
   
 

   
 

1 

In Pursuit of the Exceptional: Research Directions for Machine Learning in Chemical and 

Materials Science 

 

Joshua Schrier1, Alexander J. Norquist,2 Tonio Buonassisi,3 Jakoah Brgoch4 

 

1 Department of Chemistry, Fordham University, The Bronx, NY 10458, USA 

2 Department of Chemistry, Haverford College, Haverford PA, 19041, USA 

3 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 

MA 02139, USA 

4 Department of Chemistry and Texas Center for Superconductivity, University of Houston, 

Houston, TX, 77204, USA 

 

  



   
 

   
 

2 

Abstract 

Exceptional molecules and materials with one (or more) extraordinary properties are both 

technologically valuable and fundamentally interesting because they often involve new physical 

phenomena or new compositions that defy expectations. Historically, exceptionality has been 

achieved through serendipity, but recently, machine learning (ML) and automated experimentation 

have been widely proposed to accelerate target identification and synthesis planning.  In this 

Perspective, we argue that the data-driven methods commonly used today are well-suited for 

optimization but not for realizing new exceptional materials or molecules. Finding such outliers 

should be possible using ML, but only by shifting away from using traditional ML approaches that 

tweak the composition, crystal structure, or reaction pathway. We highlight case studies of high-

Tc superconductors and superhard materials to demonstrate the challenges of ML-guided discovery 

and discuss the limitations of automation for this task. We then provide six recommendations for 

the development of ML methods capable of exceptional materials discovery: (i) Avoid the tyranny 

of the middle and focus on extrema; (ii) When data is limited, qualitative predictions that provide 

direction are more valuable than interpolative accuracy; (iii) Sample what can be made and how 

to make it, and defer optimization; (iv) Create room (and look) for the unexpected while pursuing 

your goal; (v) Try to fill-in-the-blanks of input and output space; (vi) Do not confuse human 

understanding with model interpretability. We conclude with a description of how these 

recommendations can be integrated into automated discovery workflows that should enable the 

discovery of exceptional molecules and materials.  
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I. Introduction 

Machine learning (ML) is contributing to many areas of chemistry and materials research, 

as diverse as solar cells,1 photoresist,2 high-entropy alloys,3 drug design4,5 and formulation6 

discovery, and biomedical polymers.7  Many introductory texts8–10 and review articles11–15 provide 

tutorials and explications of applications of ML to chemistry and materials. Significant effort has 

been invested in identifying compositions, crystal structures, reaction conditions, etc., to yield 

highly desirable materials, molecules, or unique physical properties. These efforts are valuable 

both scientifically and industrially, and automating this process increases the efficiency and 

productivity of research and development efforts.  However, these applications have been mainly 

demonstrated in the context of incremental improvement and optimization. Incremental does not 

mean easy—ML optimizations are often in high-dimensional spaces that would have otherwise 

required months or years of traditional experimentation to achieve the same results.16–19 In a 

mathematical sense, the underlying property-response landscapes are well-behaved (i.e., the 

surfaces are approximately smooth, convex,20 and elementary21), so local information gathered 

from stepwise changes can find optima efficiently.  This makes these problems computationally 

“easy”. However, as we argue below, transformative discoveries are seldom achieved by this type 

of incremental approach.  

In this perspective, we suggest that there are fundamental limitations hindering the 

application of ML today for the discovery of exceptional materials that shift the research paradigm 

(in the Kuhnian sense22) while addressing pressing technological and economic needs for human 

health, energy, and the environment.  We highlight some current state-of-the-art examples in ML, 

iterative-optimization, and high-throughput/autonomous experimentation approaches. We also 

focus on limitations of using these methods with regards to exceptional materials discovery by 
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considering historical challenges in high-Tc superconductor and superhard materials discovery, 

and the extent to which existing ML methods have contributed to these efforts. We then provide 

six recommended research directions for ML that can address this challenge based on our survey 

of the field. Finally, we conclude with a vision of what the materials research process would look 

like if these research directions were successful. 

 

II. The Challenge of the Exceptional  

II.A. What is Exceptional?  

We define an exceptional material or molecule as one that achieves such extraordinary 

properties through unexpected means, like new physics or chemistry.  These are black swan events 

— unpredicted surprises that have a significant effect on the field but are only rationalized only 

after the first observation.23 For example, the discovery of high-Tc cuprate superconductors 

rejected the conventional wisdom of condensed matter physics and rapidly transformed the field 

(vide infra). Similarly, organic chemistry has had numerous scientific discoveries that have gone 

against deep-seated textbook notions, transforming our molecular control and greatly enhancing 

our synthetic toolbox.24  

Nevertheless, materials with extraordinarily low or high values of a single property may 

still be insufficient to enable transformative technologies. Instead, what is truly exceptional is a 

constellation of properties, many of which are mutually exclusive.15,25 Tradeoffs between desirable 

properties are common in many fields. These may be purely empirical trends observed within a 

materials class, such as Ashby plots (solid mechanics) or Robeson plots (in membrane separation 

materials). Alternatively, they may be first-order approximations to underlying rigorous theoretical 

relationships, such as Wiedemann-Franz (proportionality of electrical and thermal conductivity) 



