
RedPred, a machine learning model for the prediction of
redox reaction energies of the aqueous organic
electrolytes
Murat Cihan Sorkun1,2, Elham Nour Ghassemi1, Cihan Yatbaz1, J. M. Vianney A. Koelman1,2,
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Aqueous Organic Redox Flow Batteries (AORFBs) are considered as one of the most appealing technologies for large-

scale energy storage due to their electroactive organic materials, which are abundant, easy to produce, and recyclable.

A prevailing challenge for the redox chemistries applied in AORFBs is to achieve high power and energy density. The

chemical design and molecular engineering of the electroactive compounds is an effective approach for the optimiza-

tion of their physicochemical properties. Among them, the reaction energy of redox couples is often used as a proxy

for the measured potentials. In this study, we present RedPred, a machine learning (ML) model that predicts the one-

step two-electron two-proton redox reaction energy of redox-active molecule pairs. RedPred comprises an ensemble of

Artificial Neural Networks, Random Forests, and Graph Convolutional Networks, trained using the RedDB database,

which contains over 15,000 reactant-product pairs for AORFBs. We evaluated RedPred’s performance using six dif-

ferent molecular encoders and five prominent ML algorithms applied in chemical science. The predictive capability of

RedPred was tested on both its training chemical space and the chemical space outside its training domain using two

separate test datasets. We released a user-friendly web tool with open-source code to promote software sustainability

and broad use.

INTRODUCTION

Efficiently integrating intermittent renewable energy sources into the electricity grid requires advanced energy storage

solutions to balance supply and demand1. The promise of design flexibility, high scalability, low maintenance costs, and long

cycle-life renders redox flow batteries (RFBs) as a viable short- and medium-term stationary storage technology for the excess

electricity generated by renewables2. A typical RFB consists of two main components: tanks for storing the negative and

positive electrolytes and a fuel cell where redox reactions occur during charging and discharging cycles. Electrolytes are

pumped into the cell and collected back into the tanks following the electrochemical conversion. With this unique design that

decouples energy and power, RFBs offer high flexibility in chemical design and high scalability for grid-scale energy storage.

The performance of an RFB is strongly dependent on the redox activity of the electrolyte materials. The first generation of

RFBs contained inorganic electrolyte materials. For instance, the first successfully commercialized2 RFBs were vanadium

RFBs (VRFBs)3, which applied the reversible electrochemistry between different oxidation states of vanadium. However, the
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cost of vanadium hampered the large-scale applicability of VRFBs. In addition to economic reasons related to the cost of

raw materials, the toxicity and harsh chemical nature of the inorganics drove researchers towards finding alternative low-cost,

abundant, and safe redox-active materials.

Aqueous Organic RFBs (AORFBs), based on new organic redox species and innovative designs, have increasingly been

researched in recent years. The use of organic electrolytes offers several advantages, including abundance, structural diversity,

sustainability, modest manufacturing costs, and recycling opportunities4. Molecular engineering has proven to be an effective

approach for devising new organic electroactive materials with desirable properties for AORFBs, as it allows for high tunability

in the structure and composition of organics. For example, the addition of chemically effective functional groups to existing

redox-active molecule structures has been found to be effective in adjusting the battery-relevant properties to desired levels. To

identify the candidate materials for AORFBs, high-throughput virtual screening (HTVS) approaches have become increasingly

popular5–11. These approaches allow for agile explorations of designated chemical spaces, in contrast to the time-intensive

trial-and-error methods. Nevertheless, due to the high computational demands of first-principles simulations, the current HTVS

efforts are constrained to examining a few thousand candidates.

Recent advancements in artificial intelligence (AI) and machine learning (ML) technologies have led to significant

improvements in the discovery of energy-efficient materials by their time efficiency and prediction accuracy10–17. This is also

promising for the acceleration of RFB materials development by rapid property predictions, extending the search space, or,

more ambitiously, the de novo design of energy compounds with desired properties.

