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Abstract 

We introduce PyConSolv, a freely available python package that automates the generation of 

conformers of metal and non-metal containing complexes in explicit solvent, through classical 

molecular dynamics simulations. Using a streamlined workflow and interfacing with widely used 

computational chemistry software, PyConSolv is an all-in-one tool for the generation of 

conformers in any solvent. Input requirements are minimal, only the geometry of the structure and 

the desired solvent in xyz (XMOL) format are needed. The package can also account for charged 

systems, by including arbitrary counterions in the simulation. A bonded model parametrization is 
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performed automatically, utilizing the AmberTools, ORCA, and Multiwfn software packages. 

PyConSolv provides a selection of pre-parametrized solvents and counterions for use in classical 

molecular dynamics simulations. We show the applicability of our package on a number of 

(transition-metal-containing) systems. The software is provided open-source and free of charge. 

Introduction 

As quantum mechanical (QM) methods and computer hardware evolve and become more 

efficient, bigger systems,1–3 that were previously far out of reach, can be tackled using quantum 

chemical wave function methods.4,5 As the system size increases, it becomes necessary to consider 

greater flexibility, which in turn presents new challenges that need to be properly addressed.6,7 One 

common approach is to generate conformational ensembles, which can be created in various ways.8 

While the importance of conformers is well known and a key feature in drug design pipelines,9,10 

it has only recently begun gaining traction in the field of homogenous catalysis.11–16 A systematic 

exploration of the conformational space, by generating rotamers, can be employed for simple 

systems, with few degrees of freedom, but quickly becomes unfeasible for larger molecules. While 

several more advanced methods for the generation of conformers exist, they are generally geared 

towards biological compounds17–20. Alternatively, molecular dynamics (MD) methods can be 

employed for the generation of conformers, by running simulations of the system (in explicit 

solvent) and clustering the resulting trajectory.21 For this purpose, ab initio MD (AIMD)22 or 

classical MD (cMD), in various flavors, can be used, each with its own advantages and 

disadvantages, as outlined below. 

For AIMD, calculating the electronic structure is generally considered to be the limiting factor 

for the overall sampling. To overcome this issue, the use of very efficient semi-empirical methods, 
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such as GFN2-xTB,23 provides a good compromise. One tailor-made approach for conformer 

generation is realized in the Conformer Rotamer Ensemble Tool (CREST),24 which is shown to 

perform very well for a large a number of systems, yet it is not without its downsides. Due to the 

inherent limitations of semi-empirical quantum chemical methods, GFN2-xTB and CREST do not 

perform well for typical transition-metal systems and neither structures nor energies are reliable 

without any further processing.25 Another caveat for CREST is the lack of explicit solvation. While 

implicit solvation models perform admirably for many complexes,26,27 they fail to provide 

reasonable structures when looking at systems containing a cavity,15 as intramolecular bonds are 

heavily favored. This can be counteracted by using explicit solvation, either in microsolvation 

approaches,28–30 that use a few solvent molecules, or in condensed phase calculations, but in any 

case, at the cost of massively increasing the computational requirements. 

On the other hand, cMD simulations rely on a force-field approach, which leads to a great 

speedup in calculations. Consequently, it allows for explicit treatment of solvent molecules, of 

course, at some cost in accuracy. While many force-fields exist, developed with either specific31–

35 or general use,36–40 running a cMD simulation for metal containing systems requires the 

generation of custom parameters of the system at hand, to obtain reasonable results. While there 

are tools created for the parametrization of organic molecules,41 the parametrization of transition 

metal containing complexes is a more involved process, requiring a special approach.42–46 As 

metals can form very complex structures, with widely varying coordination numbers,47 there are 

no predefined atom parameters available in the widely used general force fields. A full 

parametrization of the metal center is therefore required. One tool available in the AmberTools48 

suite, developed for parametrization of metal-containing biological systems, is the Metal Center 

Parameter Builder (MCPB).49 MCPB utilized a bonded model42 to describe the metal ion and its 
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surrounding environment. This approach requires defining the bonded and nonbonded parameters 

of the force field, for the metal atom and its ligands. These parameters entail structural information, 

force constants and potentials for bonds, angles and dihedrals as well as partial charges and van 

der Waals parameters. They are generated based on either experimental or QM optimized 

structures, by deriving their values from force constants and partial charges.49 We would like to 

stress here that the force field parameters are generated in such way that the QM optimized 

structure is retained. While using a bonded model as implemented in MCPB provides accurate 

results for many different (transition-)metal containing complexes,14,15,42,49–51 the generation of 

parameters is an intricate process and error prone, due to a lot of user intervention required.  

