watts).

Using a combination of 1H-NMR and 13C-NMR all compounds' chemical identities were verified. Using 5 mm tubes on a Bruker Avance II+ 600 spectrometer, the 1H-NMR and 13C-NMR spectra were measured in CDCL₃ at 293 K at operating frequencies of 600.13 MHz and 150.92 MHz, respectively. 1H and 13C NMR spectra were calibrated to the signal of tetramethylsilane (TMS), $\delta=0.00$. Chemical shifts are measured to an accuracy of 0.01 parts per million (ppm). The coupling constants (J) are shown with a precision of 0.1 and represented in Hz. The spin multiplicity in the 1H-NMR was denoted by the abbreviations s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, and m = multiplet.

High-Resolution Mass Spectrometry analyses have been performed in the Laboratory for Biological Mass Spectrometry–Isabel Moura (PROTEOMASS Scientific Society Facility), using UHR ESI-Qq-TOF IMPACT HD (Bruker-Daltonics, Bremen, Germany). Samples of the corresponding compounds were prepared by dissolution in 50% (v/v) Acetonitrile containing 0.1% (v/v) aqueous formic acid to obtain a working solution of 0.1 µg/mL. Mass spectrometry analysis was carried out by the direct infusion of the compound solutions into the ESI source. MS data were acquired in positive polarity over the mass range of 80 – 1300 m/z. (Capillary voltage: 4500 V, End plate offset: -500 V, Charging voltage: 2000 V, Corona: 4000 nA, Nebulizer gas: 0.4 Bar, Dry Heater: 180 °C, Dry gas: 4.0 L/min).
UV-Vis absorption spectra were recorded on a JASCO V-650 spectrophotometer and a fluorescence emission spectrum on a HORIBA Scientific FLUOROMAX-4 spectrofluorometer from BIOSCOPE-PROTEOMASS facilities.

2.3. Synthetic procedures

2.3.1. Synthesis of intermediates 3 and 6

$N,N'-(\text{thiobis(ethane-2,1-diyl)})\text{bis(2-aminobenzamide)}$ (3):

In a 100 mL flask with 50 mL dry DCM were added consequently anthranilic acid (2) (2.51 g, 18.30 mmol, 2.2 eq.), diamine 1 (1.00 g, 0.95 mL, 8.32 mmol, 1.0 eq.), DIPEA (4.73 g, 6.05 mL, 36.60 mmol, 4.4 eq.) and TBTU (5.88 g, 18.30 mmol, 2.2 eq.). The formed clear solution was stirred at r.t. for 72 h. TLC of reaction mixture – DCM:MTBE=5:1, x1. Workup: dilution with 30 mL DCM and washing with distilled water, aq. K$_2$CO$_3$ and again with water. The organic phase was dried over anhydr. Na$_2$SO$_4$, filtered, and evaporated to dryness. This crude product was recrystallized from EtOH:H$_2$O=25:10 mL. The precipitate was filtered, washed with PE:MTBE=30:10 and dried in vacuo to give 2.22 g (74%) of pure 3 as white-off powder. M.p. 121-122° C. 1H NMR (600 MHz, CDCl$_3$) δ 7.34 (dd, $J = 7.9$, 1.5 Hz, 2H), 7.20 (ddd, $J = 8.4$, 7.1, 1.5 Hz, 2H), 6.67 (dd, $J = 8.2$, 1.1 Hz, 2H), 6.65 – 6.60 (m, 4H), 5.48 (s, 4H), 3.62 (q, $J = 6.2$ Hz, 4H), 2.82 – 2.79 (m, 4H). 13C NMR (151 MHz, CDCl$_3$) δ 169.61, 148.78, 132.53, 127.45, 117.44, 116.84, 116.01, 38.77, 31.83.

N^2,N^6-bis(2-aminobenzyl)thiophene-2,5-dicarboxamide (6):
In a 100 mL flask with 50 ml dry DCM were added consequently diacid (4) (0.300 g, 1.74 mmol, 1.0 eq.), diamine 5 (0.45 g, 3.66 mmol, 2.1 eq.), DIPEA (1.24 g, 1.58 mL, 9.59 mmol, 5.5 eq.) and TBTU (1.23 g, 3.83 mmol, 2.2 eq.). The formed fine pale-yellow suspension was stirred at r.t. for 20 h. Workup: the solvent was evaporated, and the formed solid product was dispersed in hot water and filtered. This crude product was crystalized from EtOH:H₂O = 40:5 mL, filtered and dried in vacuo to give 0.46 g (69%) of pure 6 as white powder. M.p. 214-215 °C (with decomp.). ¹H NMR (600 MHz, DMSO-d₆) δ 9.07 (t, J = 6.0 Hz, 1H), 7.75 (s, 1H), 7.02 (dd, J = 7.5, 1.6 Hz, 1H), 6.97 (td, J = 7.6, 1.6 Hz, 1H), 6.62 (dd, J = 7.9, 1.2 Hz, 1H), 6.51 (td, J = 7.4, 1.2 Hz, 1H), 5.12 (s, 2H), 4.29 (d, J = 6.1 Hz, 2H). ¹³C NMR (151 MHz, DMSO-d₆) δ 160.97, 146.27, 143.05, 129.25, 128.50, 128.10, 121.62, 115.91, 114.78.

