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Abstract 
Machine learning (ML) continues to revolutionize computational chemistry by accelerating 
predictions and simulations by training on experimental or accurate but expensive quantum 
chemical (QC) calculations. Photodynamics simulations require hundreds of trajectories 
coupled with multiconfigurational QC calculations of energies, forces, and non-adiabatic 
couplings that contribute to the prohibitive computational cost at long timescales and complex 
organic molecules. ML accelerates photodynamics simulations by combining nonadiabatic 
photodynamics simulations with an ML model trained with high-fidelity QC calculations of 
energies, forces, and non-adiabatic couplings. This approach has provided time-dependent 
molecular structural information for understanding photochemical reaction mechanisms of 
organic reactions in vacuum and complex environments (i.e., explicit solvation). This review 
focuses on the fundamentals of QC calculations and machine learning techniques. We then 
discuss the strategies to balance adequate training data and the computational cost of 
generating these training data. Finally, we demonstrate the power of applying these ML-
photodynamics simulations to understand the origin of reactivities and selectivities of organic 
photochemical reactions, such as cis-trans isomerization, [2+2]-cycloaddition, 4π-electrostatic 
ring-closing, and hydrogen roaming mechanism. 
 
1. Introduction 
Photochemical reactions are ubiquitous and responsible for many processes, including 
photosynthesis, vision, photocatalysis, and photodissociation. They generally occur in mild 
conditions with high atomic economies and provide synthetic tools with excellent 
spatiotemporal control over chemoselectivity, regioselectivity, and stereoselectivity. These 
essential features enable building molecular frameworks from designed molecules1-3 to 
structurally complex natural products.4-6 As such, photochemical reactions are gaining 
increasing importance in academic research and industrial applications for the synthesis of 
energy-dense fuels,7-11 innovation of energy storage devices,12-16 advancement of drug 
design,17, 18 and development of novel materials.19, 20 
 
Photochemical reactions begin with a ground-state molecule absorbing a photon with an 
appropriate frequency to promote an instantaneous electronic transition to an excited state of 
the same spin multiplicity. The subsequent processes redistribute the absorbed energy along 
the molecular vibration modes on the excited-state potential energy surface (PES), which leads 
to structural transformations. In contrast to light-induced luminescence as the consequence of 
the radiative decay, photochemical reaction undergoes a nonradiative decay relaxing the 
photoexcited molecule to the ground state as a product or ground-state reactive intermediate. 
Recent developments in time-resolved spectroscopic technologies allow chemists to study 
photochemical reactions on an ultrafast timescale.21-23 In principle, the instrument, for instance, 
transient absorption spectroscopy, can probe the excited-state dynamics of photoexcited 
molecules and provides structural information. At the same time, the reacting species evolve 
during photochemical reactions. However, interpreting the molecular vibrations becomes 
increasingly complicated for conformationally flexible molecules with competing non-radiative 
mechanistic pathways. The increasing degrees of freedom lead to elusive spectroscopic data, 
where the excited-state vibrational modes involve multiple synchronous bond stretching or 
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torsions. Moreover, the timescale resolution of spectroscopy techniques (i.e., transient 
absorption and time-of-flight mass spectroscopy) is infeasible to capture all transient 
intermediates and molecules in excited states. 
Quantum mechanics provides a theoretical framework to understand the relationship between 
molecular excited-state structures and their reactivities and selectivities. Calculations of the 
electronic transitions and the mechanistic critical points along the relevant excited-state PES 
provide unprecedented knowledge of the time-dependent evolution of molecular excited states 
toward photoproducts. 
 
The theories derived from a static PES in equilibrium often fail to explain the reaction 
mechanisms of the photochemical reactions over a vast range of timescales (10–15 to 10–3 s). 
As such, dynamical effects must be considered to understand experimental quantum yields or 
predict the outcome of unknown photochemical reactions. These dynamical effects can be 
simulated with nonadiabatic molecular dynamics (NAMD). The mixed quantum-classic (MQC) 
trajectory formalism of NAMD is widely used to capture the dynamical effects on the excited- 
and ground states on-the-fly. The MQC trajectory propagates along an excited-state PES using 
classical mechanics by solving Newton's Equation of Motion. Quantum chemical methods 
evaluate nuclear forces by solving approximations to Schrödinger's Equation. Despite the 
flexibility and accuracy of NAMD simulations, they can have a prohibitive computational cost 
because they rely on thousands of consecutive QC calculations along a reaction coordinate. 
Thus, the NAMD simulation based on time-dependent density functional theory (TDDFT) and 
post-Hartree-Fock (HF) calculations are commonly limited to medium-sized molecules with 
40–50 atoms and timescales of only a few picoseconds.24, 25 Therefore, many research groups 
are developing new approaches to extend the length and timescale of NAMD, such as 
improving the accuracy of semiempirical methods,26-28 fitting analytical potential with linear 
vibronic coupling model29, 30 and accelerating QC calculations with GPU.31 
With the rise of high-performance computing resources, researchers worldwide have 
generated massive amounts of data; ML has been used to design molecules that intelligently 
satisfy multiple properties.32, 33 Examples of these include material design and drug 
discovery,34, 35 reaction barrier prediction,36 transition states search,37-39 solving the 
Schrödinger equation40, 41 modeling wave functions,42, 43 optimizing density functionals,44, 45 and 
predicting IR,46 UV-Vis,47, 48 and NMR49  spectra. The main advantage of ML is that it can 
effectively learn the N-dimensional relationships of any input-output relation datasets that are 
otherwise overwhelming to humans. This feature enables the development of ML potential as 
an alternative for QC calculations to predict excited-state PESs for NAMD at a negligible 
computational cost without losing accuracy. 
 
This review provides an overview of recent developments in ML photodynamics. We will first 
discuss the fundamentals of the theoretical methods integrated into the ML photodynamics 
approach, including the QC methods available for generating accurate reference data of 
excited-state electronic properties. Then we will review the NAMD approaches compatible with 
ML potentials for simulating photochemical reactions, the ML techniques ready for fitting 
excited-state PESs with QC reference data, and the training data generation strategies. Then, 
the following sections will summarize the applications of ML photodynamics with recent studies 
on photochemical reaction mechanisms, such as cis-trans isomerization, [2+2]-cycloadditions, 
4π-electrocyclic ring-closing reactions, and hydrogen roaming. Finally, the discussions will be 
focused on the emerging chemical problems in photochemical reaction research and the 
technical details of the employed QC and ML methods. 
 
2. Methods 
We first introduce the methods used in the ML photodynamics simulation. Figure 1 illustrates 
a brief flowchart for choosing appropriate methods in our experience, explained by the 
following discussions. 
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Figure 1. Flowchart for choosing machine learning models, nonadiabatic dynamics methods, 
and quantum chemical methods for training data calculations. 
 
2.1. Machine learning methods 
ML methods are popular for developing fast and accurate potential models for molecular 
dynamics simulations.50, 51 For photodynamics simulations, the ML potential learns the 
relationships between the molecular structures and the ground and excited-state electronic 
properties, for instance, energies, forces, nonadiabatic couplings (NACs), and spin-orbit 
couplings (SOCs). The molecular descriptor numerical representation encodes three-
dimensional structural information. The ML model reads the molecular descriptor to predict the 
ground and excited-state energies, forces, NACs, and SOCs by minimizing the errors between 
the expected numbers and the ground-truth data. Selection of the ML models and molecular 
descriptors needs extraordinary carefulness because they are two main factors determining 
the accuracy of the ML potentials for photodynamics simulations. 
Kernel and neural networks (NNs) are popular methods for training ML potentials (Figure 1). 
The kernel methods (e.g., Kernel ridge regression and Gaussian process regression) are 
nonparametric to search the form of the kernel functional depending on the training data that 
make probabilistic predictions. The complexity and number of parameters of kernel methods 
increase as the training data expands. Neural networks optimize a fixed number of predefined 
hidden layers and node parameters by minimizing a loss function (e.g., mean square error). 
This NN architecture is called a multiple-layer perceptron (MLP). The optimization of NN also 
requires tuning hyperparameters (e.g., activation functions, number of hidden layers and 
nodes, learning rates, and regularizations). Since the complexity of the NN is independent of 
the training data, it is expected to have good computational scaling and memory usage for 
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large training sets, including photodynamics simulations. Various ML potentials have been 
developed to improve the accuracy of the predicted potential energies and forces, such as 
high-dimensional neural network potential (HDNNP),52 SchNet,53 PhysNet,54 ANI,55, 56 deep 
potential smooth edition (DeepPot-SE),57 symmetrized gradient-domain machine learning 
(sGDML),58 permutationally invariant kernel ridge regression using RE descriptor and the 
Gaussian kernel (pKREG),59 reproducing kernel Hilbert space (RKHS),60 Gaussian 
approximation potential (GAP),61  neural equivariant interatomic potential (NequIP),62 and local 
equivariant deep neural network interatomic potential (Allegro).63 Some packages of a 
collection of ML methods are MLatom,59, 64 and fast learning of atomic rare events (FLARE).65 
A comparison of NN and kernel methods show similar accuracies for ML photodynamics 
simulations.66 More benchmarks on various ML potentials are reviewed in these references.50, 

67, 68 
 
Molecular descriptors must satisfy the translational and rotational invariance to hold a valid and 
machine-learnable mapping between molecular structures and corresponding energies and 
forces. These requirements motivate the development of global descriptors such as internal 
coordinates, Coulomb Matrix,69 and inverse distance matrix.70 The global descriptors above 
are not invariant with respect to the permutation of chemically equivalent atoms. Permutation-
invariant representations are created with sorting techniques (e.g., bag-of-bonds,71 and 
randomly sorted Coulomb matrices72). However, it could result in discontinuous PESs, where 
the ML potential becomes challenging to train. Permutationally invariant polynomials73 is 
another solution applicable only for small molecules as the number of permutations grows 
exponentially with molecular complexity. We have introduced the permutation map technique74, 

75 to restore the permutationally invariant structural information from existing training data 
according to molecular symmetry. Alternatively, we can choose a local descriptor representing 
the local chemical environment around each atom with a set of basis functions in a given cutoff 
sphere. The local descriptors are permutationally invariant and size extensive because they 
decompose the total energy into atomic contributions. Some examples of local descriptors are 
atom-centered symmetry functions (ACSFs),76 smooth overlap of atomic positions (SOAP),77 
and Faber−Christensen−Huang−Lilienfeld (FCHL).78 Pozdnyakov and co-workers addressed 
the significance of the higher-order terms in the local descriptors.79 The high-order terms 
improve the atomic structure representations by adding angular information beside the 
interatomic-distanced-based radial information. Using physics-informed descriptors can 
achieve high-accuracy ML performance with minimal training data. 
 
Recent NN-based ML potentials incorporate the local descriptor in the model, thus enabling 
simultaneous optimization of the descriptors and model parameters during the training. 
Message-passing neural networks (MPNN) implement such descriptors.80 MPNNs embed the 
atomic information (e.g., atom type) using discrete numbers, called node features, and the 
interatomic information using a transformation function of the pairwise atomic distances, called 
edge features. The node and edge features go through the message-passing layer that 
updates the node features by convoluting the neighboring node features weighted by the 
corresponding edge features within a local environment following the molecular connectivity 
graph. Iterative updating of node features with a message-passing layer refines the encoded 
messages on each atomic center. Their sum is used to fit the molecular properties (e.g., total 
energy). Increasingly sophisticated convolutional layers are introduced to extract the atomic 
features acting as a pattern filter for the local atomic environment. This type of convolutional 
layer was implemented in Deep Tensor NN (DTNN)53 and the descendant SchNet,81 which 
uses Gaussian functions to learn the internuclear distance for fitting molecular potential and 
force field. Similar NNs are PhysNet, 54 HIP-NN,82 DeepPot-SE,57 SchNOrb,42 and 
SpookyNet.83  The Gaussian functions only transform the node and edge features as scalers, 
which is inefficient for learning the angular information. Spherical harmonic functions allow NN 
to learn the node and edge features in the form of tensors. These geometrical tensors can 
represent the radial, angular, and high-order structural information, significantly accelerating 
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the training with a minimum amount of data. The convolution of tensors requires special tensor 
product operations satisfying the translational and rotational invariance, which is implemented 
in Euclidean equivariant neural networks (e3nn).62 NequIP62 and Allegro63 are two applications 
of e3nn for learning the atomic potential. NequIP outperforms existing ML models with high 
accuracy but up to three orders of magnitude fewer data sets;62 and the Allegro, with similar 
accuracy to NequIP, achieves high learning and prediction efficiency in simulating a system 
with 100 million atoms.63 To the best of our knowledge, many graph convolutional NNs (GCNN) 
are available for ground-state molecular dynamics, but only a few have been adapted for 
photodynamics simulations. 
 
Researchers can learn excited-state PESs based on a time series of molecular geometries in 
NAMD trajectories with recurrent NNs (RNNs).84 The RNN uses a directional connective graph 
that passes the outputs of the previous step as inputs of the current step. It predicts further 
data by considering the historical evolution's memory information, which extracts the temporal 
features. The long short-term memory (LSTM) units are used to avoid gradient vanishing and 
exploding problems.85 Recent work by Gu and Lan has reported successful multi-configuration 
time-dependent Hartree (MCTDH) dynamics simulations using LSTM-NN.86 Due to the 
complexity of input data constructions-a time series of geometries rather than a single 
geometry, the LSTM-NN has not been used for simulating photochemical reactions. 
Nevertheless, the LSTM-NN shows a promising solution to avoid problems in learning NAC. 
The NACs are essential in the FSSH method because it determines the time evolution of the 
state population, which controls the surface hopping probability. A recent work by Shen and 
co-workers showed that LSTM-NN could learn the state population in a given number of 
consecutive snapshots in trajectories.84 As such, the NACs are no longer needed as the 
predicted state population matrix can be directly used to compute the surface hopping 
probability for FSSH. Although this approach successfully worked for analytical models, 
applications in molecular systems have yet to be reported. 
 
