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Abstract 
We describe the formalization of the reactive docking protocol, a method developed to 
model and predict reactions between small molecules and biological macromolecules. 
The method has been successfully used in a number of applications already, including 
recapitulating large proteomics datasets, performing structure-reactivity target 
optimizations and prospective virtual screenings. By modeling a near-attack 
conformation-like state, no QM calculations are required to model ligand and receptor 
geometries. Here, we present its generalization using a large dataset containing more 
than 400 ligand-target complexes, 8 nucleophilic modifiable residue types, and more than 
30 warheads. The method correctly predicts the modified residue in ~85% of complexes 
and shows enrichments comparable to standard focused virtual screenings in ranking 
ligands. This performance supports this approach for the docking and screening of 
reactive ligands in virtual chemoproteomics and drug design campaigns. 
 

Main 

Small molecules containing electrophilic reactive warheads have emerged as an 
important ligand class1, especially in drug design and chemical proteomics. Covalent 
drugs have been employed against a variety of targets as well as disease classes and 
their rational design has been a topic of increasing study2. Relative to conventional drugs, 
they can exhibit improved pharmacodynamics, higher potency, and improved selectivity. 
However, concerns have been raised due to their potential toxicity and promiscuous 
binding3. 
Taking into account the issues that a reactive molecule could potentially cause, research 
in the past decade focused on merging the strengths of covalent and non-covalent 
binders (i.e.: high selectivity and high affinity) giving rise to the “targeted covalent 
inhibitors'' (TCIs)1. These molecules install low reactivity warheads (i.e.: the electrophile 
moiety of the ligand) on a molecular scaffold with high binding affinity with the target 
structure, resulting in less promiscuity4,5. This increases the importance of having a 
structure or high-quality model on which to perform structure-based optimizations6. 
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Conversely, in chemical proteomics the promiscuity of electrophilic fragments is a feature 
that allows the identification of potentially modifiable residues across a proteome. 
Nonetheless, structure-based modeling can be critical here, for example in 
disambiguating which residue is labeled in a peptide, or which enantiomer of a racemic 
probe may be more active for further development. Modeling may also provide rational 
bases for the selectivity across probes for a given site, which can improve the SAR 
information extracted from the original proteomic experiment.  
This interest in TCIs has been accompanied by a resurgence of interest in computational 
methods that can model such inhibitors, which come with unique modeling challenges7. 
Existing methods tend to focus on the evaluation of the end-point of the reaction, modeling 
the ligand in the bound state, such as the tethered8,9 or biased (or constrained) 
approaches10,11. More computationally expensive methods supplement these models with 
free energy calculations6,12,13. 
These methods are suitable for the analysis of well-defined sets of molecules into  well-
characterized  binding sites14 but are not ideal for binding sites prediction across 
nucleophilic residues in a protein, let alone proteomes. For that, an ideal method should 
be capable of predicting both the correct residue for modification and the optimal reactive 
ligand(s). 
In this work, we present the formalization of the reactive docking method, which was 
specifically designed to address both challenges. This method uses a modified version of 
the AutoDock4 standard force field15 which modifies the near attack conformation16 (NAC, 
Fig. 1a), the last ground state geometry preceding the transition state geometries, with a 
decreased equilibrium distance for the reactive atoms. This species was chosen to model 
the ligand-target interaction because it represents an essential thermodynamic 
checkpoint for the reaction while containing minimal geometric perturbations to the ligand 
or target structures. With this model, the ligand is docked in the unmodified state prior to 
the reaction, with the reactive warhead still intact. Another advantage of modeling a near-
attack conformation-like a NAC-like state is that, as a ground state model, no expensive 
QM calculations are required to determine the ligand and receptor geometries, minimizing 
the domain knowledge required to parameterize a new reaction class. Despite the 
geometric simplicity of this model, it serves as an essential step in the reaction pathway. 
The AutoDock standard force field estimates free energy of binding using the following 
equation for any pairwise interaction (i,j): 
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In brief, 𝜟HvdW, 𝜟Hhbond, and 𝜟Helec are van der Waals, directional hydrogen bond, and 
electrostatic enthalpies, 𝜟Stor is the torsional entropy, and 𝜟Gdesolv is the desolvation free 
energy (for a full description of all the terms see reference17). The standard force field is 
modified by adding a 13-7 potential 𝜟Hreact between the ligand reactive atom i* and the 
receptor reactive atom j*  to represent incipient bond formation: 
 