2.3.2. Synthesis of L₁, L₂ and L₃

N,N’-(thiobis(ethane-2,1-diyl))bis(2-((5-(dimethylamino)naphthalene)-1-sulfonamido)benzamide) (L₁):

Compound 3 (0.250 g, 0.70 mmol, 1.0 eq.) was dissolved in 4 mL dry pyridine. Subsequently, dansyl chloride (0.452 g, 1.67 mmol, 2.4 eq.) was added and the formed clear solution was refluxed for 2 h. TLC of reaction mixture – DCM:MTBE=5:1, x1. Workup: after cooling an excess of conc. aq. citric acid was added and extracted with DCM. The organic phase was washed with water, dried over anhydr. Na₂SO₄, filtered, and evaporated to dryness. This crude product was purified by column chromatography:
70 g silica, phase DCM:MTBE=20:1. After evaporation of phase and drying in vacuo, pure L1 was obtained as bright yellow powder (0.31 g, 54%). M.p. 111-112°C. ¹H NMR (600 MHz, CDCl₃) δ 11.25 (s, 2H), 8.46 (dt, J = 8.6, 1.1 Hz, 2H), 8.33 (dt, J = 8.7, 0.9 Hz, 2H), 8.24 (dd, J = 7.3, 1.3 Hz, 2H), 7.55 – 7.47 (m, 4H), 7.43 (dd, J = 8.5, 7.3 Hz, 2H), 7.27 (dd, J = 7.9, 1.5 Hz, 2H), 7.28 – 7.21 (m, 2H), 7.11 (dd, J = 7.6, 0.9 Hz, 2H), 6.81 (td, J = 7.6, 1.2 Hz, 2H), 6.65 (t, J = 5.9 Hz, 2H), 3.44 (q, J = 6.4 Hz, 4H), 2.81 (s, 12H), 2.66 (t, J = 6.5 Hz, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 168.77, 151.91, 138.86, 134.80, 132.67, 130.91, 130.05, 129.93, 129.61, 128.51, 127.02, 123.13, 123.05, 120.62, 119.76, 119.12, 115.41, 45.51, 39.03, 31.50. ESI-MS: [M+H]⁺ for C₄₂H₄₄N₆O₆S₃ = 825.2552 (-0.6 ppm), and [M+2H]²⁺ for C₄₂H₄₄N₆O₆S₃ = 413.1307 (-1.9 ppm). Calculated [M+H]⁺ for C₄₂H₄₄N₆O₆S₃ = 825.255723 and [M+2H]²⁺ for C₄₂H₄₄N₆O₆S₃ = 413.131500.

N,N’-(thiobis(ethane-2,1-diyl))bis(5-(dimethylamino)naphthalene-1-sulfonamide) (L2):

Diamine 1 (0.089 g, 0.085 mL, 0.74 mmol, 1.0 eq.) and DIPEA (0.240 g, 0.32 mL, 1.85 mmol, 2.5 eq.) were dissolved in 50 mL dry DCM and cooled to 5°C (with ice-water). Then dansyl chloride (0.400 g, 1.48 mmol, 2.0 eq.) was added in one portion and the formed clear mixture was stirred for 30 min at 5°C, followed by 48 h at r.t. TLC of reaction mixture – DCM:MTBE=10:1, x1. Workup: dilution with 30 mL DCM and washing with 1% aq. citric acid and water. The organic phase was dried over anhydr. Na₂SO₄, filtered and evaporated to dryness. This crude product was purified by column chromatography: 70 g silica, phase DCM:MTBE=20:1. After evaporation of phase and drying in vacuo, pure L2 was obtained as pale-yellow powder (0.20 g, 46%). M.p. 70-71°C. ¹H NMR (600 MHz,
CDCl₃ δ 8.53 (d, J = 8.5 Hz, 2H), 8.24 (d, J = 8.6 Hz, 2H), 8.20 (dd, J = 7.3, 1.3 Hz, 2H), 7.54 (dd, J = 8.6, 7.5 Hz, 2H), 7.50 (dd, J = 8.5, 7.3 Hz, 2H), 7.17 (d, J = 7.5 Hz, 1H), 2.88 (s, 16H), 2.25 (t, J = 6.4 Hz, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 152.18, 134.53, 130.78, 129.96, 129.78, 129.59, 128.69, 123.32, 118.69, 115.41, 45.55, 42.00, 31.42.

ESI-MS: [M+H]⁺ for C₂₈H₃₄N₄O₄S₃ = 587.1811 (-0.7 ppm). Calculated [M+H]⁺ for C₂₈H₃₄N₄O₄S₃ = 587.181495.

N⁵,N⁶-bis(2-((5-(dimethylamino)naphthalene)-1-sulfonamido)benzyl)thiophene-2,5-dicarboxamide (L₃):

Compound 6 (0.300 g, 0.79 mmol, 1.0 eq.) was dissolved in 5 mL dry pyridine. Then dansyl chloride (0.468 g, 1.73 mmol, 2.2 eq.) was added and the formed clear solution was stirred at r.t. for 72 h. TLC of reaction mixture – DCM:MTBE=5:1, x2. Workup: excess of conc. aq. citric acid was added and extracted with DCM. The organic phase was washed with water, dried over anhydr. Na₂SO₄, filtered, and evaporated to dryness. This crude product was purified by column chromatography: 70 g silica, phase 1 - DCM:MTBE=10:1 (for contaminations); phase 2 - DCM:MTBE=5:1 (for product). After evaporation of phase and drying in vacuo, pure L₃ was obtained as pale-yellow powder (0.51 g, 76%). M.p. 263-264°C. ¹H NMR (600 MHz, DMSO-d₆) δ 10.24 (s, 2H), 9.23 (t, J = 6.1 Hz, 2H), 8.47 (dt, J = 8.5, 1.1 Hz, 2H), 8.42 – 8.36 (m, 2H), 8.09 (dd, J = 7.3, 1.3 Hz, 2H), 7.76 (s, 2H), 7.57 (ddd, J = 11.9, 8.6, 7.4 Hz, 4H), 7.24 (dd, J = 7.7, 0.9 Hz, 2H), 7.20 – 7.15 (m, 2H), 7.12 – 7.05 (m, 4H), 6.90 – 6.85 (m, 2H), 4.32 (d, J = 6.1 Hz, 4H), 2.81 (s, 12H). ¹³C NMR (151 MHz, DMSO-d₆) δ 161.39, 151.61, 142.64, 135.47, 134.49,
133.19, 130.31, 129.56, 129.07, 128.27, 127.97, 125.91, 124.11, 123.69, 118.77,
115.35, 45.14. ESI-MS: [M+H]$^+$ for C_{44}H_{42}N_6O_6S_3 = 847.2389 (-1.3 ppm), and [M+2H]$^{2+}$
for C_{42}H_{42}N_6O_6S_3 = 424.1245 (1.9 ppm). Calculated [M+H]$^+$ for C_{44}H_{42}N_6O_6S_3 =
847.240073, and [M+2H]$^{2+}$ for C_{42}H_{42}N_6O_6S_3 = 424.123674.