   
 

   
 

5 

or Dulong-Petit (inverse relationship between heat capacity and molar mass). Increasingly, 

technology demands materials that can withstand coupled extremes, such as simultaneous 

mechanical, thermal, radiation, and corrosive attack required for next-generation fission and fusion 

reactors15,26 or simultaneous high photoconversion efficiency and mechanical durability for 

photovoltaics.27 An exceptional material may be surprising by displaying properties that have not 

yet been observed simultaneously.  Alternatively, an exceptional material may be surprising by 

violating a contraindicated physical relationship (e.g., in the case of thermoelectric materials, 

finding materials with high electrical conductivity but low thermal conductivity, in violation of the 

Wiedemann-Franz law), for example, by taking advantage of nonlinear effects or a careful balance 

of contradictory influences.  This is a distinct problem from multi-objective optimization,28–30 

discussed in Section III.C. 
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FIGURE 1: (a) Structure entries in the ICSD and Materials Project as a function of time, plotted 

on a logarithmic scale; (b) Number of compounds in the Materials Project (color) as a function of 

both chemistry (atomic number) and structure (space group number). Adapted from Ref. 31. 
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Genuine surprise would not be possible or necessary if we already had an adequate sample 

of all possible materials. However, an empirical analysis suggests that humans have barely 

scratched the surface of possible compositions. If one considers only stoichiometric quaternary 

solid-state inorganic compounds satisfying conservative valency and electronegatively constraints, 

there are approximately 1010 compositions,32 many orders of magnitude below the 105 compounds 

in the entire Inorganic Crystal Structure Database (ICSD).  Similar estimates exist for the chemical 

space of synthesizable organic molecules.33 The reported number of new structures deposited in 

the ICSD shows exponential growth (Figure 1a),31 and thermodynamic stability network 

calculations indicating an increasing trend in the discovery rate of new materials.34 Nevertheless, 

the compositional variations are certainly mapped unevenly.  Computational datasets, such as the 

Materials Project database, exhibit wide disparities in the prevalence of certain elements (Figure 

1b).31 A significant portion (~80%) of these materials are also found to fall above their respective 

(0 K) convex hulls, suggesting there is some level of metastability to their thermodynamic 

favorability, further expanding the complexity of materials discovery.35 However, the ability to 

study metastability in computational datasets is limited by dataset biases in the distribution of  

formation energies for different structure types.36 There remains plenty of room to discover new 

materials and molecules, and we are far from the regime of pure interpolation.  

 

II. B. Why is Finding an Exceptional Compound Difficult?  

Finding an exceptional compound is intrinsically a low probability event, as the 

compositions and combination of synthesis and processing conditions needed to produce them are 

rare and unique.  But rarity alone is not the problem.  Consider a golf course: The probability of a 
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randomly placed ball occupying the hole is small, yet golfers regularly guide the ball on the green 

to the hole with (ideally) few attempts by taking advantage of the landscape and “reading” its many 

properties. Similarly, it is easy to solve research problems if there exists a clear gradient towards 

the goal (by analogy, this may arise from the inherent topography which causes balls to roll down 

hills of the landscape or the golfer’s knowledge of the map of the course). It is harder if there are 

many traps where these gradient-based heuristics fail.  More formally, mathematicians have 

devised many ways of characterizing the ease and difficulty of finding optima on high-dimensional 

response surfaces.  For example, cases where the inputs are continuous can be characterized in 

terms of smoothness (the number of continuous derivatives a function has over its domain) and 

convexity (continuous functions where values at the midpoint of every interval do not exceed the 

values of the function at its endpoint).20 Cases where the inputs are discrete can be characterized 

in terms of elementariness (those which can be realized as an eigenvector of the Laplacian of the 

neighborhood diagraph).21 Whether the inputs are discrete or continuous, the underlying idea is to 

characterize functions for which local information gathered from stepwise changes can find optima 

efficiently.20,37 In general, many practical algorithms are also capable of efficiently finding 

solutions even when the response surface only approximately obey these criteria.   

Materials discovery can be both easy and hard, depending on the problem.  Empirically, it 

has been observed that many successful materials ML problems are approximately smooth and 

convex response surfaces, with a broad basin of attraction towards a few local optima,38 like the 

schematic example plotted in Figure 2a. Thus, it is not surprising that ML-based approaches for 

representing the landscape can be successful and gradient descent is an efficient strategy.  In 

contrast, exceptional materials are often comprised of much harder "needle in a haystack" 

problems,39 where the response surface behaves as shown in Figure 2b. The response function is 
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no longer smooth, and any approximate information about a local environment is no longer a good 

guide to the behavior of new candidates. Whereas a mathematician would apply a preconditioner 

to transform the problem into a more suitable form, experimental scientists typically lack prior 

knowledge about the nature of the response function, and consequently are limited in what types 

of a priori transformations can be applied.  Acquiring more data about the system (either by 

physics-based simulation or by high-throughput experimentation) or improving the nature of the 

search process is one of the few solutions. 
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Figure 2: Iterative versus exceptional materials. (a) Previous work has focused on optimizations 

on smooth, convex response surfaces; (b) Exceptional material properties are often characterized 

by very sharp discontinuities in as composition and reaction conditions are changed. Adapted 

from Ref. 38. 
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III. The State of Current Machine Learning Approaches 