   
 

where 
 

 
 

req represents the equilibrium distance (Å) and ε represents the equilibrium energy 
(kcal/mol). Like van der Waals and hydrogen bond potentials, the reactive potential is 
also softened according to the standard AutoDock force field description18. As a result of 
this newly created pseudointeraction, atoms within two bonds of the two reactive atoms 
will be placed at distances shorter than their respective van der Waals equilibrium 
distances (Fig. 1a). To compensate for the tight proximity that this geometry would 
induce, the r_eq distances for pseudo 1-3 and 1-4 pairwise interactions around reactive 
atoms are scaled by factors W1,3 and W1,4, respectively, while any hydrogens bound to 
these atoms are ignored entirely from the pairwise calculation. Any atom beyond two 
bonds from the reactive atom pair is treated with default parameters. During docking, 
ligands are free to explore multiple binding modes including those not compatible with the 
formation of a covalent bond with the target residue, which is modeled as flexible15. Once 
dockings are completed, the result with the best docking score is analyzed to measure 
the distance between ligand and residue reactive atoms, determining the outcome of the 
reaction (i.e.: covalent or not, Fig. 1b). 
This method was initially developed to model acrylamides and chloroacetamides reacting 
with cysteine thiols19, then it was extended to model more warheads and residues and 
successfully applied to a variety of chemical proteomic tasks. In particular, it was used 
successfully to resolve ambiguity in reactive residues in ABPP experiments on human T 
cells20,21, identifying the residue most likely to be modified based on structural data. The 
method has been extended and applied to other reactions, such as those involving SuFEx 
warheads22, and used in an “inverse drug discovery” campaign targeting lysines and 
tyrosines in the human proteome23. In addition, it has been used in focused drug design 
campaigns to model the reaction between SuFEx and serine residues in specific 
targets24,25. In this work, the method is optimized and validated on a diverse dataset of 
targets (Fig. 2) and warheads and reactions (Fig. 3). 
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Results 

Calibration. The identification of optimal parameters for the reactive docking forcefield 
was done by performing an exhaustive parameter sweep for ε, W1,3, and W1,4 values, 
optimizing the docking performance on the 80 complexes in the training set. The 
calibration showed multiple sets of values could achieve comparable success rates, with 
the ε being the dominant component. In fact, the analysis of the results shows accuracy 
starts dropping significantly with ε values lower than 2.0 Kcal/mol, below which, scaling 
factors have limited to no effect. Therefore, the optimal values maximizing success rates 
and minimizing false positive rates were ε = 3.5 kcal/mol, W1,3 = 0.8, W1,4 = 0.4. These 
parameters achieved an overall success rate across the training set of 95% in identifying 
the correct residues as the top scored result, and >95% in the top 3 results (Fig.4a). 
Predictions of reactions for cysteines with acrylamides and chloroacetamides, as well as 
serines with boronic acids, showed excellent performance (95% top score, in all cases), 
while predictions of reactions between serines and β-lactams performed slightly worse 
(80%) (Fig. 4a).  
Due to the higher relative abundance of solvent-accessible serines (693, approximate 
reactive hit ratio 1:17) over cysteines (186, approximate reactive hit ratio 1:4, Figs. 2b-c) 
in the proteins of the training set, we anticipated that predicting the former would be a 
more challenging task, but overall success rates remained high for both residues. 
Testing of selected parameters. The performance of the optimal values obtained in 
calibration was tested on the 351 complexes in the test set, which is larger and 
significantly more diverse than the training set. This set includes all residue types and 
warheads in the training set and extends it with more well-represented warhead/residue 