2.4. Spectrophotometric and spectrofluorimetric measurements

2.4.1. Photophysical characterization and titrations

Photophysical characterizations and titrations were performed by preparation of stock
solutions of compounds L_1, L_2 and L_3 (ca. 10^{-3} M) in different solvents (CH_3CN, EtOH,
DMSO, CHCl_3, Toluene, THF and DMF), by dissolution of an appropriate amount of the
selected compound in a 10 mL volumetric flask. Further studies were carried out by
appropriate dilution of the stock solutions up to 10^{-5} – 10^{-6} M.

Titrations of L_1 and L_2 were carried out by the addition of microliter aliquots of standard
solutions of Ca^{2+}, Co^{2+}, Ni^{2+}, Cu^{2+}, Zn^{2+}, Ag^{+}, Cd^{2+}, Hg^{2+}, Pb^{2+} ions prepared in
acetonitrile, while titrations of L_3 were carried out in DMSO. A correction for the absorbed
light was performed when necessary. Luminescence spectra of the compounds in the
solid state and of doped polymer thin films were recorded using of a fiber-optics device
connected to the spectrofluorometer while exciting the samples at appropriated
wavelength. The temperature dependent emission spectra were recorded by heating the
samples over a hotplate with control over the temperature.
Table 1. Spectroscopic polarity parameters, physical properties of the different solvents. \(\varepsilon_r \): relative permittivity; \(\eta \): refractive index; \(\alpha \): the solvent’s HBD acidity; \(\beta \): the solvent’s HBA basicity; \(\pi^* \): the solvent’s dipolarity/polarizability.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>(\varepsilon_r)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\pi^*)</th>
<th>(\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>47.24</td>
<td>0</td>
<td>0.76</td>
<td>1</td>
<td>1.47</td>
</tr>
<tr>
<td>DMF</td>
<td>38.4</td>
<td>0</td>
<td>0.69</td>
<td>0.88</td>
<td>1.43</td>
</tr>
<tr>
<td>(\text{CH}_3\text{CN})</td>
<td>35.94</td>
<td>0.19</td>
<td>0.40</td>
<td>0.66</td>
<td>1.34</td>
</tr>
<tr>
<td>Ethanol</td>
<td>24.30</td>
<td>0.86</td>
<td>0.75</td>
<td>0.54</td>
<td>1.36</td>
</tr>
<tr>
<td>THF</td>
<td>7.58</td>
<td>0</td>
<td>0.55</td>
<td>0.58</td>
<td>1.40</td>
</tr>
<tr>
<td>(\text{CHCl}_3)</td>
<td>4.89</td>
<td>0.20</td>
<td>0.10</td>
<td>0.69</td>
<td>1.44</td>
</tr>
<tr>
<td>Toluene</td>
<td>2.38</td>
<td>0</td>
<td>0.11</td>
<td>0.54</td>
<td>1.49</td>
</tr>
</tbody>
</table>

2.4.2. Fluorescence quantum yield and Lifetime

Relative photoluminescence quantum yields were measured using dansyl amide in acetonitrile employed as a standard solution (\(\phi_F = 0.37 \)) for quantifying the relative QY of \(\text{L1 and L2} \) dissolved in the same solvent and in DMSO for \(\text{L3} \), while the remaining ones were measured relative to the standard solution of dansyl amide in DMSO (\(\phi_F = 0.61 \)). \[^{46}\] Tempro Fluorescence Lifetime System with a Nanoled pulsed diode controller from Horiba Jobin-Yvon (Protemass Facilities) was used to perform lifetime measurements.

2.5. Determination of the detection and quantification limits (LOD and LOQ)
Determination of the detection limit (LOD) and quantification limit (LOQ) began by collecting ten independent measurements of a solution containing the selected probe and no addition of any metal ion (y_{blank}). Final determination of the LOD and LOQ values followed the subsequent formulars:

LOD = y_{dl} = y_{blank} + 3std, where y_{dl} = signal detection limit and std = standard deviation.

LOQ = y_{dl} = y_{blank} + 10std, where y_{dl} = signal detection limit and std = standard deviation.

The final step involved the determination of the minimal detectable and quantified concentration of metal ion by titration with the ligands.

2.6. Preparation of polymer Dye-Doped thin films

PMMA and SBS doped polymer thin films were obtained by slow evaporation of a 10 mL chloroform solution containing 100 mg of the corresponding polymer matrix and 0.5 mg of the selected compound.

PVA:PVP polymer films were prepared by dissolution of 200 mg of PVA and 50 mg of PVP in 1.5 mL miliQ water, while heating at 80 °C, with continuous stirring and 0.5 mg of the dansyl dyes were dissolved in 2 mL of EtOH and added to the hot mixture.

TPU doped polymer films were fabricated by dissolving 100 mg of the polymer matrix and 1 mg of the corresponding compounds in 10 mL of THF.