III.A. Computational Screening and Early ML 

Multi-agency funding efforts like the Materials Genome Initiative (MGI),6 and similar 

efforts worldwide,41 were premised on combining physics-based computation, data resources, and 

high-throughput experimentation to provide more data and accelerate the discovery of new 

materials.  Many of the highest profile early efforts based on high-throughput density functional 

theory (DFT) calculations leading to databases such as the Materials Project, AFLOW, OQMD, 

etc. As the information contained in these repositories grew and the desire to expedite this process 

took over, researchers began to augment DFT with ML approaches. They started by first 

performing simple regression or classification predictions and used these results to screen known 

crystal structure databases looking for materials with superb properties.42 The efforts have since 

expanded dramatically using experimental datasets, autonomous experimentation, multitask and 

transfer learning, among numerous other approaches. A tremendous number of predictions have 

been made using this procedure, although there have been far fewer experimental validations of 

these models.42 Nevertheless, in nearly every example, the model’s predictions are modest 

improvements of known systems rather than new state-of-the-art, transformative materials. 

 

III.B. ML as an Experimental Optimization Tool 

Many of the current demonstrations of ML for chemistry and materials are essentially 

optimizations of the composition, reaction conditions, and processing conditions to maximize or 

minimize a desired property. ML is used as a low-cost proxy for experimental input-output 

relationships. For example, the design of catalysts for chemical reactions has involved performing 

density functional theory (DFT) calculations to determine the optimal catalyst composition and 
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reaction conditions. ML models can be trained on this data to accelerate the screening process, 

thereby reducing the time it takes to map the response surface and achieve the desired result.43 

Incorporating model uncertainty with the predicted outcome enables guiding the experimental 

process in an algorithmic way to achieve the desired experimental goal. One classic illustrative 

example comes from the seminal 2016 work of Nikolaev et al. on ML-optimized carbon nanotube 

growth in an autonomous system.44 A random forest model trained on a small initial dataset served 

as a proxy for the dependence of observed nanotube growth rate as a function laser heating and 

the partial pressures of four gases. Active learning methods were used to sample uncertain new 

points, and the algorithm was then employed to select the optimal set of input parameters to rapidly 

achieve a desired growth rate. Other illustrative ML-enhanced materials optimization examples 

include nanocrystal growth and optical properties in a microfluidic system,45 mechanical 

properties of 3d-printed structures,46 crystal growth conditions,47–49 and halide alloy stability19,50, 

and superconductivity.51  See Refs. 42 & 52 for a more comprehensive review.  

Limitations of data-driven strategies have been noted in the literature to some extent. Many 

of these papers have been premised on the argument that more data is require, or more 

computationally intensive approaches are needed to generate higher-quality training data.53  

Algorithmic performance can also depend on the initial dataset (the “cold start” problem), and 

available datasets often exhibit sampling biases.54 This problem can be partially mitigated by 

adding additional constraints to maximize the explored input space49 or by incorporating human 

expertise in the loop.55 While previous research articles have benchmarked computational methods 

and metrics for this task,56,57 and a recent perspective discussed types of machine-learning guided 

iterative experimentation towards this goal,15 a more critical view of the field is that regardless of 
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the accuracy produced by these methods, they will not generate the materials necessary to enable 

paradigm shifts. 

ML-based organic (retro)synthesis prediction and planning face similar issues.2,58 There is 

a tremendous power (and computational complexity) associated with selecting a sequence of 

known reactions into a new arrangement. This presents an immense combinatorial challenge where 

ML-derived heuristics can make the problem tractable,59,60 with recent reviews discussing these 

efforts.61,62 Although it has been suggested that deep-learning-based template-free methods can 

propose genuinely inventive new reactions,63 performance can be poor outside the training set 

(even for undergraduate textbook reactions) and often reflects the most common reactions in the 

training set rather than finding optimal reactions.64 Some ML researchers characterize large 

language models (LLMs) as “stochastic parrots” because of their tendency to generate outputs that 

merely have the same statistical local structure as the training corpus (and thus perpetuate or 

amplify training set bias) without incorporating long-term structure or meaning.65 Regardless, 

empirical evidence suggests that suitably trained LLMs can learn meaningful internal 

representations of the problem,66 and the nature of the formal grammatical expressiveness of 

different model types is an area of active research.67 Within the context of chemistry, there is 

evidence that transformer-based LLMs models learn relevant atom mapping rules, implying that 

the learned representations are physically meaningful.63 Additionally, general purpose LLMs are 

surprisingly effective at predicting molecular and material properties with only small amounts of 

example data.68  Yet there remains the problem of optimizing the reaction conditions and 

stoichiometries. Again, the tremendous technical challenges and practical benefits of this are 

immense—as demonstrated by exciting recent work on the optimization of heteroaryl Suzuki-
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Miyaura reactions69 and reviewed more comprehensively in Ref. 70. But again, this is in the domain 

of incremental optimization.  