In this work, we present a user-friendly python package, which builds upon AmberTools,48 to 

provide an automated process for generating conformers of arbitrary, metal-containing or metal-

free complexes, in explicit solvent. The user only needs to provide an input structure, the desired 

QM method to be used to the geometry optimization and force constant calculations, total system 

charge and multiplicity, as well as the solvent to be used to the simulation (if applicable). We 

provide full support for a large number of pre-parametrized solvents, as well as the ability to 

parametrize any solvent of choice. Additionally, as many metal-containing complexes are 

associated with a counterion, we provide seven pre-parametrized ions, as well as the ability to 

parametrize an ion of choice. By interfacing to ORCA 5,52 the user has access to state-of-the-art 

QM methods for structure calculations. For system charge assignment, an interface to Multiwfn 

3.8,53 offers the user a plethora of charge calculations schemes, in addition to the Merz-Kollman 

RESP scheme54,55 recommended by MCPB. After the parametrization is complete, the system is 

solvated and a suggested equilibration procedure is offered to the user, using the Amber MD 

package.56,57 Once a simulation is performed, the resulting trajectory file can be analyzed via a 
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script provided by PyConSolv. The clustering itself is based on the popular cpptraj package58 and 

returns a number of conformers, ranked by their QM energy, based on single point calculations. 

Methodology 

In this work, conformational sampling is performed for an array of structures in explicit solvent 

using PyConSolv to show the applicability as a proof-of-concept. The systems of choice are a 

copper containing calix[8]arene catalyst for C-N coupling, a molybdenum based catalyst for olefin 

metathesis, the metal-free hydrogenobyric acid, as well as the vitamin B12 metabolite 

methylcobalamin. 

 

Parametrization. The protocol implemented in the PyConSolv python package is shown in Figure 

1. The input required is a simple XMOL xyz formatted molecular structure. Input files for ORCA 

5 are generated automatically, and geometry optimization and subsequent frequency calculations 

are performed at theelectronic structure theory level chosen by the user. The optimized geometry 

is taken as input for subsequent parametrization steps. As the metal center parametrization builds 

upon the MCPB.py package provided in AmberTools, the steps follow those recommended in the 
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aforementioned package. The structure must be 

split into fragments which are to be parametrized 

separately, with each atom requiring a unique 

identifier in the pdb files. This step is automated 

by building a connectivity matrix based on atom 

radii and pair distances of the atoms. If two 

atoms are closer together than 60% of the sum of 

their atomic radii, they are considered bound. If 

one of the atoms is a metal, the connectivity is 

checked, but it is not added to the matrix, as the 

metal needs to be parametrized separately from 

the rest of the fragments. Using a depth first 

search algorithm59 to traverse the connectivity 

matrix, we are able to identify each individual 

fragment. The user is then presented with an 

interactive window where a Lewis structure of 

each fragment is displayed. Here, we require the 

user to provide total fragment charges to perform 

the parametrization of each individual fragment 

using antechamber.41 The ORCA 5 output files 

are analyzed and converted into inputs for 

Multiwfn 3.8 and MCPB, also accounting for the 

usage of effective core potentials60 for heavy Figure 1. PyConSolv workflow steps. 
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atoms. The RESP charges for the system are calculated using Multiwfn, with the recommended 

settings, as in the Multiwfn user manual (see SI). The MCPB input file is created, taking into 

account the carbon-metal bonds present in the system, which are not natively recognized. Using 

the parameters generated by MCPB, a simulation box is then set up, with either one of the 18 

preconfigured solvents or any other user-defined solvent. Subsequently, an equilibration script, 

which follows an extensive heating and cooling procedure as outlined by Wallnöfer et al.61, is 

provided, as well as an input file for a simulation of 100 ns in the NVT ensemble, with T=300K.  

Supported Solvents and Ions. As part of the PyConSolv package, the solvents shown in Table 

S1 (SI) have been pre-parametrized and verified that the equilibrated solvent box density at 300K 

is close to experimentally determined densities. All parametrizations were performed on structures 

optimized with BP86/def2-SVP/D462–65, with the exception of acetonitrile, for which no D4 

corrections were used, as the resulting structure was incorrect. For parametrization, antechamber 

was used, with RESP charges.  