2.2. Nonadiabatic molecular dynamics 
The ML photodynamics stems from the NAMD methods using MQC trajectories. Nuclear 
motions are treated classically along a single PES. Omitting nuclear quantum effects 
substantially accelerates these simulations and enables the simulation of full-dimensional 
NAMD photodynamics of interesting, practical molecules. 24, 25 The most time-consuming step 
is the computation of ground- and excited-state energies and forces because the MQC 
trajectory requires sequential on-the-fly computations at each timestep. Furthermore, a typical 
NAMD simulates an ensemble of independent MQC trajectories to obtain statistically 
meaningful results. As such, the number of trajectories multiplied by the number of nuclear 
geometries gives thousands of QC calculations resulting in a prohibitive computational cost. 
In the NAMD simulations with MQC trajectories, the trajectory propagates along an electronic 
state of a PES. The surface hopping algorithm describes the nonadiabatic electronic 
transition(s) by hopping between the electronic states in degeneracy regions with strong NACs, 
known as trajectory surface hopping (TSH). Fewest switches surface hopping (FSSH) is a 
widely used algorithm to determine the probability of surface hopping. It requires information 
on the nonadiabatic couplings (NACs) between the PESs with the same spin multiplicity and 
the spin-orbit couplings (SOCs) between PESs with different spin multiplicities, e.g., singlet 
and triplet.87, 88 Many photochemical reactions have been studied using the FSSH dynamics 
method.89-91 However, learning NACs for ML photodynamics is challenging for the following 
reasons. 1) The number of NACs increases with the number of PESs quickly in a relationship 
of Nᐧ(N – 1)/2 for an N-state system. Since modeling photochemical reactions involves at least 
two states, the computations of NACs become the most expensive part of generating the QC 
training dataset. 2) The NACs are in an arbitrary phase because the wave functions of two 
electronic states are usually randomly initialized. NAMD simulation commonly performed 
phase corrections based on the overlap of NACs over two continuous timesteps. However, the 
training data does not enforce structural continuity. There is no guarantee that the structures 
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are in the same order as them in the trajectory or the same trajectory. The phase corrections 
are performed with additional geometrical interpolative techniques.92 On the other hand, a 
phaseless loss function was introduced to train NNs regardless of the phase of NACs data.92 
For each state pair, the NAC data are multiplied by the phase factor (i.e., +1 or –1) to evaluate 
the prediction errors. The combination of phase factors with the lowest fitting error corresponds 
to the phase-corrected NAC data and will be used to train the NNs. The main drawback of this 
approach is that the loss function calculations scale with 2N–1 for N states. It becomes inefficient 
when N is large. For instance, fitting the NACs over five states would evaluate the loss function 
16 times. 3) NACs, defined in Eq. 1, are sensitive to the inverse of the energy gaps between 
the two coupling states. It is nearly zero for almost all points along a photodynamics simulation 
except for near avoided crossings or conical intersections. The magnitude suddenly 
approaches infinity as the molecule approaches the state-crossing. The discontinuous NAC 
function leads to a highly challenging ML task that still does not have a general solution. A 
remedy to this issue is learning the numerator terms of the NACs, which is a continuous 
function of reaction coordinates avoiding cusp data.92 Then, the full NACs can be computed 
on-the-fly by dividing the gaps between the ML-predicted energies. Still, the above approach 
remains difficult to predict the NACs at the degeneracy regions, where the ground-truth energy 
gap could be smaller than the prediction error within the so-called chemical accuracy of 1.0 
kcal mol-1. Nevertheless, this approach has successfully predicted several molecules' excited-
state dynamics and photochemical reactions.92, 93 4)The NACs are vectorial properties as they 
indicate the steep descent directions for the changes of two coupled wave functions. They 
must be learned together with the geometries satisfying the translation invariance and 
rotational covariance. Marquetand and co-workers constructed a virtual ML potential and used 
the first-order derivatives to fit the numerator term of the NAC data.92 In contrast to the 
straightforward physical relationship between energy and force, the physical meaning of the 
virtual potential is unclear. Thus, the training data are unavailable to improve the accuracy of 
the virtual potential. It worked for model systems (e.g., CH2NH2+), but we have seen overfitting 
issues in molecules beyond these systems.74, 94, 95  
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An alternative to learning NACs is Zhu-Nakamura's theory of surface hopping (ZNSH).96, 97 The 
ZNSH method uses a generalized one-dimensional model to describe the nonadiabatic 
transition, where the forces are diabatized based on three-point interpolation. It computes the 
surface hopping probability based on an analytical equation of energy gap and forces, which 
is generalizable to include SOCs for intersystem crossing mechanisms.98 The ZNSH method 
requires the forces of all involved states instead of the current state in FSSH, leading to 
relatively expensive QC calculations. Fortunately, the ML forces and energies are learned 
simultaneously. As such, the ZNSH method can take full advantage of the ML acceleration in 
ML photodynamics simulations. The ZNSH method has shown comparable results to the FSSH 
method for studying several molecules' excited-state dynamics and photochemical reactions.97, 

99, 100 
Another solution to the NAC problem relies on on-the-fly computed NACs with the Baeck-An 
(BA) approximation;101, 102 the BA approximation computes NACs as a function of the second-
order derivative of the energy gap with respect to the nuclear positions. While calculating the 
second-order derivative of the energy gap is time-consuming, the auto differentiation 
techniques are compatible with ML techniques due to the analytical evaluations of second-
order derivatives. By transferring the energy gap derivatives from the geometric domain to the 
time domain, we can numerically compute the second-order derivative by evaluating the 
temporal changes of energy gaps along with three adjacent time steps.103 The approximated 
NACs are also termed curvature-approximated time derivative couplings (κTDC), as their 
quantities only depend on the curvature of PES.103 The κTDC approach enables ML FSSH 
photodynamics, which is notably less empirical than ZNSH dynamics. Figure 1 demonstrates 
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that the NAMD method choice for ML photodynamics simulations depends on the rigor of the 
available NAC computations.  
 
2.3. Quantum chemical methods 
Choosing an appropriate QC method for excited-state calculations is essential to prepare 
accurate training data for ML photodynamics simulations (Figure 1). Single and multireference 
methods are two common types of QC methods popular for studying electronic properties and 
nuclear dynamics in excited states. Single-reference (SR) methods compute excited-state 
electronic structures using the ground state as a reference under the adiabatic approximation, 
such as time-dependent density functional theory (TDDFT),104 approximate second-order 
coupled-cluster (CC2),105 and algebraic diagrammatic construction to the second order 
(ADC(2)).106, 107 However, SR methods suffer some deficiencies in studying excited states in 
the following cases. 1). The SR method based on single excitations, e.g., TDDFT, cannot 
describe the double excitation. 2). The SR methods do not treat the ground and excited-state 
wavefunction on equal footing; thus cannot correctly compute the excited states degenerate to 
the ground state. These situations are often encountered in computing photochemical reaction 
pathways, where the doubly excited state could participate in the reaction, and the reactions 
could go through regions of degeneracy between the ground and excited state (e.g., avoided 
crossings and conical intersections). Moreover, the SR methods produce the wrong 
dimensionality for the branching plane of singlet conical intersections because the single 
excitation formulation computes incorrect interaction between the ground and excited states. 
This issue results in a problematic energy relaxation path from a conical intersection.108, 109 
Spin-flip technique (e.g., SF-TDDFT)110, 111 was introduced to restore correct PESs surrounding 
conical intersections. Other methods, such as the mixed reference spin-flip TDDFT (MRSF-
TDDFT)112 and spin-restricted ensemble-referenced Kohn–Sham (REKS)113 can compute 
conical intersection at the cost of SR methods. 
 
Multiconfigurational methods are sufficiently robust to describe conical intersections' electronic 
structures and nuclear geometries. Many works have shown that the conical intersections 
computed by multiconfigurational methods are required to explain the mechanism and obtain 
the structure-reactivity relationships in photochemical reactions.89-91 The multiconfigurational 
methods often use reference wave function generated by the complete active space self-
consistent field (CASSCF). The CASSCF wavefunction includes the full configurational 
interactions in a subset of molecular orbitals, called active space, that can fully address issues 
in the abovementioned single-reference method. Two popular multiconfigurational methods 
are complete active space second-order perturbation theory (CASPT2)114, 115 and 
multireference configuration interaction (MRCI).116-119 CASPT2 directly adds second-order 
perturbative corrections (i.e., dynamical correlation) to the CASSCF excited-state energies; 
MRCI computes the electronic excitations by generating single and double electron transitions 
on top of the CASSCF wavefunctions. Moreover, the extended multistate (XMS)120 and 
dynamically weighted (XDW)121 variants of CASPT2 improve the energy corrections near the 
state-crossing regions. It is important to remember that the MR methods rooted in CASSCF 
have limitations. 1). modern QC software limits the active space size to 22 electrons and 22 
orbitals due to the exponential growth of the configuration state functions. Recent 
developments in the adaptive sampling configuration interaction (ASCI) method have 
expanded the active space size beyond 50 electrons and 50 orbitals.122, 123 2) The active space 
and the state-averaging choice are not trivial. In our experience, the results depend on the 
researcher’s expertise with multiconfigurational methods and active space selection prowess. 
3) MR calculations are significantly more expensive than SR calculations because they need 
to optimize the configuration and orbital coefficients simultaneously or asynchronously. They 
are only affordable to study the excited states of small molecules.90, 124, 125 CASSCF is more 
frequently used for medium-sized molecules,91, 126 although the lack of dynamical correlation 
often overestimates the excitation energies.127 As such, the CASSCF results must be validated 
against the multireference calculations to confirm the consistent electronic nature (i.e., 
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topology) of the excited-stated PESs along the photochemical reaction pathway. Neither single 
nor multireference methods may be available to describe the entire photochemical reaction 
pathways, where a combination of QC methods can be employed.128, 129 
 
2.4. Training data 
The performance of ML potential in predicting photochemical reactions highly relies on the 
quality of training data. The training data for photodynamics simulations requires sufficiently 
sampling the structures on the ground and excited-state PESs (i.e., configurational space). 
This task requires different types of training data from the commonly used molecular structure 
and properties database across the chemical compound space, such as QM7,130 QM7b,131 
QM8,132 and QM9.133 The MD17 database, for instance, is popular for benchmarking ML 
potential across ground-state configurational space for small organic molecules.134 A more 
recent WS22 database provides 1.18 million equilibrium and non-equilibrium geometries of 
molecules up to 22 atoms, sampled from Wigner distributions centered at different ground-
state conformations.135 The design of the WS22 database has been quite helpful for 
benchmarking ML potential for excited-state dynamics. The diversity in chemical composition 
and accessible conformations assures a broad and statistically robust representation of the 
PESs. 
 
Photodynamics simulations could lead to an immense amount of excited-state molecular 
geometries outside the existing databases. Unfortunately, a universal ML potential trained with 
existing data for the excited states of the molecules with various sizes and compositions is not 
available. The main reason is that the excited-state energy is an intensive quantity that cannot 
decompose into atomic contributions. Second, the excited-state electronic energy is not a 
smooth function of nuclear configurations, especially near the state-crossing region, if the 
number of computed excited states is insufficient. However, it is impossible to determine the 
number of excited states for all molecules and photochemical reactions. Molecules can go 
through various states in photochemical reactions depending on the nature of absorption and 
wavelength of the employed light source. Therefore, training ML potentials for photodynamics 
simulations requires generating tailored training data for a specific photochemical reaction. 
 
There are two main strategies for training data generation, human-designed and data-driven 
approaches. The human-designed approach is based on well-designed molecular structure 
sampling methods, such as the MD-based methods (umbrella sampling,136 trajectory-guided 
sampling,137 enhanced sampling,138 and metadynamics139), stochastic surface walk,140 Wigner 
sampling,141 and normal mode scans.92, 142 These methods have been applied for learning 
thermal reactions; however, the data sampling efficacy is limited for complex photochemical 
reactions. For instance, ground-state MD simulations access different mechanistic pathways 
from excited-state processes, while excited-state MD becomes prohibitively expensive as the 
number of degrees of freedom increases. Wigner sampling for the reactant or product 
geometries captures only accessible nonequilibrium geometries near local or global minima. 
Normal mode scans include many irrelevant molecular vibrations. A composite scheme that 
combines Wigner sampling and geometrical interpolation could overcome the individual 
limitation to generate a compact yet relevant initial set.94 A similar approach has been used to 
generate the WS22 database.135 The data-driven approach, also called adaptive sampling 
(Figure 2) or active learning, is more efficient and nearly eliminates human bias. The objective 
is to train an initial ML potential with available computed training data and use it to explore the 
excited-state PESs with the active learning algorithm. The simulations monitor the ML 
predictions with a measure of uncertainty in the predicted values to determine the 
undersampled data. The uncertain data are recomputed with multiconfigurational QC 
calculations to expand the original training dataset, iteratively improving the ML potential by 
retraining the model with new data until no undersampled data is found. The uncertainty metric 
is available in the kernel methods such as Gaussian Process Regression (GPR), as it always 
returns the prediction's covariance. However, a single NN model does not have an uncertainty 
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measure. Our group has followed the concept of the query by committee,143 where two NNs 
are independently trained, and the standard deviation between their predictions quantifies the 
uncertainty. 
 

 
Figure 2. Schematic demonstration for the adaptive sampling procedures. The workflow starts 
by generating a training set with Wigner sampling and geometrical interpolations. The QC 
calculations produce the initial data to train two NNs. The initial conditions of NAMD simulations 
reuse the Wigner sampled structures; the NNs predict energies, gradients, NACs, and SOCs 
to propagate surface hopping trajectories. If the prediction standard deviations (σ) of NNs are 
large, the energies, gradients, NACs, and SOCs of the current structure are recomputed and 
added to the training data. Then NNs are retrained to restart NAMD simulations. If the 
prediction standard deviations are sufficiently small, the training cycle completes. 
 