 

III.C  High-throughput Experimentation and Autonomous Operation to Discover 

Exceptional Compounds 

The importance of high throughput experimentation (HTE) for data generation that will 

enable materials discovery has a long history71,72 The importance of data management, informatics, 

and ML for HTE has also been discussed extensively.73,74  Increasingly, this has taken the form of 

closed-loop autonomous research systems or “self-driving laboratories52,75–77 like the ARES 

system44 mentioned above. An autonomous system performs the entire workflow of design, 

synthesis, characterization, and optimization under algorithmic control. Similar types of 

design/build/test/learn cycles exist in many scientific domains besides materials, such as protein 

design, synthetic biology, and drug discovery.78 Each workflow step can be accelerated by 

incorporating ML tools—including inverse design, accelerated synthesis, characterization, and 

optimization. Indeed, characterization—rather than synthesis and processing—is often a 

bottleneck in this process, and ML can accelerate the characterization process. There are many 

technical challenges and opportunities related to miniaturization, continuous versus batch 

operation, etc. that will be discussed in Section VI. Nevertheless, recent demonstrations of 

autonomous materials research include metallic thin films,79 wear-resistant metallic glasses,80 

organic laser materials,81 acid generators for photoresists relevant to semiconductor device 

fabrication,2 multi-modal materials characterization,82 and reversible addition–fragmentation 

chain transfer (RAFT) polymerization.83  For comprehensive recent reviews on autonomous 

systems for materials, see Refs. 52,84–86, and for a recent perspective on the current state of the art 



   
 

   
 

15 

of these systems for exceptional materials see Ref. 15 while organic synthesis is discussed in Refs. 

61 & 87.)   

 

 

Figure 3: (a) The probability of at least one success in an experimental campaign can be 

increased by using ML to increase the probability that each experiment is successful, 

(increasing p), or by making more attempts (increasing N); (b) Contours showing the 
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probability of at least one success, as a function of changing p and N. Increasing p and N have 

a synergistic effect, but a large value of one can compensate for a smaller value of the other.  

 

There are many synergies between ML and HTE, and one can gain some intuition from 

considering the materials discovery process with a simple statistical model, depicted schematically 

in Figure 3a. The probability that at least one successful material results from an ensemble of N 

independent trials, each of which has a success probability p, is 1 − (1 − 𝑝)!. HTE increases N 

and ML increase p. As depicted in Figure 3b, these have a complementary effect on the overall 

probability of success and one can compensate for a lower value of p by increasing N and vice 

versa.  HTE generalizes this in several ways:  First, p is no longer constant, but ideally increases 

as a function of time as new data is acquired to improve the model, i.e., dp/dt is positive. Second, 

removing intermediaries between the model and the process reduces the time delay between 

acquiring data for a model and using that improved model to acquire the next experiment; this is 

analogous to compounding interest more frequently. The advantages of active learning depend 

sensitively on the type of problem; at best it may require only a logarithm of the number of 

experiments required by random sampling but at worst may require the full number of sample 

points.88 Empirical materials science studies have observed that poorly implemented active 

learning can decrease p.89 In addition to increasing the chances of success, there are other benefits 

for ML model performance that result from increasing the volume and quality of experimental 

data. Data and metadata from automated experiments is “born digital” which facilitates its use, 

reporting, and sharing. By eliminating (unrecorded) human variations, automated processing can 

potentially improve the reproducibility of experiments, thus increasing the signal-to-noise ratio in 

the dataset.  Such unrecorded unintentional variations in background conditions are also minimized 
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by performing more experiments in a smaller span of time. These are harder to quantify, but only 

increase the value of increasing both N and p, by use of automation and ML.   

Although HTE is an essential enabling technology for discovering exceptional materials, 

it is not enough. A historical analogy is provided by combinatorial chemistry in drug discovery.90 

The lack of clinical successes from initial high-throughput synthesis in the 1980s, suggests that 

merely increasing N is insufficient.  Incorporating modelling in the 1990s—specifically 

computational chemistry methods and informatics—increased p and ultimately lead to success. 

Ultimately, p depends on how the problem is framed and will determine where we look. In Section 

V we describe paths towards developing ML models that increase p for exceptional materials, 

rather than being limited to local optimizations. 