All mixtures were poured onto PFA supports with diameter of 5 cm to allow solvent evaporation at room temperature. All polymeric samples were prepared in triplicate.

3. Results and Discussion

3.1. Synthesis
The synthesis of target compounds L1 and L2 was based on commercially available thiodiamine 1 (Scheme 1). Preparation of intermediate 3 was accomplished by direct coupling reaction of 1 with anthranilic acid (2). Due to better nucleophilicity of aminogroups of 1, preparation of 3 was performed in only one step and isolated with good yield without need of protection. Consequently, acylation of 3 with dansyl chloride in dry pyridine furnished the target product L1 in good yield. The synthesis of compound L2 was performed in one step starting from 1 and dansyl chloride, employing classical conditions (Et₃N in dry dichloromethane).

The preparation of ligand L3 was conducted in two steps (Scheme 2). Intermediate 6 was prepared in one step from commercially available diacid 4 and diamine 5, respectively. As in case of 3, protection of 5 was not necessary. Acylation of 6 with excess of dansyl chloride in dry pyridine yields product L3. All intermediates and target compounds were
obtained in good yields and high purity after column chromatography. They were fully characterized by NMR, MS and melting point temperatures.

Scheme 1. Synthetic approach to the preparation of compounds L1 and L2

![Scheme 1](image)

Scheme 2 Synthetic approach to the preparation of compound L3

3.2. Photophysical characterization

The dansyl derived compounds exhibit luminescence properties both in solution and in the solid state. Figure 1 displays the molecular structure alongside the photophysical data collected at 298 K for compound L1 and L2 in acetonitrile as well as in DMSO for L3 as
a representative example. The UV-Vis spectra show a band centered at 330, 340 and 350 nm; associated with the $\pi-\pi^*$ transition of the dansyl chromophore, contributing to the visualization of colourless solutions in the naked eye. Upon excitation at the appropriate wavelength, the samples emit a greenish yellow light with a maxima at 524, 518 and 532 nm representative of a large stoke shift. On a relatable note, solid-state emission spectra show a wide band centered at 509, 499 and 469 nm, a considerable blue shift in relation to the emission in solution (Table 2).

Since dansyl derivatives are commonly associated with solvatochromism behavior, L1-L3 were further studied for their photophysical properties in five different solvents to evaluate the sensitivity towards solvent polarity. Alongside in acetonitrile, L1 and L2 were further studied in DMSO, ethanol, THF, chloroform and toluene; Due to solubility restrictions L3 was studied in THF and DMF (Figure S14-S18).
Figure 1. (A) Molecular structure of dansyl based compounds L1, L2 and L3. Photophysical characterization of derivatives L1 (B), L2 (C) in acetonitrile and L3 (D) in DMSO ([L1]=[L2]=[L3]= 6 µM).

Table 2. Absorption maximum wavelength in solution (λ_{abs}), emission maximum wavelength in solution (λ_{em}), molar absorption coefficients (ε), Stokes shift ($\Delta\varepsilon$), emission maximum in the solid state ($\lambda_{em}^{\text{solid}}$), fluorescence quantum yields (ϕ), brightness ($\varepsilon \times \phi$), fluorescence lifetimes (τ) for compounds L1 and L2 in acetonitrile and L3 in DMSO.

<table>
<thead>
<tr>
<th>Cpd.</th>
<th>Solv.</th>
<th>λ_{abs} [nm]</th>
<th>λ_{em} [nm]</th>
<th>ε [10^4 cm$^{-1}$ M$^{-1}$]</th>
<th>Stokes shift [cm$^{-1}$]</th>
<th>ϕ (%)</th>
<th>Brightness ($\varepsilon \times \phi$) [cm$^{-1}$ M$^{-1}$]</th>
<th>τ[ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>DMSO</td>
<td>350</td>
<td>534</td>
<td>0.9995</td>
<td>53764</td>
<td>24</td>
<td>2358</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>EtOH</td>
<td>334</td>
<td>520</td>
<td>0.8042</td>
<td>53764</td>
<td>17</td>
<td>1359</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>THF</td>
<td>336</td>
<td>507</td>
<td>1.1873</td>
<td>58480</td>
<td>47</td>
<td>5557</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>CHCL3</td>
<td>345</td>
<td>506</td>
<td>1.0682</td>
<td>62112</td>
<td>51</td>
<td>5405</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>343</td>
<td>500</td>
<td>0.8163</td>
<td>63694</td>
<td>51</td>
<td>4187</td>
<td>13</td>
</tr>
<tr>
<td>L2</td>
<td>DMSO</td>
<td>340</td>
<td>520</td>
<td>0.9558</td>
<td>55556</td>
<td>48</td>
<td>4587</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>EtOH</td>
<td>335</td>
<td>515</td>
<td>0.9643</td>
<td>55556</td>
<td>33</td>
<td>3182</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>THF</td>
<td>336</td>
<td>492</td>
<td>1.2143</td>
<td>64103</td>
<td>52</td>
<td>6314</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>CHCL3</td>
<td>343</td>
<td>500</td>
<td>0.8020</td>
<td>63694</td>
<td>60</td>
<td>4812</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>341</td>
<td>489</td>
<td>0.8998</td>
<td>70423</td>
<td>53</td>
<td>4769</td>
<td>16</td>
</tr>
<tr>
<td>L3</td>
<td>DMF</td>
<td>336</td>
<td>523</td>
<td>1.1618</td>
<td>53476</td>
<td>3.6</td>
<td>418</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>THF</td>
<td>339</td>
<td>501</td>
<td>1.3448</td>
<td>61728</td>
<td>7.3</td>
<td>981</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Table 3. Photophysical characterization of probes L1 and L2 performed in different organic solvents.