combinations (e.g., 𝜶,𝛃 unsaturated carbonyls like cyano acrylamides, vinyl carbonyl, 
phosphates for cysteines) as well as residues and warheads for which it was not possible 
to obtain a representative number of complexes. While the overall performance in 
identifying the correct residue as the top result dropped from 95% of the training set to 
86.6% (Fig. 4b) for the test set, all results showed a consistent performance of at least 
75% success rate or better, except for carbonyl warheads targeting lysines (62%, Fig. 
4b). The more marked drop for this residue is likely due to a combination of its high 
abundance in the proteins considered (14 lys/system, Fig. 2c) and their preferred 
localization in highly solvent-accessible regions on the surface of the protein. Both factors 
concurred in making docking predictions more challenging due to the potentially higher 
rate of false positives and the lack of well-defined pockets. 
Virtual screening. The performance of the reactive docking was then validated against 
experimental results reported on a small covalent ligand discovery effort in a virtual 
screening (VS) setting. For that, a virtual screening set was built based on the 
experimental data published by Resnik et al.26 which used a library of 993 reactive 
fragments functionalized with mild electrophiles including chloroacetamides (n= 752, 
76%) and acrylamides (n= 241, 24%) Fig. 4c. The library was used to screen for binders 
of 10 cysteine-containing protein targets, using intact-protein MS and high-throughput 
crystallography to identify and characterize hits. The experimental characterization 
identified two classes of hits: strong hits (>50% labeling) and weak binders (<50% 
labeling) (Fig. 4c). The virtual screening set used here contains 3 of the 10 targets from 
the paper for which structures were available and potent and selective fragments were 
identified: two enzymes (deubiquitinase OTUB2; pyrophosphatase NUDT7), and K-
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RasG12C. For the validation, the set of parameters obtained from the calibration step was 
used to dock the entire fragment library against the targets in a blind docking fashion, 
considering all solvent-accessible cysteines for each target and predicting both the most 
likely residue to be modified and the most likely ligands to react (Table S1).  
For the first task, the method was able to detect the correct cysteines in all three targets, 
confirming its residue prediction capabilities. For the VS task, we then analyzed the 
docking results considering the top 0.5%, 1.0%, and 10% of the results ranked by docking 
score for the different warheads, as summarized in Fig. 4d. The method achieved true 
positive hit rates for top 0.5% of ranked results of 100% on NUDT7 chloroacetamide 
binders (50% strong and 50% weak binders) and 50% on OTUB2 chloroacetamide 
binders (25% strong and 25% weak binders). For KRAS, the true positive rate at the top 
0.5% was only 25%. Acrylamide fragments were more difficult to predict correctly given 
the lower number of representatives of this warhead in the library, as well as the smaller 
number of strong binders. Combined success rates at identifying binders of both chemical 
classes in the top 0.5% of ranked results were 40% (20% strong and 20% weak binders) 
for OTUB2, 40 % (weak binders) for NUDT7 and 40% (weak binders) for KRAS.   

Discussion 

Here, we present the reactive docking protocol, a predictive method for irreversible ligand 
binding events based on the analysis of a modified NAC, which combines descriptions of 
the ground state ligand and receptor with a bias toward the incipient bond formation. This 
relatively simple model is advantageous because it requires neither prior modification of 
the ligand structure (a non-trivial effort for large chemical collections) nor distinct 
parameters for different reaction classes while still describing the energetics of a key 
thermodynamic step in the covalent modification. Additionally, because of the large 
contribution of the ground state character to this model, the modified forcefield is still 
responsive to the structural features of the ligand-protein complex that dominates non-
covalent interactions. The reactive parameters described here, covering the reactive 
potential and scalings on pseudo- 1-3 and 1-4 interactions across the incipient bond, were 
calibrated on an inverse docking task with a diverse set of warheads (β-lactams, boronic 
acids, chloroacetamides, and acrylamides), and different reaction classes (β-lactam 
addition, borylation, nucleophilic substitution, and Michael addition) targeting serine and 
cysteine residues. These parameters were then tested against a more diverse set 
containing both withheld examples from the training warhead classes, as well as out-of-
domain reactions, differing in the warhead, mechanism, and labeled residue, performing 
excellently at predicting the labeled residue. This highlights how the relative simplicity of 
this model avoids overfitting and affords a generalizable forcefield that does not require 
extensive prior knowledge of either warhead or reaction mechanism. 
This method was additionally validated on a virtual screening task on reactive fragments 
against reactive cysteines in three separate proteins. Here we demonstrate that in a fully 
predictive setting (i.e.: neither the site nor the ligand are known in advance) the method 
can provide an enrichment of binders (particularly strong binders) comparable to focused 
conventional virtual screenings. While the use of a fragment library for assessing the VS 
performance is intrinsically more challenging compared to drug-like ligands27, the overall 
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results in simultaneous prediction of both residue and ligands suggest that this protocol 
is very suitable for prospective VS campaigns.  
This method and the calibration protocol also serve as a baseline for future development. 
Force field parameters described here can be easily modified, allowing interested 
researchers to optimize the parameters for an individual target or warhead class if 
sufficient data is available. Similarly, with the availability of more diverse and structurally 
rich experimental datasets, we anticipate the performance of the model on ligand ranking 
can be improved significantly. 
Collectively, the results presented here confirm and expand the successful applications 
previously reported, suggesting this method can be readily applied to a diverse range of 
docking tasks and warheads, requiring only the reassignment of atom types and inclusion 
of the modified forcefield parameters. To the best of our knowledge, there is no other 
computational method that is capable of addressing both predictive aspects of proteomics 
experiments, that is predicting both residue to be modified and ligands capable of doing 
so. The very limited computational overhead and the predictive power make this method 
ideally suited for devising large virtual screenings campaigns to screen the growing 
commercially available chemical collections of reactive molecules. 
Moreover, by leveraging the structural data generated by  AlphaFold28,29, it makes possible 
proteome-wide labeling predictions, providing in silico support for large chemical 
proteomics applications.  