The advantage of adaptive sampling is that the training process automatically explores the 
excited-state PESs, searching all possible photochemical reaction pathways. It benefits the 
training data preparation as it requires knowledge of one of the possible competing 
photochemical reactions. The recent study on the photochemical [2+2]-cycloaddition of [3]-
ladderdiene toward cubane has shown the efficiency of adaptive sampling, discovering the 
unseen structures and reactions mechanism based on exclusive information about the [2+2]-
cycloaddition pathway.74 
 
2.5. Multiscale approaches with ML potential 
Photochemical reactions of interest to organic chemists rarely occur in the gas phase; solvated 
media are much more common. Capturing chromophore-solvent interactions and 
understanding their role using QC methods is challenging because of the exponential scaling 
with the system size. Multiscale approaches divide the complex environment of chromophore 
and surroundings into at least two components. The chromophore undergoing the 
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photochemical reaction is typically treated with a quantum mechanical (QM) method to account 
for bond breaking and forming. In contrast, the surrounding explicit solvent molecules are 
treated with a lower level of theory (e.g., classical force field or semiempirical method). These 
simulations are known as QM/MM when the solvated chromophore is treated with a QM 
method and the surrounding solvent molecules are treated with a classical force field.144 The 
computational cost of this simulation can still be prohibitively high when the QM method is 
multiconfigurational (i.e., CASSCF), thus integrating an ML potential into multiscale 
approaches enables the ML/MM, ML/semi-empirical (QM’), or QM/ML methods with higher 
efficiency and applicability than the QM/MM methods. 
 
Herein, we briefly introduce the QM/MM methods to show how ML potential can be adapted 
into multiscale approaches. Different flavors in the QM/MM methods have been implemented 
to compute the center chromophore's energy and the whole system's total energy with the 
environment. The total energy of the chromophore and environment can be evaluated in a 
subtractive and additive scheme. The MM energy of the chromophore is replaced by the QM 
energy to remove the double-counted MM contributions in the MM total energy in the 
subtractive scheme. The nonbonded interactions between the chromophore and the 
environment, including electrostatic and Van der Waals interactions, are computed at the MM 
level. Alternatively, the total energy is obtained by summing up the QM energy of the 
chromophore, the MM energy of the environment, and the QM/MM coupling term accounting 
for the nonbonded interactions. 
 
The ML potential can improve QM and or MM calculations in the QM/MM methods. In the 
QM/ML scheme, an ML potential trained with QC calculation data could work as the MM 
backend. It ensures the same accuracy of the QM and ML energies alleviating mismatched 
accuracies between the QM and MM energies.145 By treating the MM region as multilayer 
energy-based fragments, the QM/ML method has successfully simulated the excited-state 
dynamics of dimethyldiazene in a solvent box of 40 water molecules.146 In the ML/MM scheme, 
one can use the ML potential to correct the energies and forces obtained from the low-cost 
semiempirical QM (e.g., DFTB) calculations (i.e., Δ-learning), matching the results of DFT 
calculations. The Δ-learning approach has been reported to accelerate the MD simulations for 
thermal reactions (e.g., SN2 reaction and Claisen rearrangement) using the HDNNP147-149 and 
DeepPot-SE.150 On the other hand, the ML potential, such as HDNNP,151 FieldSchNet,152 and 
Deep-Pot-SE153 have been adapted to a QM calculator that predicts the energies and forces 
at the same level as the QM training data. These methods belong to the electronic embedding 
ML potential. They incorporated additional electronic embedding features to learn the 
environment-polarized QM data, which properly retains the dependence of energies and forces 
on the external charges. A similar approach has been implemented to support the electrostatic 
embedding GPR model.154 A recent study demonstrated that the embedded atom neural 
networks (EANN)155, 156 in a mechanical embedding scheme could be as accurate as the 
electronic embedding ML potential when choosing an appropriate QM region for training data 
calculations. The ML/MM methods still have inconsistent energetic descriptions between the 
QM and MM regions. To mitigate the inconsistency during SchNet model training, a buffered 
region between the inner QM and outer MM regions was introduced.157 The buffer region 
experiences full electronic polarization by the inner QM region. The effective interactions with 
the QM region are calculated at the QM level, while the interactions with the MM region are 
described at the MM level. The total interactions are a combination of MM interactions and the 
effect of the QM region on the electronic degrees of freedom of the buffer region, which 
minimizes the artifacts arising from mixing QM and MM data. 
 
3. Applications of ML photodynamics for resolving photochemical reaction mechanisms 
ML photodynamics has numerous applications for studying excited-state dynamics, 
nonradiative decay processes, and complex photoreactions. For instance, Maquetant and co-
workers demonstrated that both KKR and NN models could learn the excited-state dynamics 
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of small molecules, such as CH2NH2+, S=CH2, and SO2.66, 93 Haberson and co-workers used 
the KRR model to perform MCTDC simulations for several molecular systems,158 explaining 
the excited-state hydrogen tunneling phenomena.159 Pavlo and co-workers applied KRR to 
learn the quantum dissipative dynamics of open systems;160 they also reported that a CNN 
model could predict 10-ps-long trajectories of open quantum systems dynamics in one shot.161 
In this section, we will focus on the ML photodynamics application in resolving complex 
mechanistic questions in photochemical reactions. 
 
3.1. Photochemical cis-trans isomerization of hexafluoro-2-butene 
The first example demonstrating an automatic discovery of photochemical reaction pathways 
using ML photodynamics simulations is the NN-predicted cis-trans isomerization of hexafluoro-
2-butene (Figure 3a).94 The NN potential was constructed using two independently trained MLP 
models with the inverse distance matrix representation. The training set was initially generated 
with the Wigner sampling combined with geometrical interpolations from the cis to the trans-
configuration, complemented with snapshots of short-time (50 fs) NAMD trajectories, which 
gives a total number of 4961 data points. The training data were computed at CASSCF(2,2)/cc-
pVDZ level. Adaptive sampling searched the undersampled geometries. It propagated 250 
trajectories from the S1 state in 500 fs. 80% of the trajectories have finished in 5 iterations 
finding 565 new geometries. Up to 28 iterations, 98% of the trajectories were completed. It 
collected an overall of 1516 new geometries leading to a final training set of 6207 data points. 
The mean absolute errors (MAEs) of energy predictions were 0.023–0.025 eV, satisfying the 
commonly accepted chemical accuracy of 0.043 eV(1 kcal·mol–1). 
 
The NN predictions of energies, forces, and NACs take 0.01s on a single CPU, which was 
3.4·104 times faster than the CASSCF(2,2)/cc-pVDZ calculations. The significant accelerations 
allow us to simulate the dynamics of trans-hexafluoro-2-butene up to 10 ns in 50 hours using 
a single CPU. It also afforded more trajectories than the QC NAMD simulations. For example, 
the 500 fs simulations of trans-hexafluoro-2-butene cost-efficiently propagated more than 5000 
trajectories to obtain a statistically sufficient sampling of the photochemical reaction pathways. 
 
Due to the overfitting issue of NACs, the ML photodynamics simulations using FSSH with NN-
predicted NACs overestimate the S1 lifetime of trans-hexafluoro-2-butene compared to the 
reference CASSCF(2,2)/cc-pVDZ trajectories (Figure 3b). The ZNSH with NN-predicted 
energies and forces could reproduce the QC reference value of 29.0 fs, predicting an S1 lifetime 
of 33.5 fs. Given the NN ZNSH trajectories, the final trans : cis ratio was 3.5: 1, which is close 
to the trans: cis ratio of 2.8: 1 found in the QC reference trajectories. Characterizations of the 
trajectories showed that the NN and QC trajectories underwent virtually identical geometrical 
changes at the S1/S0 surface hopping points, showing a similar topology of the S1/S0 crossing 
seam. 
 
In addition to the cis-trans isomerization mechanism, photoexcited hexafluoro-2-butene can 
promote hydrogen migrations forming a carbene intermediate. This pathway was intentionally 
excluded from the initial training data as human-introduced bias in the underlying 
photochemical reactions of hexafluoro-2-butene. The adaptive sampling rediscovered the 
undersample structures corresponding to the hydrogen migration pathways. The final NN 
trajectories predicted a trans: carbene ratio of 1.1: 1, which also agrees with the QC reference 
value of 1.6: 1. It suggests that ML photodynamics are feasible to study photochemical 
reactions with minimal prior knowledge of the underlying reactions. 
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Figure 3. (a) The cis-trans isomerization of hexafluoro-2-butene with trans: cis and trans: 
carbene ratios predicted by 500 fs CASSCF(2,2)/cc-pVDZ and NN trajectories. (b) The state 
population of hexafluoro-2-butene in 500 fs. QC denotes the FSSH trajectories computed with 
CASSCF(2,2)/cc-pVDZ calculations. NNZNSH indicates the NN trajectories with Zhu-Nakamura 
surface hopping, which does not use NN-predicted NACs. NNFSSH denotes the NN trajectories 
with FSSH using NN-predicted NACs. The deviation between the QC and NNFSSH trajectories 
resulted from the overfitted NACs. Results are reproduced from reference94 with permission 
from the Royal Society of Chemistry. 
 
3.2. Photochemical 4π-electrocyclization of norbornyl cyclohexa-1,3-diene 
ML photodynamics simulations can disentangle the photochemistry experiment results beyond 
the limits of the QC NAMD approach. One such example is the photochemical 4π-
electrocyclization of norbornyl cyclohexa-1,3-diene (Figure 4a).94 The experiment observed a 
stereoselective ring-closing reaction favoring the anti-configuration. Due to the structural 
complexity and the number of nuclear degrees of freedom, the NAMD simulations with 
CASSCF(4,3)/ANO-S-VDZP calculations took 17 days to obtain 1 ps dynamics with 240 
trajectories. Within the simulation time, two intermediates were predicted, which were not 
observed in the experiments. The limited number of trajectories also missed predicting the 
minor product in endo-configuration. Thus, the QC NAMD simulations were insufficient to 
explain the experimental stereoselectivity. 
 
We sought to resolve the mechanism of the 4π-electrocyclization of norbornyl cyclohexa-1,3-
diene with the help of the ML photodynamics approach. The NN potential used the MLP model. 
The training data generations include the Wigner sampling, geometrical interpolation, and 
sampling from the 50 fs trajectories of QC NAMD simulations. This method generated 3349 
training data computed at the CASSCF(4,3)/ANO-S-VDZP level. The adaptive sample further 
collects the undersampled structures by propagating 250 trajectories in 1 ps. The temperature 
was increased to 1200 K to accelerate the exploration of high-energy nonequilibrium 
geometries. During the adaptive sampling, the normal completion of trajectories reached 80% 
after 6 iterations, then fluctuated in the next 18 iterations. It approached 90% after 50 iterations 
and stopped at 96% in 100 iterations. The final number of training data is 6272. The MAE of 
the NN predicted energies are 0.027–0.031 eV. 
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The ML photodynamics simulations for norbornyl cyclohexa-1,3-diene obtained 3954 
trajectories in 1 fs, where a single trajectory only spent 38 s, representing a 3.8·104-fold 
acceleration to the CASSCF(4,3)/ANO-S-VDZP calculation. The increased number of 
trajectories allows us to observe the less favored pathway toward endo-configurations. The 
predicted yields of the anti and endo-configuration were 0.7% and 0.2%, respectively. Since 
the simulations did not include re-excitation of the reformed reactant, the predicted yields are 
lower than the experimental values of 28% and 4% for the anti and endo-configuration. 
Nevertheless, the predicted anti: endo ratio in the first 200 fs matched the experimental 
measurements over 4 hours. The ML photodynamics simulations suggested that the anti-
configuration is favored because its S1/S0 crossing regions are more accessible than the endo-
configuration. 
 

 
Figure 4. (a) The 4π-electrocyclization of norbornyl cyclohexa-1,3-diene with experimental and 
predicted reaction yields. The predicted yields are obtained from 1 ps QC and ML-NAMD 
simulations. (b) Plot for NN predicted photochemical and thermal interconversions between 
cyclohexa-1,3-diene (NCHD) and the experimentally absent intermediates, syn-Int and anti-Int 
in 1 ns. The plot in the first 100 fs shows the photochemical conversion from NCHD to syn-Int 
and anti-Int. The following plot shows the thermal conversion from the intermediates back to 
NCHD. The plot suggests a short thermal lifetime of intermediates of about 1 ns. Results are 
reproduced from the reference94 with permission from the Royal Society of Chemistry. 
 
The predicted intermediates in QC NAMD simulations raise a fundamental question on the 
prediction reliability of the CASSCF(4,3)/ANO-S-VDZP calculations simulating the 
photochemical reaction of norbornyl cyclohexa-1,3-diene. With ML accelerations, we extended 
the simulations to 1 ns to monitor the subsequent dynamics of the intermediates. The 
trajectories showed continued thermal isomerization of the intermediate back to reactant in 1 
ns (Figure 4b). This finding confirmed the metastability of the intermediates and explained their 
absence in the experiments. This example highlighted the advantages of ML photodynamics 
simulations in studying complex (photo)chemical reaction mechanisms involving elusive and 
long-lived intermediates. 
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3.3. Photochemical [2+2] cycloaddition of substituted [3]-ladderdienes 
The substituent effects play an essential role in the [2+2]-cycloaddition of [3]-ladderdiene that 
facilitates the formation of cubane, a class of highly-strained organic molecules. Experiments 
reported an increasing quantum yield (QY) of cubane following the order of methyl (CH3), 
trifluoromethyl (CF3), and cyclopropyl (cPr) groups in the octa-substituted [3]-ladderdienes 
(Figure 5a).74 Uncovering substituent effects has been impossible for decades because octa-
substitutions significantly raise the computational cost. For instance, the 1 ps NAMD 
simulations with CASSCF(8,7)/ANO-S-VDZP+ANO-S-MB(for substituents) calculations for the 
octamethyl [3]-ladderdiene would take several months. The ML photodynamics simulations 
can handle full dimensionality greater than 200 degrees of freedom with affordable 
computational cost. As such, ML photodynamics simulations have been applied to study the 
substituent effects.74 
 
The NN potentials built by the MLP model showed the flexibility of the NN learning various 
kinds of photochemical reactions. The training data generation solely used the Wigner 
sampling for the octa-substituted [3]-ladderdiene and the geometrical interpolations from the 
optimized geometries of octa-substituted [3]-ladderdiene, the S1/S0 minimum energy conical 
intersection (MECI) of the [2+2]-cycloadditions, and the corresponding cubane derivatives. The 
nuclear displacements of the Wigner sampled geometries were mixed into the interpolated 
geometries to expand the structural diversity in the training data. Initial training data were 4321 
for octamethyl [3]-ladderdiene and 3361 for octatrifluoromethyl and octacyclopropyl [3]-
ladderdiene. 
 