<table>
<thead>
<tr>
<th>Cp.</th>
<th>λ_{abs} [nm]</th>
<th>λ_{em} [nm]</th>
<th>ε [cm$^{-1}$ M$^{-1}$]</th>
<th>Stokes shift [cm$^{-1}$]</th>
<th>$\lambda_{em}^{\text{solid}}$ [nm]</th>
<th>ϕ</th>
<th>Brightness ($\varepsilon \times \phi$) [cm$^{-1}$ M$^{-1}$]</th>
<th>τ[ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>330</td>
<td>524</td>
<td>9907</td>
<td>51546.39</td>
<td>509</td>
<td>0.274</td>
<td>2714</td>
<td>11</td>
</tr>
<tr>
<td>L2</td>
<td>340</td>
<td>518</td>
<td>10572</td>
<td>56179.78</td>
<td>499</td>
<td>0.349</td>
<td>3689</td>
<td>12</td>
</tr>
<tr>
<td>L3</td>
<td>350</td>
<td>532</td>
<td>10311</td>
<td>54945.05</td>
<td>469</td>
<td>0.102</td>
<td>1051</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Taking into consideration the analysis of table 3, no correlation can be perceived following the absorption as the solvent polarity increases despite the differences in maximum bands. On the contrary, the same cannot be said for the emission, where a clear red shift of the emission maximum bands is seen, a shift from 500 to 536 nm for L1, from 489 to 520 nm for L2 and from 339 to 350 nm for L3 with increasing solvent polarity. In line with these findings, a conclusion can be taken based on the shifts observed regarding the emission spectra, demonstrating that L1 and L2 exhibit a positive solvatofluorochromism.

To fully characterize L1 and L2’s solvatofluorochromic behaviour, and to quantify the solute-solvent interactions, three solute-dependent parameters (\(u_0, a, b\) and \(p\)) have been determined through the multiparametric fitting of the Kamlet-Taft equation (Equation 1).

\[
u = \nu_0 + a\alpha + b\beta + p\pi^* \quad \text{(Equation 1)}
\]

Where \(\nu_0\) represents the wavenumber value without dependence of solvent effects; parameters \(a, b\) and \(p\) are obtained through multiple regression analysis that reflect the underlying sensitivity of the probes photophysical behaviour to solvent polarity; \(\alpha\): hydrogen bond donor acidity (HBD); \(\beta\): hydrogen bond acceptor basicity (HBA); \(\pi^*\): stabilization of a charge or dipole without a specific dielectric interaction (Table 1).\[^{29,47}\]

Figure 2 gathers the images taken under UV light lamp of L1 and L2 under a UV light lamp while Table 4 presents the fitted parameters (\(\nu_0, a, b\) and \(p\)) driven from the multiple
regression analysis while the slope and correlation were obtained from the linear fitting of the plot $u_{\text{exp.}}$ versus $u_{\text{calc.}}$.

![Image of L1 (1-6), L2 (7-12) and L3 (13-15) in different organic solvents under a UV lamp.]

Figure 2. Images of L1 (1-6), L2 (7-12) and L3 (13-15) in different organic solvents [Toluene (1,7); THF (2, 8, 13); Chloroform (3, 9); Acetonitrile (4, 10); Ethanol (5, 11); DMF (14); DMSO (6, 12, 15)] under a UV lamp.

Table 4. Independent fluorescence wavenumber (u_0), solvent polarity (p), HBD (a), HBA (b), slope and coefficient (R^2) of the linear fitting plot $u_{\text{exp.}}$ versus $u_{\text{calc.}}$.

<table>
<thead>
<tr>
<th></th>
<th>u_0</th>
<th>a</th>
<th>b</th>
<th>p</th>
<th>Slope</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>21144</td>
<td>-421</td>
<td>-721</td>
<td>-1848</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>L2</td>
<td>21790</td>
<td>-1032</td>
<td>-299</td>
<td>-2314</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>L3</td>
<td>21646</td>
<td>-1033</td>
<td>-301</td>
<td>-2626</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

From table 4 it is perceived that L3 has the highest polarizability making it more likely to be distorted by an external field.
3.3. Metal Ions Sensing

Keeping in mind the potential value of these dansyl derivatives to be used towards the sensing of metal ions, additions of 1, 5 and 10 equivalents of Ca\(^{2+}\), Co\(^{2+}\), Ni\(^{2+}\), Cu\(^{2+}\), Zn\(^{2+}\), Ag\(^{+}\), Cd\(^{2+}\), Hg\(^{2+}\) and Pb\(^{2+}\) in acetonitrile were performed. Figure 3 gathers the normalized emission intensities at 524, 518 and 532 nm of compounds L1-L3, respectively, upon addition of the aforementioned metal ions. Compounds L1 and L2 showed sensitivity towards Cu\(^{2+}\) and Hg\(^{2+}\) metal ions while L3 hasn’t been found to have any meaningful variation on its emission after addition of 10 equivalents of each metal most likely due to the inherent rigidity of the system.

![Graphs A, B, C showing normalized emission intensities for L1, L2, L3 respectively.](image-url)
Figure 3. Normalized emission intensity of L1 (A), L2 (B) and L3 (C) after addition of Ca\(^{2+}\), Co\(^{2+}\), Ni\(^{2+}\), Cu\(^{2+}\), Zn\(^{2+}\), Ag\(^{+}\), Cd\(^{2+}\), Hg\(^{2+}\) and Pb\(^{2+}\) metal ions in successive proportions of 1, 5, and 10 equivalents in acetonitrile for L1 and L2 while in DMSO for L3. ([L1]=[L2]=[L3]= 20µM, \(\lambda_{\text{emL1}} = 524\) nm, \(\lambda_{\text{emL2}} = 518\) nm, \(\lambda_{\text{emL3}} = 532\) nm, T = 298K).