Methods 

Ligand preparation. Ligand structures identified from PDB were built in their native form 
restoring the active warheads using the primary literature citations, (e.g.: reconstruction 
of the β-lactam ring, addition of leaving groups, restoring unsaturated bonds, etc.). Initial 
3D coordinates were generated using OpenBabel30 modeling protonation states at pH 7.4, 
then minimized (MMFF94s; 300 steps Steepest Descent; 300 Conjugated Gradient). 
Partial charges, torsions, standard and reactive atom type parameters were assigned 
according to the AutoDock protocol31 using Meeko (https://github.com/forlilab/Meeko.git) 
with SMARTS patterns to define the warhead atoms and assign the reactive docking force 
field parameters (Fig. 1a). If present, macrocyclic structures were modeled as flexible15 
by default during docking32. 
Target preparation. Target structures were retrieved from the Protein Data Bank and 
hydrogens were added with Reduce33. For oligomeric structures, dockings were 
performed only on the first chain. Partial charges, torsions, and standard and reactive 
atom type parameters were assigned using Meeko according to the AutoDock protocol31.  
For each site, a cubic docking box of 30 Å side (80 points in the AutoGrid parameter file15) 
was defined and centered on the Cα of the target residue. 
Reactive docking. By default, the residues to be evaluated by reactive docking are 
automatically calculated on each target structure using MSMS34 to identify all solvent-
accessible residues (default probe radius: 1.5 Å) of a given type (i.e.: cysteines) including 
buried cavities (Fig. 1b). Optionally, a user-defined list can be provided.  Then, each 
ligand is docked against the individual residues to be evaluated. During docking, ligands 
are modeled in their unmodified form with reactive warheads in place using a conventional 
(untethered) docking method, while the side chain of the target residue is modeled as 
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flexible15.  Dockings are performed using AutoDock-GPU18, generating 50 poses for each 
ligand using the default Lamarckian Genetic Algorithm (LGA) parameters31. A ligand and 
a residue are considered reacting if the distance between their reactive atoms in the 
lowest energy pose is ≤2.0 Å. Residues are then ranked by their likelihood of reacting 
based on the best energy of the ligand(s) predicted to react with it. Reactive docking 
parameters do not affect the length nor the complexity of the calculation, resulting in 
nearly identical docking times as conventional dockings. 
Datasets. In order to calibrate and validate the reactive docking parameters, covalent 
complexes were collected from the PDB35, containing a very diverse pool of residues (Fig. 
2) and warheads (Fig. 3). Complexes were visually inspected to discard highly distorted 
or problematic structures selecting a dataset of 431 structurally diverse ligands and 
chemical reactions. The dataset was then subdivided into specialized sets, with no 
overlap between them. The list of all PDBs and warheads in the dataset is available in 
Supplementary Material. 
Training and test sets. First, we selected a training set of 80 complexes using the most 
represented residues (cysteine, serine) for which the largest number of complexes with 
the most diverse ligands and protein families is available. The training set was built by 
randomly selecting 20 complexes representative of each of the four most abundant 
warheads (Fig. 3a): acrylamides and chloroacetamides for cysteine; boronic acids and β-
lactams for serine. The training set was used to calibrate the reactive docking force field 
parameters. 
The remaining set of complexes was used to build the test set of 351 complexes, which 
includes 8 residue types (cystine, serine, threonine, lysine, tyrosine, glutamic acid, 
histidine, and methionine, Fig. 2a) and 37 warheads (Fig. 3a). The test set was used to 
assess the performance and transferability of the parameters obtained with the calibration 