The octa-substituted [3]-ladderdienes have a C2 symmetry in their connection graph. Thus, a 
permutation map according to the C2 symmetry was used to automatically expand the training 
data maintaining the permutational invariance in the total energy and the covariance in the 
forces.74 The generated data contains the structural information in the permuationally 
equivalent geometries following the C2 relationship without computing more training data or 
spending more adaptive sampling iterations to search them. Thus, a permutation map helped 
minimize the requisite training data size and speed up active learning. It leads to a moderate 
increase of the data size in 1.98–2.23 times when it finds the optimal NN potential with 125 
trail trajectories exploring the excited-state PESs (Figure 5c). Thus, it effectively maintains a 
manageable computational cost of the NN potential training at the CASSCF(8,7)/ANO-S-
VDZP+ANO-S-MB(R) level. The final MAE of NN energy predictions were 0.040–0.046, 0.032–
0.045, and 0.037–0.039 eV for the octamethyl, octatrifluoromethyl, and octacyclopropyl [3]-
ladderdiene, respectively. 
 
The NN potential showed 1.5–6.4·104-fold accelerations to the energies and forces 
computations with the CASSCF(8,7)/ANO-S-VDZP+ANO-S-MB(R) calculations for the 
substituted [3]-ladderdiene. The ML photodynamics simulations propagated 3835, 3259, and 
3122 trajectories from the S1-FC points in 2 ps with a 0.5 fs time step for the octamethyl, 
octatrifluoromethy, and octacyclopropyl [3]-ladderdiene. The simulations uncovered four S1 

relaxation pathways of octamethyl [3]-ladderdiene, including the [2+2]-cycloaddition, 4π-
disrotatory electrocyclic ring-opening, σC–C cleavage, and 6π-conrotatory electrocyclic ring-
opening (Figure 5b). It showed the 4π and 6π-ring-opening reactions are faster than the [2+2] 
cycloaddition when R = CH3. The CF3 has close-shell repulsion to block the 6π-ring-opening 
pathway enhancing the preference of the [2+2] cycloaddition. The cPr are steric repulsive, 
further accelerating the [2+2]-cycloaddition reaction and completing the 4π-ring-opening 
reaction. The predicted reaction QYs were 1%, 14%, and 15% for the octamethyl, 
octatrifluoromethy, and octacyclopropyl cubane, in line with the trend observed in the 
experiment. 
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Figure 5. (a) Photochemical [2+2] cycloaddition of octa-substituted [3]-ladderdienes toward 
cubanes with experimental and NN predicted QYs. (b) Three reaction coordinates, r, d, and c, 
corresponding to the [2 + 2] cycloaddition, electrocyclic ring-opening, and σC−C cleavage 
pathways observed in the NN trajectories of octa-substituted [3]-ladderdienes, respectively. (c) 
Geometrical distributions of the training data for the NN potential of cta-substituted [3]-
ladderdienes. The initial set is in black. The color bar of the data shows the interactions of the 
adaptive sampling. The final training set contains 9303, 6659, and 7697 data points for R = 
CH3, CF3, and cPr. Results are reproduced from the reference74 with permission. Copyright 
2021 American Chemical Society. 
 
3.4. Photochemical 4π-electrocyclization of fluorobenzenes 
The nanosecond-scaled NAMD simulations enabled by the ML photodynamics approach 
provide an effective tool for studying the photochemical reactions involving long-lived 
photoexcited species. Fluorobenzenes are one example of the excited-state lifetimes falling in 
nanoseconds' time window (Figure 6a).75 Moreover, the fluorinations of benzene introduce 
unusual low-lying πσ* states strongly coupled with the ππ* states. Thus, investigating the 
excited-state dynamics and subsequent photochemical reactions of fluorobenzenes requires 
a highly accurate description of the excited-state PES at the XMS-CASPT2 level. However, 
the NAMD simulations in nanoseconds at the XMS-CASPT2 level are far beyond the affordable 
computing resources. 
 
The ML photodynamics simulations revealed the photochemical reaction mechanism of 
fluorobenzenes with high-fidelity structural information. The NN potentials built by the MLP 
model successfully learned the excited-state properties of the highly symmetric fluorobenzene 
structures with the help of a permutation map (Figure 6b).75 The training data were generated 
using the Wigner sampled structures of fluorobenzenes at their equilibrium geometries and the 
interpolated structures from the optimized geometries of fluorobenzenes to the corresponding 
Dewar-fluorobenzenes via an S1/S0 MECI. The number of initial training data computed at 
XMS-CASPT2(6,7)/aug-cc-pVDZ level are 901, 3104, 1677, and 4543 for hexafluorobenzene, 
pentafluorobenzene, tetrafluorobenzene and trifluorobenzenes. The hexafluorobenzene and 
tetrafluorobenzene have notably smaller data sizes than the others because they have 
chemically equivalent reaction channels at symmetric carbon atoms. The adaptive samplings 
continued to explore the undersampled structures. The S1 PESs of fluorobenzenes display S1 

minimum regions near the S1-FC regions, which prevent the trajectories from moving farther in 
picoseconds. As such, the adaptive sampling scaled the initial kinetic energies 2–3 times to 
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fast forward the excited-state dynamics fluorobenzenes, so adaptive sampling can be done 
using 200 trajectories propagated from S1 in 10 ps. As shown in Figure 6c, using a permutation 
map notably accelerated the training process for hexafluorobenzene (Figure 6c). With 
permutations, the completion ratio of adaptive sampling increase to 0.8 in 10 iterations and 
exceeds 0.9 in 30 iterations; without permutations, the adaptive sampling curve fluctuates in 
the first 20 iterations, which spent 29 iterations to meet a completion ratio of 0.8. The adaptive 
sampling with permutations found considerably fewer structures (2128) than that without 
permutations (3029). At the end of adaptive sampling, the training data size increased to 3051, 
4037, 4710, and 10204 for hexafluorobenzene, pentafluorobenzene, tetrafluorobenzene, and 
trifluorobenzene, respectively. The final MAE of NN energies were accordingly 0.027–0.028, 
0.020–0.021, 0.030–0.036, and 0.023–0.024 eV. 
 

 
Figure 6. (a) Photochemical 4π-electrocyclization of fluorobenzenes with reported 
experimental and NN-predicted excited-state lifetimes and QYs. (b) A permutation map for 
hexafluorobenzene, defined by the “C6 operation” reordering the atoms around the C6 axis of 
hexafluorobenzene. Two different inverse distance matrix representations, I1 and I2, for an 
equivalent structure can be learned simultaneously after reordering the atoms. (c) Adaptive 
sampling curves of hexafluorobenzene with and without a permutation map. The completion 
ratio is the number of complete trajectories divided by the total number of trajectories. Panel 
(b) and (c) are reproduced from the reference75 with permission. Copyright 2022 Wiley-VCH. 
 
The ML photodynamics simulations with about 1800 trajectories in 4 ns predicted time 
constants were 116 ps, 60 ps, 28 ps, and 12 ps for tetrafluorobenzene, hexafluorobenzene, 
trifluorobenzene, and pentafluorobenzene. These results reproduced the experimentally 
observed trends in the S1 decay time constants. The trajectories revealed that the long lifetime 
of hexafluorobenzene originated from the pseudo-Jahn-Teller effects that create a relatively 
stable excited-state minimum by breaking the D6h symmetry of the benzene ring. The structural 
distributions of the S1/S0 surface hopping points of fluorobenzenes showed no correlation to 
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the reaction coordinates along with the 4π-electrocyclic ring-closing pathway. This finding 
suggests the 4π-electrocyclization of fluorobenzene is controlled by the dynamical effects 
depending on the instantaneous nuclear momentum facilitating the 1,4-carbon bond formation. 
As a result, the underlying 4π-electrocyclic ring-closing reaction becomes inefficient with 
predicted QYs of 0.1–0.5% in Dewar-fluorobenzenes, explaining the experimental QYs about 
1%. 
 
3.5. Transferrable ML potentials to predict the cis-trans isomerizations of azobenzenes. The 
ongoing ML model development highly desires a transferable ML potential to predict unseen 
photochemical reactions. However, an ML potential that fits the excited-state PESs of 
molecules throughout the chemical space is still unavailable. Because of the intensive nature 
of excitation energy, the decomposition of excited-state energies into atomistic contributions in 
different kinds of molecules is questionable. The number of excited states involved in the 
photochemical reactions is also system and problem-dependent, which further complicated the 
development of the universal ML model for excited states. Recent work by Marquentand and 
co-workers has shown the first hint at the transferability of the excited states by training ML 
potential on two isoelectronic molecules.47 A later work by Gómez-Bombarelli demonstrated 
significant progress in developing the transferability of NNs for predicting the cis-trans 
isomerizations of a series of azobenzenes (Figure 7a).162 
 
The transferable NNs, called adiabatic artificial NN (DANN), were built upon the PaiNN model 
(Figure 7b).163 It used scalar and vectorial features to embed the atomic node and edge 
information and updated the features through equivariant message-passing layers with the 
neighboring atoms. The scalar output features are mapped to predict atomic contributions to 
the adiabatic Hamiltonian matrix elements. The adiabatic Hamiltonian was then diagonalized 
to predict the total energy of each state. The diabatic Hamiltonian matrix helped NN learn the 
excited-state energies and forces of azobenzene derivatives. It also produces smooth diabatic 
couplings between the diabatic states, which were rotated from the diabatic basis to the 
adiabatic basis to fit the NACs. This strategy avoided the direct fitting of the NACs containing 
nondifferentiable cusp at the CI regions. 
 
The training data contain the geometries of 8269 azobenzene derivatives, including 164 
reported in the literature. The geometries were generated by scanning the central CNNC 
dihedral angle and the CNN/NNC angles corresponding to the rotation and inversion pathways 
yielding a total of 567037 geometries. The S0 and S1 energies and forces were computed using 
spin-flip TDDFT calculation at the BHHLYP/6-31G* level.162 Adaptive sampling was then used 
to find undersampled geometries and retrain the NNs. As the training data included more 
equilibrium geometries of azobenzenes derivatives than the near-CI geometries, a sampling 
procedure based on the structural similarity and the S0/S1 energy gap was introduced to 
balance geometry selection during the adaptive sampling by giving higher sampling probability 
to underrepresented geometries. 
 
To test the performance of the DANN, the energies, forces, NACs, and QYs of 40 unseen 
azobenzenes derivatives were predicted against the computed and experimental values. The 
prediction MAEs were 3.06 and 3.77 kcal∙mol–1 for the S0 and S1 states of the unseen species. 
It should be noted that the MAE of the S0-S1 gap was 1.89 kcal∙mol–1, contrasting the accuracy 
of the semiempirical spin-flip TD-DFTB method.164 The predictions of S0 and S1 force leads to 
errors of 1.72 and 2.31 kcal∙mol–1∙Å–1 with a nice R2 correlation coefficient near 1. However, 
The predictions of NACs gave a poor R2 value of 0.50. These results suggested the 
diabatization cannot remove the curl component of the NAC vector, which emphasized the 
difficulty of predicting NACs. The predicted QYs showed a moderate correlation to the 
experimental yields. The R2 value was 0.41, indicating numerical errors in the predicted QYs 
compared to the mean predictor. The Spearman coefficient ρ was 0.71, which suggests the 
model predicted the QYs in a correct rank. The computational cost of DANN fitted a scaling of 
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N0.49 for N atoms, whereas the SF-TDDFT calculations scaled with N2.8. Thus the DANN 
accelerated the QC calculation by five to six orders of magnitude. 
 
Given the accelerations and transferability of DANN, ML photodynamics simulations were then 
used to virtually screen azobenzene derivatives for largely red-shifted absorptions and high 
transformation ratio QYa→b/QYb→a. The dataset contains 3100 combinatorial azobenzene 
derivatives generated by the literature-informed substitution patterns.162 Several hypothetical 
derivatives were identified to have either the QYcis→trans, QYtrans→cis, or red-shifted absorption 
wavelength higher or longer than the average values of the compound space. 

 
Figure 7. (a) Cis-trans isomerization of azobenzene systems. (b) Schematic representation of 
the DANN model. The atoms and interatomic distances in azobenzenes are embedded into 
node and edge features and updated by equivariant message-passing layers in PaiNN. The 
outputs are mapped to the diabatic Hamiltonian matrix elements, which are diagonalized to 
predict the adiabatic energies and forces. (c) Virtual screening identified azobenzene 
derivatives with high QYcis→trans and QYtrans→cis. The QYs are cited from the reference.162 
 
3.6. Roaming mechanism of photoexcited tyrosine 
Amino acids feature ultrafast nonradiative decay from the electronically excited state to the 
ground state. The process is faster than the harmful photochemical reactions, thus, preventing 
photodamage caused by UV/visible light. Understanding the photochemical reaction 
mechanism of amino acids can substantially contribute to improving the photostability of 
peptides and proteins in the design of novel drugs in phototherapy. Tyrosine is one of the amino 
acids prone to photoexcitation by sunlight. The major deactivation pathway of tyrosine is the 
photodissociation of the O–H bond located on the phenol ring. Two main dissociation channels 
in a fast and a slow timescale have been proposed for tyrosine after photoexcitation using 200 
nm laser pulses.165 Experimental studies conducted on tyrosine cannot resolve the O–H bond 
photodissociation mechanism or trace the roaming atoms. Theoretical studies revealed a 
repulsive πσ* state that can lead to photodissociation,166 but have been limited to static 
calculations or low accuracy.166, 167 More comprehensive computational simulations are needed 
to uncover the excited-state dynamics of tyrosine, but these remain computationally infeasible. 
 