 

III.D.  Limitations of Pareto-front Multiobjective Optimization Strategies 

Most efforts to apply ML for novel materials discovery have primarily focused on 

predicting a single property value or reactivity, but transformative applications require a balance 

of contraindicated responses. This has led researchers to pursue multiobjective optimization 

algorithms to find the best solution that balances multiple objectives, which may conflict with each 

other. In this type of non-dominated solution, the goal is not to find a single best solution but rather 

to identify a set of optimal solutions, The optimization of more than one mutually exclusive 

property is often described in terms of a Pareto frontier.15,25 (& Ref. 20 pp. 177-184), depicted 

schematically in Figure 4. With each iteration of materials discovery, the Pareto front edges 

forward yielding materials with an optimal balance of often contraindicated properties. These tools 

have been applied recently across materials science ranging from solid-state battery electrolytes91 

to magnetic high-entropy alloys3 to additive manufacturing29 to polymer design.92 (Also noted are 
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recent reviews of multiobjective optimization for organic molecules93 and chemical reaction 

optimization.70) 

Pareto front optimization is a useful tool for decision-making. Methodologies like 

Chimera28 have been proposed to optimize materials, even in the case of constrained design spaces 

with little information on the surface of the objective function. Active-learning Pareto front 

optimization methods, such as 𝜀-PAL,92 can be used to guide automated experimental procedure 

could optimally identify Pareto points in fewer evaluations. The Pareto front has been 

demonstrated  to establish the optimal set of synthetic conditions that yield metallic films with 

excellent conductivity at lower processing temperatures.79 A self-driving laboratory varied 

different reaction conditions for combustion synthesis (fuel source, fuel-to-oxidizer ratio, 

precursor solution concentration, and annealing temperature) to simultaneously maximize the 

film’s conductivity and minimize the combustion temperature, by using a differential expected 

hypervolume improvement (qEHVI) algorithm.94 The normalized hypervolumes increase 

smoothly to their maximum as the property response is explored, indicating stepwise advances. 

Pareto front-based strategies yield stepwise, continual advances of an objective that balance 

tradeoffs, which does not lend these methods to the necessary “leaps-and-bounds” advances 

required for transformational discoveries. 
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FIGURE 4: The Pareto front is a plot of optimal solutions for a multi-objective optimization 

problem. The x-axis represents one objective, the y-axis represents another objective. Points on the 

plot are Pareto-optimal solutions, with no other solutions better in both objectives. The Pareto front 

connects all these solutions and shows trade-offs between objectives. Points above the front are 

dominated by at least one other solution, while points on the front are non-dominated. The Pareto 

front moves forward with each iteration making it a useful tool for decision-making and 

optimization. 

 

IV. Case Studies in the Discovery of Exceptional Materials 

To illustrate how exceptional materials are discovered with and without using machine 

learning, and limitations of current ML tools, we explore two case studies: the discovery of High-

Tc superconductors and superhard materials. In addition to allowing us to review applications of 

ML to these model cases of exceptional materials, it also provides concrete examples upon which 

to base our subsequent recommendations. 
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IV. A Case study:  Serendipity and the Discovery of High-Tc Superconductors 

Most exceptional materials were only found by serendipity, and only after obtaining the 

initial results by chance, is the usual scientific process unleashed to understand the underlying 

causes. In essence, the chance discovery of a new ‘solution’ provides a starting point for both the 

incremental process optimization techniques discussed above, as well as traditional hypothesis- 

and theory-driven science. To help understand this process, Yaqub’s taxonomy classifies 

serendipitous discovers into four categories:95 (i) Targeted search solves unexpected problem 

(Walpolian); (ii) Targeted search solves problem-in-hand via unexpected route (Mertonian); (iii) 

Untargeted search solves immediate problem (Bushian); (iv) Untargeted search solves a later 

problem (Stephanian). 

The discovery of high-Tc superconductors illustrates the role of serendipity in the discovery 

of an exceptional material. Research in superconductivity, from its initial report in 191196 to 1986 

was dominated by metallic systems.97 The conventional wisdom suggested that superconductors 

should be metallic, have high symmetries and electronic density of states, and be structurally 

unstable or metastable. While most superconductivity work pre-1986 focused on metallic systems, 

specifically vanadium or niobium alloys, other systems for which BCS theory98 did not work, such 

as intermetallics99 and Chevrel phases100 were being investigated. Despite the modest critical 

temperatures in these systems, they suggested that the conventional wisdom regarding 

superconductivity was too narrowly focused.   

Two parallel efforts in the early 1980s were critically important in emergence of cuprate 

perovskites as high temperature superconductors.  First, Raveau,101,102 Poeppelmeier,103,104 and 

Thomas105,106 were developing a synthetic toolbox to control the oxygen stoichiometries in 
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perovskites, enabling mixed valencies that are critical to the existence of superconductivity in 

perovskites.  Second, the broad investigations led to the observation of superconductivity in a 

series of non-metallics systems pre-1986 oxides,107 including NbO108 (which contains square 

planes, much like all cuprate superconductors), spinels (LiTi2O4)109 a series of perovskite adjacent 

tungsten bronzes,110 Ba(Pb1-xBix)O3111 and even the perovskite SrTiO3.112   

Reports of oxide superconductors intrigued Bednorz and Müller, coupled with both 

Raveau’s synthetic advances and discovery of metallic conductivity in a copper-containing oxygen 

deficient perovskite,113 inspired their discovery of superconductivity in the LaBaCuO systems (Tc 