process on the training set. 
Virtual screening set. A virtual screening set was built based on the experimental data 
published by Resnik et al.26 which used a library of 993 reactive fragments functionalized 
with mild electrophiles including chloroacetamides (n = 752, 76%) and acrylamides 
(n=241, 24%) targeting cysteines. This virtual screening set contains three targets for 
which structure coordinates were available and potent and selective fragments were 
identified: two enzymes, deubiquitinase OTUB236 and the pyrophosphatase NUDT737, and 
K-RasG12C 38. 
Parameter selection. The training set was used to calibrate the reactive docking 
parameters to obtain a single set of weights to be used to maximize the predictive 
accuracy. The req value of 1.7 Å is fixed for all reactions and was chosen for being between 
the lengths of the shortest bond in our dataset (C-C bond, ~1.5 Å) and the longest (C-S 
bond, ~1.8 Å). After preliminary tests, values were obtained by performing an exhaustive 
search with respect to ε value (from 2.0 to 10.0 kcal/mol, 0.5 intervals), and the scaling 
factors W1,3, and W1,4 (0.0 to 0.9, 0.1 interval). During the calibration, each parameter set 
was tested with the entire training set by docking each ligand on its cognate target 
including all the solvent-accessible residues that would be modified by its warhead (i.e.: 
all solvent-accessible cysteines for acrylamides).  
Virtual screening protocol. Firstly, we assessed the ability of the reactive docking to 
find the correct modified cysteine from the pool of all solvent-accessible cysteines in each 
structure. We calculated the average, median, and standard deviation of the docking 
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score of the whole library for each residue (Table S1). Then the average docking score 
of the whole library docking against each target calculation was used to rank the most 
likely cysteine to be alkylated by the fragments. True positive success rates for each 
target were then calculated by ranking ligands predicted to react with the target residue 
by their best docking score, and true hit rates of known binders were calculated for the 
top  0.5%, 1%, and 10% of the docking results.  
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Figure 1. a) Schematic representation of the reactive docking model and the NAC-like 
state, showing the pseudo 1-3 and 1-4 interactions and their van der Waals radii. Reactive 
atoms are highlighted with red asterisks, pseudo 1-3 and 1-4 interactions are shown with 
dashed lines. b) Representation of the independent docking on selected solvent-exposed 
residue (cysteine, teal spheres) on the target protein and the possible outcomes of the 
simulations. 
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Figure 2. Dataset statistics. a) Count of complexes containing a given modified residue 
type; b) Total number of solvent-accessible residues by type. c) Average number of 
solvent-accessible residue types per complex. 
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Figure 3. a) Warhead contained in the dataset grouped by the residues they modified. 
b) Abundance of warhead types in the dataset. c) Abundance of reaction mechanisms 
in the dataset. 
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Figure 4. a) Training set docking performance in reactive residues predictions (1:best 
docking score; 2:second best-docking score; 3:third best or higher docking score). b) Test 
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set performance in reactive residues predictions (1:best docking score; 2:second best-
docking score; 3:third best or higher docking score). c) Distribution of experimental binder 
strengths by warhead (CA: chloroacetamide; AC: acrylamide) from Resnick et al.[REF] 
for the three targets considered in the virtual screening. d) Virtual screening success rates 
in binders recovery (0.5%, 1.0% and 10% fractions). 
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