In face of the previous results, Figure 4 gathers the UV-Vis and luminescent titrations towards increasing amounts of Cu\(^{2+}\) (A, C) and Hg\(^{2+}\) (B, D) for L1 and L2, respectively. Overall, the addition of both metal ions causes the continuous decrease of the absorbance maxima centered at 330 and 340 nm for L1 and L2, respectively, while simultaneously a gradual formation of a band with a maximum around 300 nm is observed for both compounds, followed by the appearance of an additional band located around 370 nm in particular for L2 when added Hg\(^{2+}\). In terms of the emission spectra, a quenching on its intensity is observed in both cases at 524 (L1) and 518 nm (L2).
Figure 4. UV-Vis and luminescent titrations of compounds L1 (A, B) and L2 (C, D) upon continuous addition of 10 µL of Cu²⁺ (A, C; [Cu²⁺] = 0.9 mM), and Hg²⁺ (B, D; [Hg²⁺] = 0.3 mM) in acetonitrile. The inset represents the emission (A-D) as a function of [Cu²⁺]/[L1] at 524 nm (A), of [Cu²⁺]/[L2] at 518 nm (C), of [Hg²⁺]/[L1] at 524 nm (B) and of [Hg²⁺]/[L2] at 518 nm (D). [L1] = [L2] = 20 µM, λ_{exc,L1}=330 nm, λ_{exc,L2}=340 nm, T = 298 K).

To fully characterize the sensing ability towards Cu²⁺ and Hg²⁺, the stability constants were calculated with the aid of HypSpec software [49] alongside calculation of the detection and quantification limit parameters for both dansyl derivatives. The association constants, LOD and LOQ are included in Table 5.

Table 5. HypSpec’s calculated association constants and stoichiometry for the probes L1 and L2 towards Cu²⁺ and Hg²⁺ ions, in CH₃CN alongside the respective values for the Minimal detectable (LOD) and quantified (LOQ) amounts (µM). LOD and LOQ were measured by the emission at 524 and 518 nm for L1 and L2, respectively.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Metal (M)</th>
<th>Association constants (LogK_{ass.}, L:M)</th>
<th>LOD (µM)</th>
<th>LOQ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Cu²⁺</td>
<td>4.82 ± 0.03 (1:1)</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Hg²⁺</td>
<td>5.29 ± 0.06 (1:1)</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>L2</td>
<td>Cu²⁺</td>
<td>5.00 ± 0.04 (1:1)</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Hg²⁺</td>
<td>6.38 ± 0.02 (1:1)</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 5 reveals that both probes assemble in mononuclear species with Cu²⁺ and Hg²⁺ with the highest constant belonging to L2 towards Hg²⁺ with a stability constant value of LogK_{ass.} = 6.38 ± 0.02. Ligand L2 has also been found to exhibit the lowest LOD and LOQ values (4 µM and 7µM) being indicative of a higher affinity to bind with Hg²⁺ ions. These results highlight the potential usefulness of this probe in environmental remediation of Hg²⁺ ions where there is the need to monitor its presence in lower concentrations.
Regarding compound \textbf{L1}, the lower stability constants found for this compound may be due to the increased stereochemical hindrance promoted by the addition of the benzene moiety which in turn disables to some degree the accessibility for the coordination to occur.

3.4. Studies using solid support compound \textbf{L1}.

Surprisingly, the low solubility of compound \textbf{L1} in water offers an advantage when considering future practical applications. \textbf{L1} exhibits the lowest detection and quantification limit for Hg$^{2+}$ metal ions in solution, making it suitable for supporting on low-cost, simple cellulose discs for the determination of Hg$^{2+}$ in aqueous solutions.

Blank discs (\textit{Liofilchem}) with a diameter of 6 mm were impregnated with a solution of \textbf{L1} ([\textbf{L1}] = 10 µM) in THF. After drying, the resulting white discs containing \textbf{L1} were briefly immersed for 5 s in water solutions with increasing concentrations of Hg$^{2+}$ (0, 25, 50, 100, 200, 300, and 400 ppm). Figure 5 illustrates the visual colour emission changes under a UV lamp. Notably, a visual detection of Hg$^{2+}$ in water is possible from concentrations as low as 100 ppm. This method holds great potential for the development of portable and convenient in-the-field detection of Hg$^{2+}$.

\textbf{Figure 5}. Visual changes in Blank Discs (\textit{Liofilchem}) containing compound \textbf{L1} (10 µM) after immersion in water solutions containing increasing concentrations of Hg$^{2+}$ metal ion (0-400 ppm).
3.5. Tuning the emission of dansyl derivatives towards temperature smart materials

Since L1-L3 were found to exhibit emission in the solid state and manifest solvatofluorochromism due to the different properties of the solvents, the next intention is to modulate the emission of these ligands in solid supported materials to develop molecular thermometers through emission. In line with this premise, the compounds have been studied initially without the use of a solid supports. For this, emission of each probe has been recorded with the increase of temperature in the solid state. Figure 6 gathers the emission spectra and the plot of I_{nom} in relation to temperature for compound L3. The results suggest that L3 manifests a linear relation of its emission and the increase of temperature between 30 and 129°C. The same behavior was also found during the cooling cycle. This compound was found to completely recover its emission by the end of the cooling cycle as it can be seen in Figure 6.
Figure 6. Temperature-dependent emission spectra of L3 in the solid state (A) collected through a warming cycle between 30°C to 170°C. I_{norm} vs. T plot recorded in the emission maximum at 472 nm upon heating (B) [30 to 129 °C (Y= 1.2243 + 0.0077612x), yielding R=0.99663]. Temperature-dependent emission spectra of L3 (C) collected through a cooling cycle between 31°C to 149°C. I_{norm} vs. T plot recorded in the emission maximum at 472 nm upon cooling (D) [31 to 149 °C (Y= 1.2571 + 0.0072628x), yielding R=0.99502].