The long-term operational performance of an RFB is dependent on its energy density and cycling stability18. The achievable

energy density is often constrained by the water solubility of active species and the electrochemical potentials they can attain19.

Due to being a key molecular property for various fields of chemistry and the availability of openly accessible datasets20–22,

ML-based solubility predictions have been increasingly employed23–27. In contrast, ML-based predictions of redox potentials

for electrolyte materials have not been sufficiently well investigated. Although some recent studies demonstrated promising

results for the applicability of ML-based screening of redox-active materials28, 29, accurate and comprehensive ML models are

still needed to accelerate the screening of candidate AORFB electrolyte materials from diverse chemical spaces.

In the present work, we developed an ML model, namely RedPred, that predicts the redox reaction energy which is a highly

correlated descriptor with the experimental redox potential of AORFB electrolyte materials30. To train our models, we used

RedDB9, a recently published materials dataset that contains candidate AORFB reactant-product pairs calculated by accurate

quantum chemical methods. We evaluated the performance of the proposed model on two reserved test sets where the first set

covers the same chemical space of the training set and the second set falls outside the chemical space to assess its extrapolation

ability. We compared the performances of the models trained on different ML algorithms and molecular encoders. Based on the

new learnings, we developed RedPred which comprises an ensemble of Artificial Neural Networks (ANN), Random Forests

(RF), and Graph Convolutional Networks (GCNs). RedPred showed promising results not only within the training chemical

space but also outside of it. Importantly, we provided insights about the difficulties of extrapolating outside of the training
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Figure 1. The workflow diagram of ensemble ML model for predicting the reaction energy of AORFB electrolyte materials.

domains. We released RedPred as an online web tool, along with its source code, for public use with the aim of expediting the

search of prospective AORFB electrolyte materials as a complementary tool.

RESULTS

In this section, we explain the processes and results of ML development for predicting the reaction energy of AORFB electrolyte

materials. These processes include data preprocessing, selection of molecular encoder, ML model development, and ensemble

modeling. Figure 1 illustrates the processes that this study implements as a workflow diagram.

Data Preprocessing

The data used in this study was collected from RedDB9 version 1.0, which is a recently published computational database

focused on the candidate electroactive compounds for AORFBs. In addition to calculated atomic and molecular data, RedDB

contains 15,932 reaction pairs and their calculated reaction energies (see Equation (1)) that are used as the target property in the

current study. From the published database, we removed the instances that contain missing reaction energy values and ended up

with 15,794 reaction pairs. The chemical space of the data visualized by ChemPlot31 where each dot corresponds to a single

molecule in 2-dimensions is shown in Figure 2. The molecules were placed based on their structural similarities extracted from

their SMILES notations and the dimensions were reduced by the UMAP32 algorithm. Based on the chemical space occupation,

we divided the data into three disjunct sets: Training, Test-1, and Test-2. In order to evaluate the performance distinctively on

the training- and extrapolated-domain, we selected Test-1 instances from within the chemical space of the training set, while

the Test-2 instances reside outside the chemistry space covered by the training set. The training set was used to train and tune

the models while the test sets were reserved for the evaluation of ML model performance. As a result, 12,707 (80.5%) instances

were reserved for Training, 1,607 (10.2%) for Test-1, and 1,480 (9.3%) for Test-2.
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Figure 2. The chemical space of the data is visualized by ChemPlot using structural similarity and UMAP options. The colors
corresponding to the following numbers refer to the different parts of the dataset; (0):Training, (1):Test-1, and (2):Test-2.