Marquetand and co-workers applied the SchNarc approach to comprehensively investigate the 
excited-state dynamics of photoexcited tyrosine. The SchNarc approach performs ML 
photodynamics simulation using trajectories surface hopping with arbitrary couplings 
(SHARC)168 and ML potential built by SchNet models.53 They trained two NNs to predict the 
excited-state energies, forces and approximated NACs and a third NN to predict the SOCs. 
The training data of tyrosine included the energies and forces for 5 singlet states and 8 triplet 
states and the SOCs between them, which yield 29 energies, 29 forces, and 812 SOCs. Figure 
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8a illustrates a flowchart of training the SchNarc model. The structures were initially sampled 
by scanning the normal modes of the 12 lowest energy conformers of tyrosine and the 
transformation from the neutral to the zwitterionic form, which gave 1967 data points. The 
training data were mainly computed with ADC(2)/cc-pVDZ calculations because they agreed 
better with the absorption spectrum of tyrosine than the CASSCF or CASPT2 calculation. 
These data were used in an initial adaptive sampling running 100 trajectories for each 
conformer until the number of data points approximately doubled. The initial adaptive sampling 
explored the PESs in each state without surface hopping between the same spin multiplicity, 
which collected 16738 data points. However, the ADC(2) method cannot correctly describe the 
degeneracy between the excited and ground states for the bond-forming and breaking 
processes. Thus, ad hoc data were computed using CASPT2(12, 11)/ANO-RCC-pVDZ 
calculations when the distance between the hydrogen atom and another atom is longer than 
empirically defined thresholds. To enable long timescale simulation, another adaptive sampling 
was used to train the ML potential of tyrosine with 200 trajectories propagated from the S4 state 
in 3 ps, finally giving 17265 data points. The MLP models were used to train the ML potential 
during the adaptive sampling because it is 18 times faster than the SchNet models. The SchNet 
models were used to learn the final training data and ML photodynamics simulation, as they 
produced more accurate results and MLP. 
 
About 1000 ML photodynamics trajectories were excited to the S4 within the excitation window 
of 6.5–7.0 eV and propagated in 10 ps to inform the photochemistry of tyrosine. 83% of the 
trajectories showed direct dissociation of a hydrogen atom, the formation of a zwitterionic 
species, and other fragmentations pathways. 17% of the trajectories found a roaming hydrogen 
atom after the photodissociation of the O-H bond (Figure 8b). Of these roaming trajectories, 
36% stayed with roaming hydrogen atoms, whereas the other trajectories moved toward 
diverse fragmentation pathways. These results revealed the roaming mechanisms beyond the 
chemical intuition in peptides and proteins, which brings our knowledge further toward a better 
understanding of the photostability and photodamage of biological systems. 
 

 
Figure 8. (a) Flowchart for illustration of training SchNarc model. (b) NN revealed the light-
induced hydrogen roaming mechanism of tyrosine. The technical information and mechanism 
were summarized according to the reference.128 
 
4. Conclusion 
ML photodynamics approach has become an emerging tool for learning photochemistry. The 
extraordinary accelerations by ML techniques offer great potential for resolving the elusive 
photochemical reaction mechanisms at an atomistic level in an ultrafast timescale. The recent 
development of ML models enables accurate predictions of energies and forces of the same 
quality as quantum chemical calculations. The training protocol with adaptive sampling can 
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effectively search the undersampled data out of the initial set generated based on chemical 
intuition, reducing human bias in the training data generation. The reviewed studies have 
shown ML photodynamics simulations from picoseconds to nanoseconds for various 
molecules in medium and large sizes. The ML photodynamics simulations provided a high 
fidelity of trajectories to inform the excited-state structural information underlying the 
reactivities, stereoselectivity, and unseen mechanistic pathways in complex photochemical 
reactions. 
 
While the applications of ML photodynamics in photochemistry grow rapidly, several limitations 
need to be addressed in the ongoing and future method development. First, an accurate ML 
model for predicting NACs is unavailable. Using the approximated NACs derived from the ML 
energies, forces, and Hessian does not guarantee accurate surface hopping when the excited 
and ground state energy gap is significant. The surface hopping calculations depends on the 
energy gap, which could be smaller than 1 kcal·mol–1. Thus, ML potential needs higher 
accuracy than the commonly accepted chemical accuracy, at least for structures near the state-
crossing regions. The transferability of the ML potential for excited states remains largely 
unexplored. The few studies describe a transferable ML potential limited to isoelectronic 
molecules or derivatives undergoing similar mechanistic pathways. Therefore, a universal ML 
potential for representing the excited states of molecules with arbitrary size and composition 
is desired for fully exploiting the advantages of ML photodynamics for studying photochemistry. 
 
Acknowledgments 
J. L. thanks the supports from the Hoffmann Institute of Advanced Materials at Shenzhen 
Polytechnic. S.A.L. acknowledges the National Science Foundation CAREER award (NSF-
CHE-2144556) and NSF Institute for Data Driven Dynamical Design (NSF-OAC-2118201). All 
authors appreciate the assistance from the Northeastern Research Computing Team and the 
computing resources provided by the Massachusetts Life Science Center grant (G00006360). 
 

References 
1. de Meijere, A.; Redlich, S.; Frank, D.; Magull, J.; Hofmeister, A.; Menzel, H.; Konig, B.; 
Svoboda, J. Octacyclopropylcubane and some of its isomers. Angew Chem Int Ed Engl 2007, 
46 (24), 4574-4576. DOI: 10.1002/anie.200605150. 
2. Poplata, S.; Troster, A.; Zou, Y. Q.; Bach, T. Recent Advances in the Synthesis of 
Cyclobutanes by Olefin [2+2] Photocycloaddition Reactions. Chem. Rev. 2016, 116 (17), 9748-
9815. DOI: 10.1021/acs.chemrev.5b00723. 
3. Ma, J.; Chen, S.; Bellotti, P.; Guo, R.; Schafer, F.; Heusler, A.; Zhang, X.; Daniliuc, C.; 
Brown, M. K.; Houk, K. N.; et al. Photochemical intermolecular dearomative cycloaddition of 
bicyclic azaarenes with alkenes. Science 2021, 371 (6536), 1338-1345. DOI: 
10.1126/science.abg0720. 
4. Karkas, M. D.; Porco, J. A., Jr.; Stephenson, C. R. Photochemical Approaches to 
Complex Chemotypes: Applications in Natural Product Synthesis. Chem. Rev. 2016, 116 (17), 
9683-9747. DOI: 10.1021/acs.chemrev.5b00760. 
5. Pitre, S. P.; Overman, L. E. Strategic Use of Visible-Light Photoredox Catalysis in 
Natural Product Synthesis. Chem. Rev. 2022, 122 (2), 1717-1751. DOI: 
10.1021/acs.chemrev.1c00247. 
6. Gravatt, C. S.; Melecio-Zambrano, L.; Yoon, T. P. Olefin-Supported Cationic Copper 
Catalysts for Photochemical Synthesis of Structurally Complex Cyclobutanes. Angew Chem 
Int Ed Engl 2021, 60 (8), 3989-3993. DOI: 10.1002/anie.202013067. 
7. Xie, J.; Zhang, X.; Shi, C.; Pan, L.; Hou, F.; Nie, G.; Xie, J.; Liu, Q.; Zou, J.-J. Self-
photosensitized [2 + 2] cycloaddition for synthesis of high-energy-density fuels. Sustainable 
Energy & Fuels 2020, 4 (2), 911-920. DOI: 10.1039/c9se00863b. 



21 

8. Liu, Y.; Chen, Y.; Ma, S.; Liu, X.; Zhang, X.; Zou, J.-J.; Pan, L. Synthesis of advanced 
fuel with density higher than 1 g/mL by photoinduced [2 + 2] cycloaddition of norbornene. Fuel 
2022, 318. DOI: 10.1016/j.fuel.2022.123629. 
9. Biegasiewicz, K. F.; Griffiths, J. R.; Savage, G. P.; Tsanaktsidis, J.; Priefer, R. Cubane: 
50 years later. Chem. Rev. 2015, 115 (14), 6719-6745. DOI: 10.1021/cr500523x. 
10. Dong, L.; Feng, Y.; Wang, L.; Feng, W. Azobenzene-based solar thermal fuels: design, 
properties, and applications. Chem Soc Rev 2018, 47 (19), 7339-7368. DOI: 
10.1039/c8cs00470f. 
11. Orrego-Hernandez, J.; Dreos, A.; Moth-Poulsen, K. Engineering of 
Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage 
Applications. Acc Chem Res 2020, 53 (8), 1478-1487. DOI: 10.1021/acs.accounts.0c00235. 
12. Lennartson, A.; Roffey, A.; Moth-Poulsen, K. Designing photoswitches for molecular 
solar thermal energy storage. Tetrahedron Lett. 2015, 56 (12), 1457-1465. DOI: 
10.1016/j.tetlet.2015.01.187. 
13. Wang, Z.; Erhart, P.; Li, T.; Zhang, Z.-Y.; Sampedro, D.; Hu, Z.; Wegner, H. A.; Brummel, 
O.; Libuda, J.; Nielsen, M. B.; et al. Storing energy with molecular photoisomers. Joule 2021, 
5 (12), 3116-3136. DOI: 10.1016/j.joule.2021.11.001. 
14. Xu, X.; Wang, G. Molecular Solar Thermal Systems towards Phase Change and Visible 
Light Photon Energy Storage. Small 2022, 18 (16), e2107473. DOI: 10.1002/smll.202107473. 
15. Saydjari, A. K.; Weis, P.; Wu, S. Spanning the Solar Spectrum: Azopolymer Solar 
Thermal Fuels for Simultaneous UV and Visible Light Storage. Adv. Energy Mater. 2017, 7 (3). 
DOI: 10.1002/aenm.201601622. 
16. Petersen, A. U.; Hofmann, A. I.; Fillols, M.; Manso, M.; Jevric, M.; Wang, Z.; Sumby, C. 
J.; Muller, C.; Moth-Poulsen, K. Solar Energy Storage by Molecular Norbornadiene-
Quadricyclane Photoswitches: Polymer Film Devices. Adv Sci (Weinh) 2019, 6 (12), 1900367. 
DOI: 10.1002/advs.201900367. 
17. Hull, K.; Morstein, J.; Trauner, D. In Vivo Photopharmacology. Chem. Rev. 2018, 118 
(21), 10710-10747. DOI: 10.1021/acs.chemrev.8b00037. 
18. Cox, B.; Booker-Milburn, K. I.; Elliott, L. D.; Robertson-Ralph, M.; Zdorichenko, V. 
Escaping from Flatland: [2 + 2] Photocycloaddition; Conformationally Constrained sp(3)-rich 
Scaffolds for Lead Generation. ACS Med Chem Lett 2019, 10 (11), 1512-1517. DOI: 
10.1021/acsmedchemlett.9b00409. 
19. Stanley, P. M.; Haimerl, J.; Shustova, N. B.; Fischer, R. A.; Warnan, J. Merging 
molecular catalysts and metal-organic frameworks for photocatalytic fuel production. Nat. 
Chem. 2022. DOI: 10.1038/s41557-022-01093-x. 
20. Oburn, S. M.; Huss, S.; Cox, J.; Gerthoffer, M. C.; Wu, S.; Biswas, A.; Murphy, M.; 
Crespi, V. H.; Badding, J. V.; Lopez, S. A.; et al. Photochemically Mediated Polymerization of 
Molecular Furan and Pyridine: Synthesis of Nanothreads at Reduced Pressures. J. Am. Chem. 
Soc. 2022, 144 (48), 22026-22034. DOI: 10.1021/jacs.2c09204. 
21. Kowalewski, M.; Bennett, K.; Dorfman, K. E.; Mukamel, S. Catching Conical 
Intersections in the Act: Monitoring Transient Electronic Coherences by Attosecond Stimulated 
X-Ray Raman Signals. Phys. Rev. lett. 2015, 115 (19), 193003. DOI: 
10.1103/PhysRevLett.115.193003. 
22. Merritt, I. C. D.; Jacquemin, D.; Vacher, M. Attochemistry: Is Controlling Electrons the 
Future of Photochemistry? J. Phys. Chem. Lett. 2021, 12 (34), 8404-8415. DOI: 
10.1021/acs.jpclett.1c02016. 
23. Gruhl, T.; Weinert, T.; Rodrigues, M. J.; Milne, C. J.; Ortolani, G.; Nass, K.; Nango, E.; 
Sen, S.; Johnson, P. J. M.; Cirelli, C.; et al. Ultrafast structural changes direct the first molecular 
events of vision. Nature 2023, 615 (7954), 939-944. DOI: 10.1038/s41586-023-05863-6. 
24. Zobel, J. P.; González, L. The Quest to Simulate Excited-State Dynamics of Transition 
Metal Complexes. JACS Au 2021. DOI: 10.1021/jacsau.1c00252. 
25. Crespo-Otero, R.; Barbatti, M. Recent Advances and Perspectives on Nonadiabatic 
Mixed Quantum-Classical Dynamics. Chem. Rev. 2018, 118 (15), 7026-7068. DOI: 
10.1021/acs.chemrev.7b00577. 