= 28 K).114 Their discovery is an example of Mertonian serendipity, as Bednorz and Müller were 

performing a targeted search in the system that solves a problem with unexpectedly high critical 

temperatures:  Ceramics generally act as insulators, but this anomalous case provided a new 

solution to an established problem via an expected route. The initial announcement was followed 

by feverish activity for more than a decade that more closely followed a standard process 

optimization route and resulted in YBaCuO oxides with superconductivity at liquid nitrogen 

temperature115 and the reigning HgBaCaCuO cuprate superconductor.116 

Could ML models have assisted in this discovery?  Undoubtedly, ML can help optimize 

materials once examples are known—for example, Pogue et al. recently used a ML model trained 

on >16,000 compounds in an iterative fashion to guide the synthesis of new superconductors, and 

found a new Zr-In-Ni superconductor with modest Tc = 9 K, as well as rediscovering a few known 

superconductors not in their training set.51 But if one only had experimental knowledge of pre-

1986 superconductors, would ML predict the existence of high Tc cuprates? The answer appears 

to be “no”. In 1988, Villars and Phillips performed what would now be called feature selection 

and clustering using the known data of approximately 60 high-Tc materials (including YBaCuO); 
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however, their prediction (Figure 2 in their paper) does not predict BaCaCuO,117 and it is unclear 

to what extent many other materials would have been predicted positive.  Two decades later, 

Stanev et al. used the SuperCon database of over 16,000 compounds to train random forest models 

for predicting the Tc based solely on composition.118 While they did not consider a time-separated 

holdout, Figure 4b in Ref. 118 shows that a model trained on low-Tc (primarily pre-1986) materials 

predicts all cuprates as erroneously low-Tc. (The failure to extrapolate could be a consequence of 

using a random forest model.) On the other hand, their results do suggest that once a few initial 

discoveries are made, the model can identify other examples—indeed, once cuprates are included 

in the training dataset, they comprise the vast majority of candidate superconductors. Meredig et 

al. observed that ML models trained without cuprate examples predict cuprates to be below-

average superconductor119 (See Figure 2 in Ref. 119) Alternatively, Ling et al. used ML to quantify 

the uncertainty of Tc (rather than predict its value);  iterative sampling materials guided by 

maximum uncertainty found high- Tc superconductors (including cuprates) in about a third of the 

experiments required by a random search.120 These previous ML studies may have focused too 

narrowly on superconductivity; perhaps a broader study of metallic conductivity (rather than 

limiting to superconductivity), informed by earlier reports of metallic conductivity in LaSrCuO, 

would have served as the bridge from classical BCS superconductors to these new compounds.121 

Overall, this supports the claims made in Section III: existing ML approaches can be successful 

for materials optimization, but are not necessarily capable of finding new exceptional materials. 

 

IV.B Case study:  Machine Learning and the Discovery of Superhard Materials 

There are similar strengths and limitations of current ML approaches for the discovery of 

superhard materials, defined as those having Vickers hardness (Hv) exceeding 40 GPa. Diamond 
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has long been considered the hardest known naturally occurring substance (a 10 out of 10 on the 

Mohs hardness scale and an Hv ≈ 100 GPa) and significant efforts have gone into making synthetic 

diamonds. In 1954, a team of scientists at the General Electric (GE) Research Laboratory 

developed the first approach involving subjecting graphite to intense heat and pressure using a 

diamond press. The experiment yielded tiny, yellowish crystals that were confirmed to be 

diamonds. Over the next several decades, GE continued to refine the process through inventions 

in the 1970s like high-pressure, high-temperature (HPHT) synthesis, which involved subjecting a 

carbon source to extreme pressure and heat in the presence of a metal catalyst. HPHT synthesis 

allowed GE to create larger, higher-quality diamonds more efficiently than ever before. The 

company began selling synthetic diamonds for use in industrial applications, such as cutting tools 

and abrasives. At a similar time (1957), synthesis efforts were also focused on making the 

isostructural, isoelectronic cubic boron nitride (c-BN) using high-pressure, high-temperature 

synthesis. Superhard c-BN's unique properties, including its extreme hardness (HV ≈ 60 GPa) and 

thermal stability, make it an ideal material for use in ferrous cutting tools, grinding wheels, and 

other industrial applications. Today, c-BN is used extensively in the aerospace, automotive, and 

manufacturing industries. Given the tremendous application space, it is no surprise researchers 

have expended significant effort, with only moderate success, trying to emulate these properties. 