Alongside solvents, the following popular counterions have been parametrized: ScF63-, BF4-, 

B[ArF]-, B(Ph)-, PF6-, OTf- and ClO4
-. The structures have been optimized with BP86/def2-

SVP/D462–65 and all charges computed with RESP. During the parametrization, for BF4- and ClO4
-

, the angle parameters were unable to be determined automatically with antechamber/MCPB.py. 

In these cases, a scan of the angle was performed with ORCA and the parameter assigned 

manually. 

Analysis 

After a cMD production run has completed, the resulting trajectory can be analyzed using 

PyConSolv. This can be done in two ways, either using one of the provided shell scripts or using 
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the python implementation present within PyConSolv. To obtain relevant conformers, the 

trajectory must be clustered. As we use a root mean square deviation (RMSD) of the distance of 

all heavy atoms as the clustering criteria, it is vital that the trajectory is properly aligned. This is 

resolved by aligning the solute based on a list of atom indices, provided by the user. The clustering 

can then be performed using one of the four methods provided by cpptraj: dbscan, hierarchical, k-

means or dpeaks58. On the resulting clusters, single point calculations are performed, using the 

same electronic structure theory level that was used during the parametrization. Finally, a list of 

clusters, ranked by the single point energy, is presented to the user. 

Results 

The PyConSolv workflow, as explained above, was applied to the following systems: Cu(I)-

calix[8]arene15, a molybdenum based catalyst for olefin metathesis66,67, hydrogenobyric acid68–70 

and methylcobalamin71. A suitable functional was chosen for each system, along with the 

appropriate solvent, as to mimic the experimental conditions. All charges were calculated using 

RESP. After parametrization, the system was equilibrated and a 100 ns cMD production run was 

performed, using the simulation input file provided by PyConSolv. The clusters were generated 

using k-means, with the script provided by PyConSolv, using the RMSD of all non-hydrogen 

atoms as the distance metric. The simulations were aligned on the “rigid” parts of the structure, as 

described in each case below. A total of 10 clusters was chosen for eachsystem and evaluated. 

As a note about runtime, when comparing PyConSolv with CREST, it can be seen that with 

increase in system size, the PyConSolv workflow becomes noticeably faster, as the time-

consuming step becomes the frequency calculation, rather than the cMD simulation (see SI Table 

S2 for timings). 
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Case 1: Cu(I)-Calix[8]arene 

Cu(I)-calix[8]arene is a catalyst that has 

proven to be very complex to model, with the 

macrocyclic cage being particularly mobile. 

This inherent flexibility needs to be taken into 

account, in order to obtain an accurate energy 

profile for the reaction15 or to explain the 

difference in activity between various 

regioisomers.14  

Using PyConSolv, with PBE0/def2-

SVP/D3 + CPCM(Chloroform)26,65,72,73 the 

system shown in Figure 2 was parametrized 

and solvated in chloroform. The trajectory 

was aligned on the copper and phenanthroline 

moieties. The clusters shown in Figure 2 

represent those with the lowest energy, as computed via DFT single points, with the above 

specified density functional, basis set and dispersion correction. For comparison, structures 

generated with CREST using GFN2-xTB and implicit solvation (chloroform) have been generated 

as well. From the representative cluster depicted in Figure 2, it can be seen that the calix[8]arene 

cage is collapsed around the copper center. when compared to the structures generated with 

PyConSolv. This is an artefact caused by the lack of explicit solvation in the CREST conformers 

and the tendency of dispersion corrections to favor compact structures with many intramolecular 

Figure 2. Cu(I)-calix[8]arene clusters. Upper 

Panel: Top three clusters with lowest QM energy. 

Lower Panel: all 10 clusters superimposed (left). 

The bottom right image depicts a collapsed cage 

structure in implicit solvation. 
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interactions. The collapsed structure is in stark contrast to those generated in explicit solvent via 

PyConSolv (see Figure 2, bottom left). 

 

Case 2: Molybdenum N-heterocyclic carbene (NHC) catalyst 

Molybdenum imido alkylidene N-

heterocyclic carbene (NHC) catalysts 

represent one avenue of performing olefin 

metathesis.66,67 It was shown during the 

investigation of the reaction mechanism, that 

conformer generation is crucial for explaining 

the reactivity.74 

In the case of the Mo-based catalyst, the 

structures generated with PyConSolv, using 

BP86/def2-

SVP/D3BJ+CPCM(CH2Cl2)26,62,63,65,75, for 

force field parametrization. The trajectory 

was aligned on the molybdenum, the carbon 

of the aryl group and the NHC carbon bound 

to the molybdenum. It can be seen that the 

simulation successfully  captured the movement of the ligands, as shown in Figure 3. The triflate 

ligands show the most prominent flexibility. For comparison, structures were generated with 