22 

26. Weber, W.; Thiel, W. Orthogonalization corrections for semiempirical methods. 
Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica 
Acta) 2000, 103 (6), 495-506. DOI: 10.1007/s002149900083. 
27. Koslowski, A.; Beck, M. E.; Thiel, W. Implementation of a general multireference 
configuration interaction procedure with analytic gradients in a semiempirical context using the 
graphical unitary group approach. J. Comput. Chem. 2003, 24 (6), 714-726. DOI: 
10.1002/jcc.10210. 
28. Kranz, J. J.; Elstner, M.; Aradi, B.; Frauenheim, T.; Lutsker, V.; Garcia, A. D.; Niehaus, 
T. A. Time-Dependent Extension of the Long-Range Corrected Density Functional Based Tight-
Binding Method. J. Chem. Theory Comput. 2017, 13 (4), 1737-1747. DOI: 
10.1021/acs.jctc.6b01243. 
29. Zobel, J. P.; Heindl, M.; Plasser, F.; Mai, S.; Gonzalez, L. Surface Hopping Dynamics 
on Vibronic Coupling Models. Acc Chem Res 2021, 54 (20), 3760-3771. DOI: 
10.1021/acs.accounts.1c00485. 
30. Plasser, F.; Gomez, S.; Menger, M.; Mai, S.; Gonzalez, L. Highly efficient surface 
hopping dynamics using a linear vibronic coupling model. Phys. Chem. Chem. Phys. 2018, 21 
(1), 57-69. DOI: 10.1039/c8cp05662e. 
31. Seritan, S.; Bannwarth, C.; Fales, B. S.; Hohenstein, E. G.; Isborn, C. M.; Kokkila-
Schumacher, S. I. L.; Li, X.; Liu, F.; Luehr, N.; Snyder, J. W.; et al. TeraChem: A graphical 
processing unit-accelerated electronic structure package for large-scale ab initio molecular 
dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, 11 (2). DOI: 10.1002/wcms.1494. 
32. Nandy, A.; Duan, C.; Taylor, M. G.; Liu, F.; Steeves, A. H.; Kulik, H. J. Computational 
Discovery of Transition-metal Complexes: From High-throughput Screening to Machine 
Learning. Chem. Rev. 2021, 121 (16), 9927-10000. DOI: 10.1021/acs.chemrev.1c00347. 
33. Friederich, P.; Hase, F.; Proppe, J.; Aspuru-Guzik, A. Machine-learned potentials for 
next-generation matter simulations. Nat Mater 2021, 20 (6), 750-761. DOI: 10.1038/s41563-
020-0777-6. 
34. Jiang, S.; Malkomes, G.; Moseley, B.; Garnett, R. Efficient nonmyopic active search 
with applications in drug and materials discovery. arXiv preprint 2018. DOI: 
10.48550/arXiv.1811.08871. 
35. Jiang, S.; Malkomes, G.; Converse, G.; Shofner, A.; Moseley, B.; Garnett, R. Efficient 
Nonmyopic Active Search. In Proceedings of the 34th International Conference on Machine 
Learning, Proceedings of Machine Learning Research; 2017. 
36. Lewis-Atwell, T.; Townsend, P. A.; Grayson, M. N. Machine learning activation energies 
of chemical reactions. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021. DOI: 
10.1002/wcms.1593. 
37. Peterson, A. A. Acceleration of saddle-point searches with machine learning. J. Chem. 
Phys. 2016, 145 (7), 074106. DOI: 10.1063/1.4960708. 
38. Pozun, Z. D.; Hansen, K.; Sheppard, D.; Rupp, M.; Muller, K. R.; Henkelman, G. 
Optimizing transition states via kernel-based machine learning. J. Chem. Phys. 2012, 136 (17), 
174101. DOI: 10.1063/1.4707167. 
39. Choi, S. Prediction of transition state structures of gas-phase chemical reactions via 
machine learning. Nat. Commun. 2023, 14 (1), 1168. DOI: 10.1038/s41467-023-36823-3. 
40. Hermann, J.; Schatzle, Z.; Noe, F. Deep-neural-network solution of the electronic 
Schrodinger equation. Nat. Chem. 2020, 12 (10), 891-897. DOI: 10.1038/s41557-020-0544-y. 
41. Han, J.; Zhang, L.; E, W. Solving many-electron Schrödinger equation using deep 
neural networks. J. Comput. Phys. 2019, 399. DOI: 10.1016/j.jcp.2019.108929. 
42. Schutt, K. T.; Gastegger, M.; Tkatchenko, A.; Muller, K. R.; Maurer, R. J. Unifying 
machine learning and quantum chemistry with a deep neural network for molecular 
wavefunctions. Nat. Commun. 2019, 10 (1), 5024. DOI: 10.1038/s41467-019-12875-2. 
43. Gastegger, M.; McSloy, A.; Luya, M.; Schutt, K. T.; Maurer, R. J. A deep neural network 
for molecular wave functions in quasi-atomic minimal basis representation. J. Chem. Phys. 
2020, 153 (4), 044123. DOI: 10.1063/5.0012911. 



23 

44. Zhou, Y.; Wu, J.; Chen, S.; Chen, G. Toward the Exact Exchange-Correlation Potential: 
A Three-Dimensional Convolutional Neural Network Construct. J. Phys. Chem. Lett. 2019, 10 
(22), 7264-7269. DOI: 10.1021/acs.jpclett.9b02838. 
45. Dick, S.; Fernandez-Serra, M. Machine learning accurate exchange and correlation 
functionals of the electronic density. Nat. Commun. 2020, 11 (1), 3509. DOI: 10.1038/s41467-
020-17265-7. 
46. Gastegger, M.; Behler, J.; Marquetand, P. Machine learning molecular dynamics for the 
simulation of infrared spectra. Chem Sci 2017, 8 (10), 6924-6935. DOI: 10.1039/c7sc02267k. 
47. Westermayr, J.; Marquetand, P. Deep learning for UV absorption spectra with SchNarc: 
First steps toward transferability in chemical compound space. J. Chem. Phys. 2020, 153 (15), 
154112. DOI: 10.1063/5.0021915. 
48. Westermayr, J.; Maurer, R. J. Physically inspired deep learning of molecular excitations 
and photoemission spectra. Chem Sci 2021, 12 (32), 10755-10764. DOI: 
10.1039/d1sc01542g. 
49. Gao, P.; Zhang, J.; Peng, Q.; Zhang, J.; Glezakou, V. A. General Protocol for the 
Accurate Prediction of Molecular (13)C/(1)H NMR Chemical Shifts via Machine Learning 
Augmented DFT. J. Chem. Inf. Model. 2020, 60 (8), 3746-3754. DOI: 
10.1021/acs.jcim.0c00388. 
50. Westermayr, J.; Marquetand, P. Machine Learning for Electronically Excited States of 
Molecules. Chem. Rev. 2021, 121 (16), 9873-9926. DOI: 10.1021/acs.chemrev.0c00749. 
51. Dral, P. O.; Barbatti, M. Molecular excited states through a machine learning lens. 
Nature Reviews Chemistry 2021, 5 (6), 388-405. DOI: 10.1038/s41570-021-00278-1. 
52. Behler, J. Four Generations of High-Dimensional Neural Network Potentials. Chem. 
Rev. 2021, 121 (16), 10037-10072. DOI: 10.1021/acs.chemrev.0c00868. 
53. Schutt, K. T.; Arbabzadah, F.; Chmiela, S.; Muller, K. R.; Tkatchenko, A. Quantum-
chemical insights from deep tensor neural networks. Nat. Commun. 2017, 8, 13890. DOI: 
10.1038/ncomms13890. 
54. Unke, O. T.; Meuwly, M. PhysNet: A Neural Network for Predicting Energies, Forces, 
Dipole Moments, and Partial Charges. J. Chem. Theory Comput. 2019, 15 (6), 3678-3693. 
DOI: 10.1021/acs.jctc.9b00181. 
55. Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: an extensible neural network potential 
with DFT accuracy at force field computational cost. Chem Sci 2017, 8 (4), 3192-3203. DOI: 
10.1039/c6sc05720a. 
56. Gao, X.; Ramezanghorbani, F.; Isayev, O.; Smith, J. S.; Roitberg, A. E. TorchANI: A 
Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural 
Network Potentials. J. Chem. Inf. Model. 2020, 60 (7), 3408-3415. DOI: 
10.1021/acs.jcim.0c00451. 
57. Zhang, L.; Han, J.; Wang, H.; Saidi, W. A.; Car, R.; Weinan, E. End-to-end symmetry 
preserving inter-atomic potential energy model for finite and extended systems. In Proceedings 
of the 32nd International Conference on Neural Information Processing Systems, Montréal, 
Canada; 2018. 
58. Chmiela, S.; Sauceda, H. E.; Muller, K. R.; Tkatchenko, A. Towards exact molecular 
dynamics simulations with machine-learned force fields. Nat. Commun. 2018, 9 (1), 3887. DOI: 
10.1038/s41467-018-06169-2. 
59. Dral, P. O.; Ge, F.; Xue, B. X.; Hou, Y. F.; Pinheiro, M., Jr.; Huang, J.; Barbatti, M. 
MLatom 2: An Integrative Platform for Atomistic Machine Learning. Top Curr Chem (Cham) 
2021, 379 (4), 27. DOI: 10.1007/s41061-021-00339-5. 
60. Koner, D.; Meuwly, M. Permutationally Invariant, Reproducing Kernel-Based Potential 
Energy Surfaces for Polyatomic Molecules: From Formaldehyde to Acetone. J. Chem. Theory 
Comput. 2020, 16 (9), 5474-5484. DOI: 10.1021/acs.jctc.0c00535. 
61. Bartok, A. P.; Payne, M. C.; Kondor, R.; Csanyi, G. Gaussian approximation potentials: 
the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 2010, 104 (13), 
136403. DOI: 10.1103/PhysRevLett.104.136403. 



24 

62. Batzner, S.; Musaelian, A.; Sun, L.; Geiger, M.; Mailoa, J. P.; Kornbluth, M.; Molinari, 
N.; Smidt, T. E.; Kozinsky, B. E(3)-equivariant graph neural networks for data-efficient and 
accurate interatomic potentials. Nat. Commun. 2022, 13 (1), 2453. DOI: 10.1038/s41467-022-
29939-5. 
63. Musaelian, A.; Batzner, S.; Johansson, A.; Sun, L.; Owen, C. J.; Kornbluth, M.; 
Kozinsky, B. Learning local equivariant representations for large-scale atomistic dynamics. 
Nat. Commun. 2023, 14 (1), 579. DOI: 10.1038/s41467-023-36329-y. 
64. Dral, P. O. MLatom: A program package for quantum chemical research assisted by 
machine learning. J. Comput. Chem. 2019, 40 (26), 2339-2347. DOI: 10.1002/jcc.26004. 
65. Xie, Y.; Vandermause, J.; Sun, L.; Cepellotti, A.; Kozinsky, B. Bayesian force fields from 
active learning for simulation of inter-dimensional transformation of stanene. npj Computational 
Materials 2021, 7 (1). DOI: 10.1038/s41524-021-00510-y. 
66. Westermayr, J.; Faber, F. A.; Christensen, A. S.; von Lilienfeld, O. A.; Marquetand, P. 
Neural networks and kernel ridge regression for excited states dynamics of CH2NH2+: From 
single-state to multi-state representations and multi-property machine learning models. Mach. 
Learn.: Sci. Technol. 2020, 1 (2). DOI: 10.1088/2632-2153/ab88d0. 
67. Pinheiro, M., Jr.; Ge, F.; Ferre, N.; Dral, P. O.; Barbatti, M. Choosing the right molecular 
machine learning potential. Chem Sci 2021, 12 (43), 14396-14413. DOI: 10.1039/d1sc03564a. 
68. Rodríguez, L. E. H.; Ullah, A.; Espinosa, K. J. R.; Dral, P. O.; Kananenka, A. A. A 
comparative study of different machine learning methods for dissipative quantum dynamics. 
Mach. Learn.: Sci. Technol. 2022, 3 (4). DOI: 10.1088/2632-2153/ac9a9d. 
69. Rupp, M.; Tkatchenko, A.; Muller, K. R.; von Lilienfeld, O. A. Fast and accurate 
modeling of molecular atomization energies with machine learning. Phys. Rev. lett. 2012, 108 
(5), 058301. DOI: 10.1103/PhysRevLett.108.058301. 
70. Westermayr, J.; Gastegger, M.; Menger, M.; Mai, S.; Gonzalez, L.; Marquetand, P. 
Machine learning enables long time scale molecular photodynamics simulations. Chem Sci 
2019, 10 (35), 8100-8107. DOI: 10.1039/c9sc01742a. 
71. Hansen, K.; Biegler, F.; Ramakrishnan, R.; Pronobis, W.; von Lilienfeld, O. A.; Muller, 
K. R.; Tkatchenko, A. Machine Learning Predictions of Molecular Properties: Accurate Many-
Body Potentials and Nonlocality in Chemical Space. J. Phys. Chem. Lett. 2015, 6 (12), 2326-
2331. DOI: 10.1021/acs.jpclett.5b00831. 
72. Hansen, K.; Montavon, G.; Biegler, F.; Fazli, S.; Rupp, M.; Scheffler, M.; von Lilienfeld, 
O. A.; Tkatchenko, A.; Muller, K. R. Assessment and Validation of Machine Learning Methods 
for Predicting Molecular Atomization Energies. J. Chem. Theory Comput. 2013, 9 (8), 3404-
3419. DOI: 10.1021/ct400195d. 
73. Qu, C.; Yu, Q.; Bowman, J. M. Permutationally Invariant Potential Energy Surfaces. 
Annu. Rev. Phys. Chem. 2018, 69, 151-175. DOI: 10.1146/annurev-physchem-050317-
021139. 
74. Li, J.; Stein, R.; Adrion, D. M.; Lopez, S. A. Machine-Learning Photodynamics 
Simulations Uncover the Role of Substituent Effects on the Photochemical Formation of 
Cubanes. J. Am. Chem. Soc. 2021, 143 (48), 20166-20175. DOI: 10.1021/jacs.1c07725. 
75. Li, J.; Lopez, S. A. Excited-State Distortions Promote the Photochemical 4pi-
Electrocyclizations of Fluorobenzenes via Machine Learning Accelerated Photodynamics 
Simulations. Chemistry 2022, e202200651. DOI: 10.1002/chem.202200651. 
76. Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural 
network potentials. J. Chem. Phys. 2011, 134 (7), 074106. DOI: 10.1063/1.3553717. 
77. Bartók, A. P.; Kondor, R.; Csányi, G. On representing chemical environments. Phys 
Rev B Condens Matter 2013, 87 (18), 184115. DOI: 10.1103/PhysRevB.87.184115. 
78. Christensen, A. S.; Bratholm, L. A.; Faber, F. A.; Anatole von Lilienfeld, O. FCHL 
revisited: Faster and more accurate quantum machine learning. J. Chem. Phys. 2020, 152 (4), 
044107. DOI: 10.1063/1.5126701. 
79. Pozdnyakov, S. N.; Willatt, M. J.; Bartok, A. P.; Ortner, C.; Csanyi, G.; Ceriotti, M. 
Incompleteness of Atomic Structure Representations. Phys. Rev. Lett. 2020, 125 (16), 166001. 
DOI: 10.1103/PhysRevLett.125.166001. 