Selection of Molecular Encoders

In RedDB, the molecules are represented in SMILES notation. In order to train ML models, first, it is required to convert

the SMILES representations to latent space variables. To find the best-suited representation for our aim, we compared the

available molecular encoders. For this purpose, we employed various molecular encoders which are structural fingerprints

(ECFC33, ECFP33, SECFP34, and MACCS), NLP embeddings (Mol2vec35), and phsico-chemical descriptors (Mordred36). To

compare the performances of the molecular encoders, we trained separate Light Gradient Boosting Machine (LGBM) models

under the same conditions by encoding the training set using the different molecular encoders. The results are shown in Table 1

for each molecular encoder. Among the models, the one encoded by ECFC showed the best performance on both Test-1 and

Test-2 datasets. The model encoded by ECFP showed slightly poor performance compared to ECFC on both Test-1 and Test-2.

The model encoded by SECFP showed a close performance to the ECFC and ECFP on Test-1 but the performance dropped
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on Test-2. Models encoded by Mol2vec and Mordred showed good performance on Test-1 but performed poorly on Test-2.

Models encoded by MACCS showed relatively poor performance on both datasets. As a result, we decided to use the ECFC

encoder in our experiments. Further details about the molecular encoders are provided in the Methods section.

Training Test-1 Test-2
Molecular Encoder MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

ECFP 0.004 0.008 0.958 0.005 0.008 0.955 0.009 0.012 0.835
ECFC 0.004 0.007 0.968 0.004 0.008 0.964 0.009 0.011 0.845
SECFP 0.004 0.008 0.962 0.005 0.009 0.953 0.013 0.016 0.694
MACCS 0.010 0.015 0.864 0.010 0.015 0.863 0.013 0.021 0.472
Mol2vec 0.005 0.008 0.964 0.007 0.010 0.933 0.021 0.023 0.326
Mordred 0.006 0.010 0.937 0.007 0.011 0.925 0.015 0.024 0.295

Table 1. The performance comparison of the models trained using different molecular encoders in predicting reaction energy
(in Hartree).

Development of Machine Learning Models

In this step, we developed ML models by implementing state-of-the-art algorithms to compare their performances on predicting

reaction energies. We applied five methods including, ANN, RF, GCN, LGBM, and eXtreme Gradient Boosting (XGB). All

the models are trained using ECFC encoder except GCN which contains its own integrated encoder. We trained and tuned

the parameters of the models using the training set. The best-performing configurations for each method are tested on the

reserved test sets. While all models showed excellent performance on Test-1, ANN and GCN models showed significantly better

performance on Test-2. Among all the ML models, ANN yielded the top performance on both datasets. Finally, by combining

the top-performing three models (ANN, RF, and GCN), we developed a weighted ensemble model (see Equation (2)). The

ensemble model improved the performance for both test sets. The test results of singular models and the ensemble model

are shown in Table 2 given as MAE, RMSE, and R2. Figure 3 shows the true versus the predicted reaction energy values of

Training, Test-1, and Test-2 data points for the top-performing models and the ensemble model. Further details of training,

tuning, and ensembling the models are provided in the Methods section.

Training Test-1 Test-2
Method MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

ANN 0.004 0.007 0.968 0.004 0.008 0.964 0.005 0.006 0.951
RF 0.001 0.003 0.993 0.004 0.008 0.964 0.008 0.011 0.848
GCN 0.007 0.010 0.940 0.007 0.010 0.934 0.006 0.008 0.926
LGBM 0.004 0.008 0.961 0.005 0.008 0.959 0.009 0.011 0.850
XGB 0.004 0.006 0.975 0.005 0.008 0.957 0.010 0.012 0.826
Ensemble - - - 0.004 0.007 0.969 0.004 0.006 0.959

Table 2. The performance comparison of the models trained using different ML methods and the ensemble model in
predicting reaction energy (in Hartree).

Analysis of Poorly Predicted Molecule Pairs

As shown in Figure 3, some data points far from the diagonal line were predicted extremely poorly by all different ML models.