Regarding compound L1 and L2, a relation has been found between emission and temperature for L1 between 30 and 70 °C while no linearity was observed for L2 as can be seen in Figure S19 and S20. Also, after cooling the emission did not recover substantially suggesting partial degradation of both compounds. This is most likely due
to their low melting point around 112 and 70°C for compound L1 and L2, respectively. The same was not found for compound L3 since its melting point is 264°C. Thus, L1 and L3 have shown promising results allowing them to be used as temperature sensors, however applications may be hindered due to the lack of solid supports.

According with the previous findings, several polymers doped thin films have been developed as a next step to improve the sensing applications. Compound L1 and L2 were doped in PMMA, SBS, PVA:PVP and TPU while L3, due to solubility restrictions, has been doped only in TPU. Figure 7 gathers the comparison between the emission spectra in the solid state and each emission of the different polymer thin films while Table 6 presents the corresponding emission maximum.
Figure 7. Comparison between the emission spectra of the different polymer thin films doped with (A) L1, (B) L2 and (C) L3 and the respective emission spectrum in the solid state. Images of the different polymer doped films and in the solid state under UV-light and under natural light (*) (D).

Table 6. Emission maximum in the solid state ($\lambda_{em}^{\text{Solid}}$), emission maximum of PMMA thin films ($\lambda_{em}^{\text{PMMA}}$), emission maximum of SBS thin films ($\lambda_{em}^{\text{SBS}}$), emission maximum of PVA/PVP thin films ($\lambda_{em}^{\text{PVA/PVP}}$), emission maximum of TPU thin films ($\lambda_{em}^{\text{TPU}}$).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>$\lambda_{em}^{\text{Solid}}$ [nm]</th>
<th>$\lambda_{em}^{\text{PMMA}}$ [nm]</th>
<th>$\lambda_{em}^{\text{SBS}}$ [nm]</th>
<th>$\lambda_{em}^{\text{PVA/PVP}}$ [nm]</th>
<th>$\lambda_{em}^{\text{TPU}}$ [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>509</td>
<td>472</td>
<td>506</td>
<td>499</td>
<td>493</td>
</tr>
<tr>
<td>L2</td>
<td>499</td>
<td>467</td>
<td>471</td>
<td>472</td>
<td>487</td>
</tr>
<tr>
<td>L3</td>
<td>469</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>491</td>
</tr>
</tbody>
</table>
Overall, polymer thin films were successfully developed, and their emission properties were investigated. As it can be perceived by Figure 7, the molecular structure of the polymer matrix is able to tune the final emission of the film by interacting with the probe. PMMA films display the largest blue-shift of 37 and 32 nm for L1 and L2, respectively, without relevant input of the differences in molecular structure of both probes. However, for SBS and PVA/PVP more pronounced differences are observed due to the influence of the molecular structure. Compound L1 tends to suffer less relevant blue-shifts on these polymer matrixes than L2 most likely due to the increased compatibility that the benzene moieties provide while dispersed. Regarding TPU polymer thin films of L1 and L2, blue shifts of 16 and 12 nm are observed. Nevertheless, the most interesting appears to be L3 that when doped originates a red shift of 22 nm.

In face of the previous results, each polymer doped films were studied with variation in temperature aiming to better understand whether it is possible to humper the constrains that were found in the solid state for L1 and L2. Figure 8 gathers the emission of the different polymer films doped with L2, as a representative example, alongside L3 doped in TPU polymer film while polymer doped films of L1 can be seen in Figures S21-S24.
Figure 8. Temperature-dependent emission spectra of L2 doped in (A) PMMA during heating cycle [Inset: I_{norm} vs. T plot at 467 nm upon heating: 120 to 218 °C ($Y = 1.0919 - 0.004465x$), yielding $R=0.9948$]; (B) PMMA during cooling cycle [Inset: I_{norm} vs. T plot at 467 nm upon cooling: 51 to 218 °C ($Y = 1.0787 - 0.0042258x$), yielding $R=0.99644$]; (C) SBS during heating cycle [Inset: I_{norm} vs. T plot at 471 nm upon heating: 70 to 189 °C ($Y = 1.2484 - 0.0060553x$), yielding $R=0.99652$]; (D) PVA/PVP during heating cycle [Inset: I_{norm} vs. T plot at 472 nm upon heating: 110 to 199 °C ($Y = 1.1712 - 0.0055656x$), yielding $R=0.99736$]; (E) TPU during heating cycle [Inset: I_{norm} vs. T plot at 487 nm upon heating: 70 to 158 °C ($Y = 0.99593 - 0.00411x$), yielding $R=0.99574$]. Temperature-dependent emission spectra of L3 doped in (F) TPU during heating cycle [Inset: I_{norm} vs. T plot at 491 nm upon heating: 80 to 159 °C ($Y = 1.611 - 0.0096602x$), yielding $R=0.99758$].

Regarding the PMMA doped film, this material suffers its quenching with increments of temperature up to 218 °C. Intriguingly, the behaviour observed for L1 and L2 in the solid state, due to their melting point, does not influence to the same extent the emission in the solid support. The polymer matrix serves as a media to maintain the emission at higher temperatures by providing sufficient conductivity which attenuates the thermal activated
non-radiative processes that the compounds manifest. Likewise, as the cooling stage proceeds the emission gradually increases until it reaches room temperature and is capable of recovering 85% of the initial fluorescence. Additionally, linearity can be perceived from 120 to 218 °C during heating and until 51°C while cooling. It is also, interesting to note that the glass transition temperature of PMMA (T_g 105 °C) do not seem to have any influence in the emission behaviour of the film.