25 

80. Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Arxiv preprint 2017. 
DOI: 10.48550/arXiv.1704.01212. 
81. Schutt, K. T.; Sauceda, H. E.; Kindermans, P. J.; Tkatchenko, A.; Muller, K. R. SchNet 
- A deep learning architecture for molecules and materials. J. Chem. Phys. 2018, 148 (24), 
241722. DOI: 10.1063/1.5019779. 
82. Lubbers, N.; Smith, J. S.; Barros, K. Hierarchical modeling of molecular energies using 
a deep neural network. J. Chem. Phys. 2018, 148 (24), 241715. DOI: 10.1063/1.5011181. 
83. Unke, O. T.; Chmiela, S.; Gastegger, M.; Schutt, K. T.; Sauceda, H. E.; Muller, K. R. 
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects. Nat. 
Commun. 2021, 12 (1), 7273. DOI: 10.1038/s41467-021-27504-0. 
84. Tang, D.; Jia, L.; Shen, L.; Fang, W. H. Fewest-Switches Surface Hopping with Long 
Short-Term Memory Networks. J. Phys. Chem. Lett. 2022, 13 (44), 10377-10387. DOI: 
10.1021/acs.jpclett.2c02299. 
85. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press, 2016. 
86. Lin, K.; Peng, J.; Gu, F. L.; Lan, Z. Simulation of Open Quantum Dynamics with 
Bootstrap-Based Long Short-Term Memory Recurrent Neural Network. J. Phys. Chem. Lett. 
2021, 12 (41), 10225-10234. DOI: 10.1021/acs.jpclett.1c02672. 
87. Mai, S.; Marquetand, P.; González, L. A general method to describe intersystem 
crossing dynamics in trajectory surface hopping. Int. J. Quantum Chem. 2015, 115 (18), 1215-
1231. DOI: 10.1002/qua.24891. 
88. Cui, G.; Thiel, W. Generalized trajectory surface-hopping method for internal 
conversion and intersystem crossing. J. Chem. Phys. 2014, 141 (12), 124101. DOI: 
10.1063/1.4894849. 
89. Park, W.; Shen, J.; Lee, S.; Piecuch, P.; Filatov, M.; Choi, C. H. Internal Conversion 
between Bright (1(1)Bu(+)) and Dark (2(1)Ag(-)) States in s-trans-Butadiene and s-trans-
Hexatriene. J. Phys. Chem. Lett. 2021, 12 (39), 9720-9729. DOI: 10.1021/acs.jpclett.1c02707. 
90. Polyak, I.; Hutton, L.; Crespo-Otero, R.; Barbatti, M.; Knowles, P. J. Ultrafast 
Photoinduced Dynamics of 1,3-Cyclohexadiene Using XMS-CASPT2 Surface Hopping. J. 
Chem. Theory Comput. 2019, 15 (7), 3929-3940. DOI: 10.1021/acs.jctc.9b00396. 
91. Yang, X.; Manathunga, M.; Gozem, S.; Leonard, J.; Andruniow, T.; Olivucci, M. 
Quantum-classical simulations of rhodopsin reveal excited-state population splitting and its 
effects on quantum efficiency. Nat. Chem. 2022, 14 (4), 441-449. DOI: 10.1038/s41557-022-
00892-6. 
92. Westermayr, J.; Gastegger, M.; Menger, M.; Mai, S.; Gonzalez, L.; Marquetand, P. 
Machine learning enables long time scale molecular photodynamics simulations. Chem. Sci. 
2019, 10 (35), 8100-8107. DOI: 10.1039/c9sc01742a. 
93. Westermayr, J.; Gastegger, M.; Marquetand, P. Combining SchNet and SHARC: The 
SchNarc Machine Learning Approach for Excited-State Dynamics. J. Phys. Chem. Lett. 2020, 
11 (10), 3828-3834. DOI: 10.1021/acs.jpclett.0c00527. 
94. Li, J.; Reiser, P.; Boswell, B. R.; Eberhard, A.; Burns, N. Z.; Friederich, P.; Lopez, S. A. 
Automatic discovery of photoisomerization mechanisms with nanosecond machine learning 
photodynamics simulations. Chem. Sci. 2021, 12 (14), 5302-5314. DOI: 10.1039/d0sc05610c. 
95. Axelrod, S.; Shakhnovich, E.; Gómez-Bombarelli, R. Excited state, non-adiabatic 
dynamics of large photoswitchable molecules using a chemically transferable machine 
learning potential. Arxiv preprint 2021. DOI: arXiv:2108.04879v2. 
96. Ishida, T.; Nanbu, S.; Nakamura, H. Clarification of nonadiabatic chemical dynamics by 
the Zhu-Nakamura theory of nonadiabatic transition: from tri-atomic systems to reactions in 
solutions. Int. Rev. Phys. Chem. 2017, 36 (2), 229-285. DOI: 
10.1080/0144235x.2017.1293399. 
97. Yu, L.; Xu, C.; Lei, Y.; Zhu, C.; Wen, Z. Trajectory-based nonadiabatic molecular 
dynamics without calculating nonadiabatic coupling in the avoided crossing case: trans<-->cis 
photoisomerization in azobenzene. Phys. Chem. Chem. Phys. 2014, 16 (47), 25883-25895. 
DOI: 10.1039/c4cp03498h. 



26 

98. Yue, L.; Yu, L.; Xu, C.; Zhu, C.; Liu, Y. Quantum yields of singlet and triplet 
chemiexcitation of dimethyl 1,2-dioxetane: ab initio nonadiabatic molecular dynamic 
simulations. Phys. Chem. Chem. Phys. 2020, 22 (20), 11440-11451. DOI: 
10.1039/d0cp00811g. 
99. Shchepanovska, D.; Shannon, R. J.; Curchod, B. F. E.; Glowacki, D. R. Nonadiabatic 
Kinetics in the Intermediate Coupling Regime: Comparing Molecular Dynamics to an Energy-
Grained Master Equation. J. Phys. Chem. A 2021, 125 (16), 3473-3488. DOI: 
10.1021/acs.jpca.1c01260. 
100. Yue, L.; Yu, L.; Xu, C.; Lei, Y.; Liu, Y.; Zhu, C. Benchmark Performance of Global 
Switching versus Local Switching for Trajectory Surface Hopping Molecular Dynamics 
Simulation: Cis<-->Trans Azobenzene Photoisomerization. Chemphyschem 2017, 18 (10), 
1274-1287. DOI: 10.1002/cphc.201700049. 
101. T. do Casal, M.; Toldo, J. M.; Pinheiro Jr, M.; Barbatti, M. Fewest switches surface 
hopping with Baeck-An couplings. Open Research Europe 2022, 1. DOI: 
10.12688/openreseurope.13624.2. 
102. Baeck, K. K.; An, H. Practical approximation of the non-adiabatic coupling terms for 
same-symmetry interstate crossings by using adiabatic potential energies only. J. Chem. Phys. 
2017, 146 (6), 064107. DOI: 10.1063/1.4975323. 
103. Shu, Y.; Zhang, L.; Chen, X.; Sun, S.; Huang, Y.; Truhlar, D. G. Nonadiabatic Dynamics 
Algorithms with Only Potential Energies and Gradients: Curvature-Driven Coherent Switching 
with Decay of Mixing and Curvature-Driven Trajectory Surface Hopping. J. Chem. Theory 
Comput. 2022, 18 (3), 1320-1328. DOI: 10.1021/acs.jctc.1c01080. 
104. Huix-Rotllant, M.; Ferré, N.; Barbatti, M. Time-Dependent Density Functional Theory. 
In Quantum Chemistry and Dynamics of Excited States, 2020; pp 13-46. 
105. Christiansen, O.; Koch, H.; Jørgensen, P. The second-order approximate coupled 
cluster singles and doubles model CC2. Chem. Phys. Lett. 1995, 243 (5-6), 409-418. DOI: 
10.1016/0009-2614(95)00841-q. 
106. Wormit, M.; Rehn, D. R.; Harbach, P. H. P.; Wenzel, J.; Krauter, C. M.; Epifanovsky, E.; 
Dreuw, A. Investigating excited electronic states using the algebraic diagrammatic construction 
(ADC) approach of the polarisation propagator. Mol. Phys. 2014, 112 (5-6), 774-784. DOI: 
10.1080/00268976.2013.859313. 
107. Dreuw, A.; Wormit, M. The algebraic diagrammatic construction scheme for the 
polarization propagator for the calculation of excited states. Wiley Interdiscip. Rev. Comput. 
Mol. Sci. 2015, 5 (1), 82-95. DOI: 10.1002/wcms.1206. 
108. Levine, B. G.; Ko, C.; Quenneville, J.; MartÍnez, T. J. Conical intersections and double 
excitations in time-dependent density functional theory. Mol. Phys. 2007, 104 (5-7), 1039-1051. 
DOI: 10.1080/00268970500417762. 
109. Huix-Rotllant, M.; Nikiforov, A.; Thiel, W.; Filatov, M. Description of Conical Intersections 
with Density Functional Methods. Top Curr. Chem. 2016, 368, 445-476. DOI: 
10.1007/128_2015_631. 
110. Lee, S.; Shostak, S.; Filatov, M.; Choi, C. H. Conical Intersections in Organic Molecules: 
Benchmarking Mixed-Reference Spin-Flip Time-Dependent DFT (MRSF-TD-DFT) vs Spin-Flip 
TD-DFT. J. Phys. Chem. A 2019, 123 (30), 6455-6462. DOI: 10.1021/acs.jpca.9b06142. 
111. Casanova, D.; Krylov, A. I. Spin-flip methods in quantum chemistry. Phys. Chem. 
Chem. Phys. 2020, 22 (8), 4326-4342. DOI: 10.1039/c9cp06507e. 
112. Horbatenko, Y.; Sadiq, S.; Lee, S.; Filatov, M.; Choi, C. H. Mixed-Reference Spin-Flip 
Time-Dependent Density Functional Theory (MRSF-TDDFT) as a Simple yet Accurate Method 
for Diradicals and Diradicaloids. J. Chem. Theory Comput. 2021, 17 (2), 848-859. DOI: 
10.1021/acs.jctc.0c01074. 
113. Lee, I. S.; Filatov, M.; Min, S. K. Formulation and Implementation of the Spin-Restricted 
Ensemble-Referenced Kohn-Sham Method in the Context of the Density Functional Tight 
Binding Approach. J. Chem. Theory Comput. 2019, 15 (5), 3021-3032. DOI: 
10.1021/acs.jctc.9b00132. 