Moreover, most of the erroneous predictions belong to the Training set which was unexpected. Therefore, we investigated
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Figure 3. The DFT-calculated versus the ML-predicted reaction energy data as obtained by using different ML models: (a)
ANN, (b) RF, (c) GCN, and (d) the ensemble model. Green, blue, and red data points represent the Training, Test-1, and Test-2
datasets, respectively. The proximity of the data points to the diagonal line indicates their accuracy.

the reason behind these outlier molecules by analyzing the related molecule pairs. First, we selected 39 molecule pairs that

have an error over 0.05 Hartree predicted by the ensemble model. Then, for every selected molecule pair, we searched the

most similar pairs from RedDB as described in the Methods section. Using the similar molecule pairs found by the similarity

search, we compared their DFT computed reaction energies. We calculated the deviation of the reaction energies of the selected

pair and the similar molecule pairs from their mean reaction energy. As a result of the comparison, we found that the reaction

energies of selected pairs were much different than their similar pairs while the reaction energy values of similar pairs used for

comparison were close to each other. This result pointed out a possible error that is coming from the DFT computations for the

selected molecule pairs. We further investigated these molecule pairs by inspecting their 3D geometries. We confirmed that 25

molecules from the inspected pairs had significant structural distortions in their DFT-optimized geometries, which is a sign of

chemical instability. Therefore, these pairs of molecules have been removed from RedDB in its next version.

DISCUSSION

The applied five ML methods, three of which are tree-based and two are NN-based, performed well on the Test-1 instances

as the Test-1 scores were close to the Training scores. However, tree-based models had a significant performance drop when

extrapolating on the Test-2 domain compared to NN-based models. This result shows that NN-based models are much more

robust on extrapolation than tree-based models. We also compared the effect of different encoding methods (see Table 2).
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Among them, fingerprint-based methods (ECFC, ECFP, and SECFP) showed the top performances. Although these three

fingerprints are calculated in a similar manner, ECFC contains not only the substructures but also their number of occurrences.

This additional information positively contributed to the performance of the models.

One of the key outcomes of this study is that it reveals the influence of the investigated chemical space of the molecules on

the evaluation of the performance of the models. Although neither test set participated in the training process, the models

performed relatively poorly in Test-2 (outside the training domain) whereas they did very well in Test-1 (within the training

domain). It is important to note that, although the Test-2 data contains instances that have no overlap with the chemical space

domain of the training set, it is still in relatively close proximity to this domain considering the vast chemical space of all

organic compounds. This result shows that data-driven models not only tend to overfit on training data but also tend to overfit

on their training domain. It points out that the ML models tested using only a test set sharing the same chemical space with the

training set are very likely to fail on extrapolation. Therefore, it is crucial to have an additional test set that is not covered by the

chemical space of the training set in order to determine the extrapolation capability of the proposed models.

A recent study29 also demonstrated the applicability of ML-driven approaches for the discovery of AORFB compounds.

They trained a GCN model using around 45,000 reaction pairs extracted from QM9/G4(MP2)37 dataset. Their model performed

very well on five-fold cross-validation, however, showed poor performance on the external test set from the NIST database,

especially on structures that were underrepresented in the training data. It is not possible to compare their results with ours

directly since the models are trained using different datasets covering different chemical spaces. QM9/G4(MP2) dataset

contains compounds up to nine atoms and comprise five elements (C, H, O, N, and F) while RedDB contains AORFB-focused

compounds up to 46 atoms and comprise six different elements (C, H, O, N, F, and S) at max. Nevertheless, both studies show

the possibility of data-driven discovery of candidate AORFB compounds by their accurate predictions on a defined chemical

space. They also underline the danger of the inapplicability of data-driven models on the outside of this chemical space.

Another essential outcome of the study is detecting the structural inconsistencies in the DFT-optimized data based on the

predictions of ML models. As described in the Results section, we identified 39 reaction pairs with large differences between

the DFT-calculated and the ML-predicted reaction energies. It turned out that 25 molecules from the identified pairs had

noticeable structural distortions. This result showed that ML predictions can also be used for the validation of data produced by

computational and experimental methods.