However, it has not been easy. An analysis by Brgoch and co-workers provides insight on 

why so few superhard materials have been identified. They constructed a boosted machine learning 

regression model capable of predicting Vickers hardness. Using this model to predict the hardness 

of more than 60,000 inorganic compounds in Pearsons Crystal Dataset revealed that only 0.1% of 

known crystalline compounds surpass the superhard threshold at 0.5 N applied load, and only 

0.01% meet this criterion at 5N applied load.122 Not only is superhardness rare, the total dataset of 
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experimentally hardness measurements is relatively small (about 500 unique compositions).122,123 

Moreover, the dataset is biased to low hardness values and certain compositions (such as boron-

containing compounds) are disproportionately present in this limited training data,122 attributable 

to the same types of anthropogenic research biases observed in other experimental materials 

datasets.54 

 The limited experimental data might suggest that physics-based simulations could be a 

more appropriate path towards materials discovery. However, direct atomistic physical simulations 

by density functional theory (DFT) are unable to directly calculate the hardness as it is a property 

that involves multiple length-scales exceeding what can be achieved by direct simulation. One 

could instead use properties that are readily calculated by DFT (such as bulk and sheer moduli) as 

either initial selection criteria123 or as inputs to semiempirical expressions for hardness.124 

Researchers have further paired these methods with crystal structure prediction algorithms 

(USPEX125, CALYPSO126, XtalOpt127) to predict new promising superhard compounds. ML can 

also be used to expand the search space enabled by DFT calculations.123 These physically-

motivated models provide some guidance but are generally worse at quantitative hardness 

predictions than direct ML methods.122,124  ML models are accurate enough to be used to screen 

for interesting compounds in the Sc-Os-B phase space as a demonstration of their quantitively 

accuracy. The model was able to capture the change in hardness in a solid solution system (Sc2–

xYx)OsB6 and the highly disordered borosilicide, YB41.2Si1.42.  Additionally, Sc2OsB6 was 

determined to be nearly superhard (Hv ≈ 38 GPa). Nevertheless, the hardness of these systems falls 

far from diamond or c-BN.  

A more recent approach to the problem embraces the rarity of superhardness by treating it 

as an unsupervised anomaly detection problem.128 In this work, an autoencoder model was trained 
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to find low-dimensional latent representations of crystal structure. Compounds with anomalous 

bonding motifs will be poorly described in this learned representation, and this can be used to 

identify anomalous structures for further investigation. While such structural anomalies do not 

directly indicate superhardness, the hypothesis is that these materials often contain unusual 

bonding motifs, which is substantiated by an empirical correlation between reconstruction error 

and superhardness. The methodology could be expanded to include a generative approach that can 

predict new crystal structures where the loss function (reconstruction error) is maximized and 

premised on the previous correlation, having a correspondingly higher hardness. Nevertheless, 

there is no guarantee that any combination of elements in any given crystal structure would surpass 

diamond as the hardest single-phase material.  

 
V. Recommendations towards ML for Exceptional Materials 

A close look at the history of science reveals that there is no single “scientific method” and 

that scientific advances often involve a rejection of established norms.129 In that spirit of 

epistemological anarchism, we offer six maxims for guiding the research community, depicted 

schematically in Figure 5.  There exists a variety of software and hardware needs that apply to 

laboratory automation in general, which will not be discussed, so as to focus on aspects specific to 

exceptional materials. While we have in mind primarily experimental discovery, many of these 

recommendations are equally applicable to autonomous computational discovery.130  When 

possible, we have tried to illustrate these points by reference to specific applications in chemistry 

and materials science, but in many cases, we have drawn instead upon examples drawn from 

finance, oceanography, computer science, and evolutionary biology, among other fields.  
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Figure 5: Six recommendations for research toward machine learning for exceptional 

materials. 
 

 

Avoid the tyranny of the middle and focus on extrema. By definition, there is less 

training data at the extremes, resulting in greater model uncertainty associated with those regions. 

Typical metrics for ML training and evaluation emphasize performance on an average over the 

data, but this will be dominated by typical materials rather than the exceptional extrema. Common 

ML metrics (accuracy, R2, etc.) do not express the intended goal when in the presence of such 

outcome imbalances,131 and nor do they give a measure of the ability of an algorithm to guide 

iterative discovery.57 Solving this problem may simply correspond to choosing different loss 

functions when training ML models. A possible analogy is to the use of Conditional Value at Risk 

(CVaR)—expected loss in the worst q% of cases—in portfolio optimization,132 which corresponds 

to a 1-norm of q% largest magnitude entries.133 Alternatively, it may require modifications of 
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existing algorithms. Typical reinforcement learning (RL) formulations do not correspond to the 

scientific discovery process, as they are aimed at maximizing a cumulative reward rather than the 

best possible result found.134  Alternative formulations of the problem, such as the Max-k-arm 

bandit model,135 better align with that goal, which has been demonstrated with in silico numerical 

experiments of exploring molecular SMILES strings to maximize the boiling point and other 

thermophysical properties described by an empirical proxy.134 In the context of Bayesian 

optimization type strategies, an appropriate approach is the output-weighted optimal sampling 

introduced by Blanchard and Sapsis and co-workers,136–138 which has been recently applied to 

extreme event discovery in epidemiological models, rogue waves, and structure mechanics.139  

 

When data is limited, qualitative prediction of direction to the goal is more valuable 

than (interpolative) accuracy. If you are blindfolded, it is better to know the approximate 

direction to the goal than it is to know the exact distance to the goal. Focusing on accuracy in the 

early stages can be detrimental; for example, Random Forest models tuned to maximize only cross-

validation accuracy may produce low-quality models.119,140 But collecting just any data results in 

the “tyranny of the middle” problem discussed above.  Rather, we want simple qualitative models 

that guide extrapolation (and data collection efforts) to collect relevant data, rather than 

quantitative interpolative accuracy.  Don’t build a perfect model with limited data—the important 

thing is to collect more data, and the right data. 