27 

114. Andersson, K.; Malmqvist, P. A.; Roos, B. O.; Sadlej, A. J.; Wolinski, K. Second-order 
perturbation theory with a CASSCF reference function. J. Phys. Chem. 2002, 94 (14), 5483-
5488. DOI: 10.1021/j100377a012. 
115. Andersson, K.; Malmqvist, P. Å.; Roos, B. O. Second-order perturbation theory with a 
complete active space self-consistent field reference function. J. Chem. Phys. 1992, 96 (2), 
1218-1226. DOI: 10.1063/1.462209. 
116. Szalay, P. G.; Muller, T.; Gidofalvi, G.; Lischka, H.; Shepard, R. Multiconfiguration self-
consistent field and multireference configuration interaction methods and applications. Chem. 
Rev. 2012, 112 (1), 108-181. DOI: 10.1021/cr200137a. 
117. Sherrill, D. C.; Schaefer, H. F. The Configuration Interaction Method: Advances in 
Highly Correlated Approaches. In Advances in Quantum Chemistry, Per-Olov Löwdin, J. R. S., 
Michael C. Zerner, Erkki Brändas Ed.; Vol. 34; 1999; pp 143-269. 
118. Roos, B. O.; Lindh, R.; Malmqvist, P. Å.; Veryazov, V.; Widmark, P.-O. 
Multiconfigurational Quantum Chemistry; 2016. 
119. Lischka, H.; Nachtigallova, D.; Aquino, A. J. A.; Szalay, P. G.; Plasser, F.; Machado, F. 
B. C.; Barbatti, M. Multireference Approaches for Excited States of Molecules. Chem. Rev. 
2018, 118 (15), 7293-7361. DOI: 10.1021/acs.chemrev.8b00244. 
120. Shiozaki, T.; Gyorffy, W.; Celani, P.; Werner, H. J. Communication: extended multi-state 
complete active space second-order perturbation theory: energy and nuclear gradients. J. 
Chem. Phys. 2011, 135 (8), 081106. DOI: 10.1063/1.3633329. 
121. Battaglia, S.; Lindh, R. Extended Dynamically Weighted CASPT2: The Best of Two 
Worlds. J. Chem. Theory Comput. 2020, 16 (3), 1555-1567. DOI: 10.1021/acs.jctc.9b01129. 
122. Levine, D. S.; Hait, D.; Tubman, N. M.; Lehtola, S.; Whaley, K. B.; Head-Gordon, M. 
CASSCF with Extremely Large Active Spaces Using the Adaptive Sampling Configuration 
Interaction Method. J. Chem. Theory Comput. 2020, 16 (4), 2340-2354. DOI: 
10.1021/acs.jctc.9b01255. 
123. Park, J. W. Near-Exact CASSCF-Level Geometry Optimization with a Large Active 
Space using Adaptive Sampling Configuration Interaction Self-Consistent Field Corrected with 
Second-Order Perturbation Theory (ASCI-SCF-PT2). J. Chem. Theory Comput. 2021, 17 (7), 
4092-4104. DOI: 10.1021/acs.jctc.1c00272. 
124. Mai, S.; Atkins, A. J.; Plasser, F.; Gonzalez, L. The Influence of the Electronic Structure 
Method on Intersystem Crossing Dynamics. The Case of Thioformaldehyde. J. Chem. Theory 
Comput. 2019, 15 (6), 3470-3480. DOI: 10.1021/acs.jctc.9b00282. 
125. Gomez, S.; Ibele, L. M.; Gonzalez, L. The 3s Rydberg state as a doorway state in the 
ultrafast dynamics of 1,1-difluoroethylene. Phys. Chem. Chem. Phys. 2019, 21 (9), 4871-4878. 
DOI: 10.1039/c8cp07766e. 
126. Marin, M. D. C.; Agathangelou, D.; Orozco-Gonzalez, Y.; Valentini, A.; Kato, Y.; Abe-
Yoshizumi, R.; Kandori, H.; Choi, A.; Jung, K. H.; Haacke, S.; et al. Fluorescence Enhancement 
of a Microbial Rhodopsin via Electronic Reprogramming. J. Am. Chem. Soc. 2019, 141 (1), 
262-271. DOI: 10.1021/jacs.8b09311. 
127. Helmich-Paris, B. Benchmarks for Electronically Excited States with CASSCF 
Methods. J. Chem. Theory Comput. 2019, 15 (7), 4170-4179. DOI: 10.1021/acs.jctc.9b00325. 
128. Westermayr, J.; Gastegger, M.; Voros, D.; Panzenboeck, L.; Joerg, F.; Gonzalez, L.; 
Marquetand, P. Deep learning study of tyrosine reveals that roaming can lead to photodamage. 
Nat. Chem. 2022. DOI: 10.1038/s41557-022-00950-z. 
129. Kidwell, N. M.; Li, H.; Wang, X.; Bowman, J. M.; Lester, M. I. Unimolecular dissociation 
dynamics of vibrationally activated CH3CHOO Criegee intermediates to OH radical products. 
Nat. Chem. 2016, 8 (5), 509-514. DOI: 10.1038/nchem.2488. 
130. Rupp, M.; Tkatchenko, A.; Muller, K. R.; von Lilienfeld, O. A. Fast and accurate 
modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 2012, 108 
(5), 058301. DOI: 10.1103/PhysRevLett.108.058301. 
131. Montavon, G.; Rupp, M.; Gobre, V.; Vazquez-Mayagoitia, A.; Hansen, K.; Tkatchenko, 
A.; Müller, K.-R.; Anatole von Lilienfeld, O. Machine learning of molecular electronic properties 



28 

in chemical compound space. New Journal of Physics 2013, 15 (9). DOI: 10.1088/1367-
2630/15/9/095003. 
132. Ramakrishnan, R.; Hartmann, M.; Tapavicza, E.; von Lilienfeld, O. A. Electronic spectra 
from TDDFT and machine learning in chemical space. J. Chem. Phys. 2015, 143 (8), 084111. 
DOI: 10.1063/1.4928757. 
133. Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Quantum chemistry 
structures and properties of 134 kilo molecules. Sci Data 2014, 1, 140022. DOI: 
10.1038/sdata.2014.22. 
134. Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, I.; Schutt, K. T.; Muller, K. R. 
Machine learning of accurate energy-conserving molecular force fields. Sci Adv 2017, 3 (5), 
e1603015. DOI: 10.1126/sciadv.1603015. 
135. Pinheiro, M., Jr.; Zhang, S.; Dral, P. O.; Barbatti, M. WS22 database, Wigner Sampling 
and geometry interpolation for configurationally diverse molecular datasets. Sci Data 2023, 10 
(1), 95. DOI: 10.1038/s41597-023-01998-3. 
136. Kästner, J. Umbrella sampling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1 (6), 
932-942. DOI: 10.1002/wcms.66. 
137. Tao, G. Trajectory-guided sampling for molecular dynamics simulation. Theor. Chem. 
Acc. 2019, 138 (3). DOI: 10.1007/s00214-018-2413-y. 
138. Yang, Y. I.; Shao, Q.; Zhang, J.; Yang, L.; Gao, Y. Q. Enhanced sampling in molecular 
dynamics. J. Chem. Phys. 2019, 151 (7), 070902. DOI: 10.1063/1.5109531. 
139. Herr, J. E.; Yao, K.; McIntyre, R.; Toth, D. W.; Parkhill, J. Metadynamics for training 
neural network model chemistries: A competitive assessment. J. Chem. Phys. 2018, 148 (24), 
241710. DOI: 10.1063/1.5020067. 
140. Shang, C.; Liu, Z. P. Stochastic Surface Walking Method for Structure Prediction and 
Pathway Searching. J. Chem. Theory Comput. 2013, 9 (3), 1838-1845. DOI: 
10.1021/ct301010b. 
141. Dahl, J. P.; Springborg, M. The Morse oscillator in position space, momentum space, 
and phase space. J. Chem. Phys. 1988, 88 (7), 4535-4547. DOI: 10.1063/1.453761. 
142. Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: an extensible neural network potential 
with DFT accuracy at force field computational cost. Chem. Sci. 2017, 8 (4), 3192-3203. DOI: 
10.1039/c6sc05720a. 
143. Artrith, N.; Behler, J. High-dimensional neural network potentials for metal surfaces: A 
prototype study for copper. Phys Rev B Condens Matter 2012, 85 (4). DOI: 
10.1103/PhysRevB.85.045439. 
144. Chung, L. W.; Sameera, W. M.; Ramozzi, R.; Page, A. J.; Hatanaka, M.; Petrova, G. P.; 
Harris, T. V.; Li, X.; Ke, Z.; Liu, F.; et al. The ONIOM Method and Its Applications. Chem. Rev. 
2015, 115 (12), 5678-5796. DOI: 10.1021/cr5004419. 
145. Zhang, Y. J.; Khorshidi, A.; Kastlunger, G.; Peterson, A. A. The potential for machine 
learning in hybrid QM/MM calculations. J. Chem. Phys. 2018, 148 (24), 241740. DOI: 
10.1063/1.5029879. 
146. Chen, W. K.; Fang, W. H.; Cui, G. Integrating Machine Learning with the Multilayer 
Energy-Based Fragment Method for Excited States of Large Systems. J. Phys. Chem. Lett. 
2019, 10 (24), 7836-7841. DOI: 10.1021/acs.jpclett.9b03113. 
147. Wu, J.; Shen, L.; Yang, W. Internal force corrections with machine learning for quantum 
mechanics/molecular mechanics simulations. J. Chem. Phys. 2017, 147 (16), 161732. DOI: 
10.1063/1.5006882. 
148. Shen, L.; Wu, J.; Yang, W. Multiscale Quantum Mechanics/Molecular Mechanics 
Simulations with Neural Networks. J. Chem. Theory Comput. 2016, 12 (10), 4934-4946. DOI: 
10.1021/acs.jctc.6b00663. 
149. Boselt, L.; Thurlemann, M.; Riniker, S. Machine Learning in QM/MM Molecular 
Dynamics Simulations of Condensed-Phase Systems. J. Chem. Theory Comput. 2021, 17 (5), 
2641-2658. DOI: 10.1021/acs.jctc.0c01112. 
150. Pan, X.; Yang, J.; Van, R.; Epifanovsky, E.; Ho, J.; Huang, J.; Pu, J.; Mei, Y.; Nam, K.; 
Shao, Y. Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme 



29 

Reactions. J. Chem. Theory Comput. 2021, 17 (9), 5745-5758. DOI: 
10.1021/acs.jctc.1c00565. 
151. Shen, L.; Yang, W. Molecular Dynamics Simulations with Quantum 
Mechanics/Molecular Mechanics and Adaptive Neural Networks. J. Chem. Theory Comput. 
2018, 14 (3), 1442-1455. DOI: 10.1021/acs.jctc.7b01195. 
152. Gastegger, M.; Schutt, K. T.; Muller, K. R. Machine learning of solvent effects on 
molecular spectra and reactions. Chem Sci 2021, 12 (34), 11473-11483. DOI: 
10.1039/d1sc02742e. 
153. Zeng, J.; Giese, T. J.; Ekesan, S.; York, D. M. Development of Range-Corrected Deep 
Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical 
Simulations of Chemical Reactions in Solution. J. Chem. Theory Comput. 2021, 17 (11), 6993-
7009. DOI: 10.1021/acs.jctc.1c00201. 
154. Zinovjev, K. Electrostatic Embedding of Machine Learning Potentials. J. Chem. Theory 
Comput. 2023, 19 (6), 1888-1897. DOI: 10.1021/acs.jctc.2c00914. 
155. Zhang, Y.; Hu, C.; Jiang, B. Embedded Atom Neural Network Potentials: Efficient and 
Accurate Machine Learning with a Physically Inspired Representation. J. Phys. Chem. Lett. 
2019, 10 (17), 4962-4967. DOI: 10.1021/acs.jpclett.9b02037. 
156. Zhang, Y.; Xia, J.; Jiang, B. Physically Motivated Recursively Embedded Atom Neural 
Networks: Incorporating Local Completeness and Nonlocality. Phys. Rev. Lett. 2021, 127 (15), 
156002. DOI: 10.1103/PhysRevLett.127.156002. 
157. Lier, B.; Poliak, P.; Marquetand, P.; Westermayr, J.; Oostenbrink, C. BuRNN: Buffer 
Region Neural Network Approach for Polarizable-Embedding Neural Network/Molecular 
Mechanics Simulations. J. Phys. Chem. Lett. 2022, 13 (17), 3812-3818. DOI: 
10.1021/acs.jpclett.2c00654. 
158. Richings, G. W.; Habershon, S. Predicting Molecular Photochemistry Using Machine-
Learning-Enhanced Quantum Dynamics Simulations. Acc Chem Res 2022, 55 (2), 209-220. 
DOI: 10.1021/acs.accounts.1c00665. 
159. Richings, G. W.; Habershon, S. Direct Quantum Dynamics Using Grid-Based Wave 
Function Propagation and Machine-Learned Potential Energy Surfaces. J. Chem. Theory 
Comput. 2017, 13 (9), 4012-4024. DOI: 10.1021/acs.jctc.7b00507. 
160. Ullah, A.; Dral, P. O. Speeding up quantum dissipative dynamics of open systems with 
kernel methods. New Journal of Physics 2021, 23 (11). DOI: 10.1088/1367-2630/ac3261. 
161. Ullah, A.; Dral, P. O. One-Shot Trajectory Learning of Open Quantum Systems 
Dynamics. J. Phys. Chem. Lett. 2022, 13 (26), 6037-6041. DOI: 10.1021/acs.jpclett.2c01242. 
162. Axelrod, S.; Shakhnovich, E.; Gomez-Bombarelli, R. Excited state non-adiabatic 
dynamics of large photoswitchable molecules using a chemically transferable machine 
learning potential. Nat. Commun. 2022, 13 (1), 3440. DOI: 10.1038/s41467-022-30999-w. 
163. Schütt, K. T.; Unke, O. T.; Gastegger, M. Equivariant message passing for the prediction 
of tensorial properties and molecular spectra. Arxiv preprint 2021. DOI: arXiv:2102.03150. 
164. Inamori, M.; Yoshikawa, T.; Ikabata, Y.; Nishimura, Y.; Nakai, H. Spin-flip approach 
within time-dependent density functional tight-binding method: Theory and applications. J. 
Comput. Chem. 2020, 41 (16), 1538-1548. DOI: 10.1002/jcc.26197. 
165. Iqbal, A.; Stavros, V. G. Active Participation of 1πσ* States in the Photodissociation of 
Tyrosine and Its Subunits. J. Phys. Chem. Lett. 2010, 1 (15), 2274-2278. DOI: 
10.1021/jz100814q. 
166. Tomasello, G.; Wohlgemuth, M.; Petersen, J.; Mitric, R. Photodynamics of free and 
solvated tyrosine. J. Phys. Chem. B 2012, 116 (30), 8762-8770. DOI: 10.1021/jp302179m. 
167. Sobolewski, A. L.; Shemesh, D.; Domcke, W. Computational studies of the 
photophysics of neutral and zwitterionic amino acids in an aqueous environment: tyrosine-
(H(2)O)(2) and tryptophan-(H(2)O)(2) clusters. J. Phys. Chem. A 2009, 113 (3), 542-550. DOI: 
10.1021/jp8091754. 
168. Mai, S.; Marquetand, P.; Gonzalez, L. Nonadiabatic dynamics: The SHARC approach. 
Wiley Interdiscip Rev Comput Mol Sci 2018, 8 (6), e1370. DOI: 10.1002/wcms.1370. 



30 

 
 

 

 

 

TOC 

 

 