METHODS
Data

The data used in this study was collected from RedDB-v19, which contains 31,677 DFT calculated electroactive candidate compounds for

AORFBs. The compounds in the RedDB library had been generated from the chemical functionalization of 52 different core structures that

belong to two foremost studied classes of organic electroactive compounds: quinones and aza-aromatics. In RedDB, the redox couples are

matched by assuming a reversible two-electron two-proton mechanism in which the product molecule, MH2, is generated from the reactant
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molecule, M. Accordingly, the redox reaction energy (4Erxn) is calculated as

4Erxn = E(MH2)− [E(M)+E(H2)] (1)

where E(M), E(MH2), and E(H2) are the total energies of reactant and product molecules, and hydrogen molecule, respectively9.

In the current study, we used a total of 15,794 redox couples and their DFT-calculated reaction energy data from RedDB. The following

set of operations is executed to separate the datasets into three parts: Training, Test-1, and based on their chemical space occupation. First,

the chemical space of the dataset is generated by ChemPlot31 version 0.1.2 using structural similarity and UMAP dimensionality reduction

methods with the default parameters except for the random state set to zero for the reproduction. Next, Test-2 is selected from the dataset

based on four criteria; (1): closer clusters that are far from the center of the chemical space are selected, (2): all the instances within the

selected cluster are included, (3): chemical space of Test-2 does not intersect the chemical space of the remaining data, (4): approximately

10% of the instances are selected. Finally, around 10% is selected by stratified random sampling as Test-1 from the remaining data. Only the

reactant molecule SMILES data is used both for the separation of the dataset and for the training of ML models. Figure 2 shows the coverage

of the separated data sets in the visualized chemical space.

ECFP encoder

ECFP encodes the molecules as the bit vector where each dimension represents the existence of a particular substructure in the molecules.

ECFP determines the substructures of the molecules by starting from each non-hydrogen atom and attaching the neighbor atoms until a

specified radius is reached. In this study, we used RDKit38 implementation of ECFP with a vector length of 2,048 and radius of 2 adjacent

atoms.

ECFC encoder

ECFC uses the same algorithm as ECFP but creates a count vector instead of a bit vector. Each dimension of the count vector represents the

number of a particular substructure that exists in the molecules. In this study, we used RDKit38 implementation of ECFC with a vector length

of 2,048 and radius of 2 adjacent atoms.

SECFP encoder

SECFP encodes the molecules as bit-vector using the same extended connectivity principle of ECFC but using the MHFP34 implementation.

In this study, we implemented SECFP encoder with a vector length of 2,048 and a radius of 3 adjacent atoms from MHFP34 library.

MACCS encoder

MACCS encodes the molecules as bit-vector based on the existence of predefined 166 substructures. In this study, we used RDKit38

implementation of MACCS encoder.

Mol2vec encoder

Mol2vec35 is a Python library that allows learning vector representations of molecules using machine learning. Similar to the Word2vec

models used in natural language processing, Mol2vec converts molecules into ECFP representation and then treats substructures as words in

sentences. Using an unsupervised approach, Mol2vec creates the feature vectors. We used a pretrained model on 20 million compounds

provided by the library. The pretrained model converts the given molecules into a 300-dimensional feature vector.
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Mordred descriptors

Mordred library36 contains more than 1,800 2D and 3D molecular descriptors in its catalog. In this study, we employed 201 physico-chemical

2D descriptors which contain topological descriptors and the number of atoms, bonds, and rings.

ANN model configuration

We used the Keras framework to train the ANN models. We employed a five-layered architecture (2048, 128, 32, 8, 1). Using grid search,

we optimized the parameters of the ANN models with the configurations given below. To optimize the given parameters, we used 5-fold

cross-validation and also early stopping with a patience of 5 by reserving 20 percent of the training set for validation. The selected parameters

for the final ANN model that shows the best performance are given below in bold. The remaining parameters were used with default values.