Remaining polymer supports were able to provide similar behaviour in relation to the emission properties with temperature. However, were not able to reach the same temperatures as PMMA and have been also found to not recover substantially their emission when cooled to room temperature (Figure S25) since they start to experience physical changes. On the other hand, linearity of the emission with temperature can still be perceived for SBS, PVA/PVP, and TPU between 70 to 189 °C, 110 to 199 °C and 70 and 158 °C.

In the case of TPU doped with L3, the quenching of the emission is observed similarly as observed for the solid state, however linearity can only be seen between 80 to 159 °C, while during cooling emission recovers 40% and shows linearity between 33 and 148 °C (Figure S26). Nevertheless, in agreement with the other doped polymer materials studied, the incorporation of the probe onto a solid support provides the means to be applied as a molecular thermometer without restrictions imposed by their physical characteristic and, in this particular case, the polymer matrix can tune the emission wavelength to better suit the application.
4. Conclusions

In present work, three new bis-dansyl probes containing a sulfide bridge were synthesized and their photophysical properties were studied. Since dansyl compounds are known to exhibit solvatofluorochromism, photophysical studies were carried out in different solvents to fully evaluate the influence of each solvent’s intrinsic characteristics on the probes’ emission. The equation of Kamlet-Taft was implemented to gain value insights into solute-solvent interactions, and positive solvatofluorochromism behaviour was observed for all compounds. The presence of heteroatoms also enables the study of how metal ions influence the probes’ photophysical behaviour. From an environmental remediation perspective, L1 and L2 were found to quench their emission in the presence of Hg$^{2+}$ and Cu$^{2+}$ ions. Further calculations suggested that these compounds form mononuclear species with Cu$^{2+}$ and Hg$^{2+}$ and that L2 has the highest association constant with Hg$^{2+}$ (Log$K_{ass.}$ = 6.38) and an LOD and LOQ of 4 µM and 7µM, respectively. Finally, the probes were characterized in the solid state and doped in solid supports for the development of molecular thermometers PMMA, SBS, PVA/PVP, and TBU doped polymers were synthesized, and their luminescence was studied. The polymer matrix was found to modulate the emission maximum of all compounds and contribute to the emission at higher temperatures than those found in the solid state. Good linearity could also be observed at elevated temperatures, making these probes suitable candidates as temperature sensors in industrial applications.

CRediT authorship contribution statement
Frederico Duarte: Formal analysis, Investigation, Writing - Original Draft, Writing - Review & Editing, Visualization.

Georgi Dobrikov: Methodology, Validation, Formal Analysis, Investigation, Writing - Original Draft, Writing - Review & Editing, Resources, Visualization.

Atanas Kurutos: Methodology, Validation, Formal Analysis, Investigation, Writing - Original Draft, Writing - Review & Editing, Resources, Visualization.

Jose Luis Capelo-Martinez: Resources, Writing - Review & Editing, Funding acquisition.

Hugo M. Santos: Investigation, Resources, Validation, Writing - Review & Editing.

Elisabete Oliveira: Conceptualization, Methodology, Validation, Formal Analysis, Investigation, Resources, Writing - Original Draft, Writing - Review & Editing, Resources, Visualization, Supervision, Funding acquisition.

Carlos Lodeiro: Conceptualization, Methodology, Validation, Formal Analysis, Investigation, Resources, Writing - Review & Editing, Resources, Visualization, Supervision, Funding acquisition, Project administration

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgements

This work was supported by the Associate Laboratory for Green Chemistry LAQV which is financed by national funds from Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior (FCT/MCTES) through the projects UIDB/50006/2020 and UIDP/50006/2020. PROTEOMASS Scientific Society (Portugal) is acknowledged by the funding provided through the General Funding Grant 2022-2023, and by the funding provided to the Laboratory for Biological Mass Spectrometry Isabel Moura (#PM001/2019 and #PM003/2016). F.D. thanks to FCT/MCTES (Portugal) for his
doctoral grant 2021.05161.BD. E.O thanks FCT/MCTES (Portugal) for the individual contract, CEECIND/00648/2017. H. M. S. acknowledges the Associate Laboratory for Green Chemistry LAQV (LA/P/0008/2020) funded by FCT/MCTES for his research contract. The financial support by the Bulgarian National Science Fund (BNSF) under grant – “Novel styryl and polymethine fluorophores as potential theranostic agents” contract № КП-06-М59/1 from 15.11.2021 is gratefully acknowledged by A.K. This work is also developed and acknowledged by A.K. as part of contract №: BG-RRP-2.004-0002-C01, Laboratory of Organic Functional Materials (Project BiOrgaMCT), Procedure BG-RRP-2.004 „Establishing of a network of research higher education institutions in Bulgaria“, funded by BULGARIAN NATIONAL RECOVERY AND RESILIENCE PLAN“. G. D. thanks to the European Regional Development Fund within the Operational Programme Science and Education for Smart Growth 2014 - 2020 under the Project Center of Excellence: National center of mechatronics and clean technologies - BG05M2OP001-1.001-0008 for the financial support.

Funding
This work received support from PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through the projects UIDB/50006/2020 and UIDP/50006/2020. This work received support from PROTEOMASS Scientific Society through the General Funding Grant 2022-2023, and the projects #PM001/2019 and #PM003/2016.

Appendix A. Supporting information.

References

S. B. Yadav, S. Kothavale and N. Sekar, Triphenylamine and N-phenyl carbazole-based

https://doi.org/10.1021/acs.analchem.5b04085.

36 N. M. M. Moura, S. Valentini, V. Cheptene, A. Pucci, M. G. P. M. S. Neves, J. L. Capelo, C. Lodeiro and E. Oliveira, Multifunctional Porphyrin-based dyes for cations detection

46 M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, Handbook of Photochemistry, 3rd