CREST (see Figure S1, SI). Here, the solvent does not seem to have a great influence on the overall 

structure of the catalyst. The movement of the triflate groups is more pronounced in the CREST 

Figure 3. Mo imido alkylidene NHC catalyst 

clusters. Upper panel:  Top three ranked clusters 

according to QM energy. Lower panel: All 10 

clusters superimposed (left). The bottom right 

highlights the high flexibility of the triflate groups. 
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conformers, likely due to the enhanced sampling method implemented within its code. While 

similar enhanced sampling methods can easily be utilized in conjunction with PyConSolv, this is 

beyond the scope of this work. The NHC moiety, along with the aryl ligand appear to be 

considerably more rigid. While the CREST conformers display a rotation in the NHC group, this 

is not present in the cMD simulation set up by PyConSolv.  The underlying electronic structure 

method of CREST, GFN2-xTB, has shown to be less appropriate for this particular catalyst and as 

such, the resulting structures require further refinement using DFT. As the coordination geometry 

of the Mo center is restrained in the force field to the QM optimized one, an adequate structure is 

conserved in the simulations at the cost that changes in the Mo coordination geometry cannot be 

captured. 

Case 3: Hydrogenobyric Acid 

Hydrogenobyric acid represents the metal-

free precursor of vitamin B12 from which 

numerous native or artificial metal-

cobalamins can be synthetized.68–70 Its 

structural variability can prove to be 

interesting to drug design. The electronic 

structure calculation for parametrization was 

performed with BP86/def2-

SVP/D4+CPCM(Water).26,62–65, and the 

trajectory aligned on the nitrogen atoms of 

the corrin ring. 

Figure 4. Hydrogenobyric acid clusters. Upper 

panel: Top three clusters with lowest QM energy. 

Lower panel: All 10 clusters superimposed (left) 

and a view of the corrin ring of the clusters (right). 
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It can be seen from Figure 4, that the flexibility of the side chains is quite well captured, 

alongside the flexibility of the corrin ring. The testcase also illustrates that PyConSolv works 

equally well for metal-free systems. 

 

Case 4: Methylcobalamin 

Methylcobalamin is a vitamin B12 

metabolite.71 For the PyConSolv 

procedure, as in case 3, for parametrization, 

BP86/def2-SVP/ D4+CPCM(Water)26,62–65 

was the method of choice. The alignment 

was performed, as before, on the nitrogen 

atoms of the corrin ring. 

It can be seen from the clusters in Figure 

5, that the methylcobalamin structure is 

fairly rigid. The stabilization of the corrin 

ring is apparent when compared to that of 

the hydrogenobyric acid. It can be seen that 

all amide groups show some flexibility, 

while always pointing towards the solvent. 

For sake of comparison, investigation of the complex in implicit solvent only, yielded a structure 

with many intramolecular hydrogen bonds of the amides and a loop conformation that is very 

different to the ones in explicit solvent (see Figure 5 bottom right, Figure S2 in SI). These 

intramolecular hydrogen bonds may affect the reactivity of the complex and it is unlikely that they 

Figure 5. Methylcobalamin clusters. Upper panel: 

Top three clusters according to QM energy. Lower 

panel: All 10 clusters superimposed (left) and an 

example of a structure optimized in implicit solvent, 

dominated by intramolecular hydrogen bonding 

(right). 
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are formed under experimental conditions. Consequently, PyConSolv provides more realistic 

structures here. 

Conclusion 

In this work, we present a python package to automate conformer generation of (metal 

containing) complexes in explicit solvent. Our tool performs parametrization of metal-containing 

structures and sets up a workflow for simulation and analysis. The automatization makes 

conformer generation accessible to the non-expert user. It allows for a straightforward 

implementation of conformational sampling (in explicit solvent) in standard computational 

chemistry workflows, e.g., for the determination of reaction mechanisms. With increasing system 

size, our python package outperforms semi-empirical methods, such as CREST. A subsequent 

reoptimization of the obtained clusters with DFT ensures that true energy minima are found. 

The case studies highlight that conformer generation in explicit solvent yields more realistic 

structures. Our tool is a stepping stone towards more realistic modelling of reaction mechanisms 

and therefore a requisite for calculations becoming predictive.  

Availability 

The PyConSolv package is available open-source, free of charge, on GitHub: 

https://github.com/PodewitzLab/PyConSolv 

Likewise, it can be installed from the popular PyPi software repository using: 

pip install PyConSolv 
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