• Activation function: (sigmoid, relu, tanh)

• Batch size: (16, 32, 64, 128)

• Dropout rate: (0, 0.1, 0.2)

• Learning rate: (0.001, 0.005, 0.01)

• Optimizer: (RMSprop, Adam, SGD)

RF model configuration

We used scikit-learn39 library to train the RF models. We optimized the parameters of the RF models using grid search. The selected

parameters for the final RF model that shows the best performance are given below in bold. The remaining parameters were used with default

values.

• Number of estimators: (100, 1000)

• Max depth: (no limit, 5, 10, 15, 20)

• Bootstrap: (True, False)

LGBM model configuration

We used lightGBM40 library to train the LGBM models. Using grid search, we optimized the parameters of the LGBM models with the

configurations given below. To optimize the given parameters, we used 5-fold cross-validation and also early stopping for a maximum of 500

iterations with a patience of 3 by reserving 20 percent of the training set for validation. The selected parameters for the final LGBM model

that shows the best performance are given below in bold. The remaining parameters were used with default values.

• Max depth: (1, 3, 5, 7)

• Learning rate: (0.01, 0.03, 0.05, 0.1)

• Regularization alpha(L1): (0, 0.1, 0.2, 0.3, 0.4 )

• Regularization lambda(L2): (0, 0.1, 0.2, 0.3, 0.4 )

XGB model configuration

We used XGBoost41 library to train the XGB models. Using grid search, we optimized the parameters of the XGB models with the

configurations given below. To optimize the given parameters, we used 5-fold cross-validation and also early stopping for a maximum of 500

iterations with a patience of 3 by reserving 20 percent of the training set for validation. The selected parameters for the final XGB model that

shows the best performance are given below in bold. The remaining parameters were used with default values.
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• Max depth: (5, 6, 7)

• Learning rate: (0.01, 0.05, 0.1, 0.3, 0.5)

• Regularization alpha(L1): (1, 1.1, 1.2)

• Gamma: (0, 0.1, 0.2)

GCN model configuration

We used DeepChem42 library to train the GCN models. Unlike other models, GCN uses its own featurization method instead of ECFC. We

employed ConvMolFeaturizer class which implements Duvenaud43 graph convolutions to encode the molecules. We trained the GCN model

with the default parameters except for adding a dropout of 0.25 and a batch size of 100. We trained the model for 100 epochs and the best

epoch state is selected based on the performance over 20 percent of the reserved validation set from the training set.

Ensemble model configuration

We configured the ensemble model by combining the top performing three models which are ANN, RF, and GCN. We conducted a weighted

ensembling based on inversely proportional to the cube of the mean of Test-1 and Test-2 MAE scores given in Table 2. The calculated weights

of the ensemble model are given in Equation (2).

PredENS = 0.551 ·PredANN +0.264 ·PredRF +0.185 ·PredGCN (2)

where PredENS, PredANN, PredRF, and PredGCN are the predictions of Ensemble, ANN, RF, and GCN models, respectively.

Similarity search

To search for similar molecules from RedDB we used Tanimoto similarity. The Tanimoto similarity is calculated as the ratio of the intersection

of the two fixed-size binary vector representations (ECFP encodings) of molecules over their union. The calculation of Tanimoto similarity is

given in Equation (3).

Tanimoto(U,V ) =
|U ∩V |
|U ∪V |

(3)

where U and V are binary vector representations of two molecules. We used reactant molecules from reaction pairs to find their similar pairs.

From RedDB, the molecules having Tanimoto similarity of 0.6 or higher to the target molecule were selected as similar molecules.

Code Availability
The reproducibility of the RedPred can be verified by executing the provided scripts on Code Ocean (https://codeocean.com/

capsule/0454424/tree/v1). The freely accessible RedPred web tool is reachable at: https://www.amdlab.nl/redpred/.
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