The evolution of astronomy from Ptolomy to Kepler provides an insightful historical 

analogy. Kepler’s model was neither more accurate nor significantly simpler than Ptolomy’s.141 

Kepler himself noted in the introduction to Astronomia Nova “the [models] are for practical 

purposes equivalent to a hair's breadth, and produce the same results.”142 Mathematically, the 
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system is underdetermined, as the limited set of data can be fit by an arbitrarily complex model.  

The strength of Kepler’s model was not necessarily that it predicted orbits more accurately, but 

rather that it enabled a piecemeal approach to extract hypotheses about the orbits of individual 

planets, enabling astronomers to develop observational tests.143 For example, latent in Kepler’s 

model was the information that Venus should have phases, and one could calculate its occurrence 

with sufficient predictive accuracy to enable Galileo’s experimental observations which ruled out 

the Ptolemaic model.144 (Ruling out the Tychonic model required improved instrumentation and 

data collection to enable the observation of stellar aberration by Bradley,145 which provides a 

parallel to our argument for the role of HTE systems in exceptional materials discovery.) 

The general strategy for underdetermined problems is to introduce a priori constraints. 

Classically, this was done by devising physical models in terms of the relevant variables and 

admissible functional forms of their interactions.  Physics-based computer simulations serve a 

similar role,130 although the examples above indicate their limits for exceptional materials.53,124  

We will focus purely on data-driven approaches. Strategies of physics-informed machine 

learning146–148 are one approach for this problem. A recent application of this approach to 

determining the structure of oxide glasses is described by Bødker et al.149 However, this is less 

applicable to exceptional materials which involve new physics precluded by using existing laws 

as constraints. Feature selection corresponds to an implied constraint that only a small subset of 

the input variables determines the system performance. The identified features are combined with 

simple models to make predictions.  Some examples include the aforementioned synthesis of 

superhard materials,123 but other examples include discovery of antimicrobial conjugated 

oligoelectrolytes150 and perovskite crystal growth modifying additives.151  Once hypothetically-

relevant features correlated to the output are selected, then relatively simple models can be 
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constructed to make extrapolations. Even simple linear models can be quite effective for this 

purpose.131 The features themselves need not have an interpretable relationship to the property 

being studied (vide infra)—they merely serve as a proxy for guiding the experiment selection. 

There is also no reason to restrict consideration to a predefined ML-model function type. More 

broadly, symbolic regression corresponds to the ansatz that a relatively simple combination of 

mathematical functions describes the behavior. There are a variety of applications of symbolic 

regression methods to problems in chemistry152 and materials science.153,154 In practice, symbolic 

regression is often combined with various feature selection methods, with examples including VS-

SISSO155 and transformer-based approaches for symbolic regression.156 

Emphasizing qualitative direction has consequences for the design of HTE systems. For 

example, the experimental validation, especially at early stages might emphasize rapid (but 

potentially noisy) methods, rather than the types of rigorous methods used in subsequent stages of 

research in the interest of increasing coverage.  This also suggests the need for appropriate data 

sharing and interoperability formats (such as the specification of experiments) to facilitate the 

hand-off between high- and low-throughput synthesis and characterization processes, especially 

when they occur in different laboratories. On the other hand, many historical examples of 

exceptional material discoveries resulted from comprehensive characterizations which were 

unnecessary to the immediate goals of the project, but which nonetheless revealed an unanticipated 

outcome (Walpolian or Stephanian serendipity95). For example, conductivity measurements in the 

LaBaCuO system revealed metallic behavior, which precipitated Bednorz and Müller’s discovery. 

This suggests measuring as many different properties as possible, even if not directly related to the 

current research theme, and storing the results in public databases to allow for retroactive retrieval 

of surprises or the use in training ML models for different properties.  
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Sample what can be made and how to make it — defer optimization.  As it is impossible 

to exhaustively enumerate all of the possibilities in these problems, one must instead sample the 

possibilities, which corresponds to the task of generative ML models; methods and applications 

of generative ML to chemical problems have very recently been reviewed in Ref. 157.  We advocate 

that these methods be used to cast a wide net. As noted by Herbert Simon, finding a global optimum 

to real-world problems often requires an intractable amount of time, effort, and computation, but 

finding a solution that satisfices—i.e., is feasible and meets or exceeds a baseline aspiration level—

is often tractable.158,159 This is marked in the case of combinatorial optimizations—like those 

involved in materials discovery—in which the number of possibilities grows exponentially in the 

problem variables, each of which must be checked. In these cases, we argue that merely sampling 

the solutions to find a satisficing solution should be our goal. Evolutionary theory suggests that 

introducing high levels of selection pressure restricts the scope and direction of exploration to a 

small neighborhood near high fitness individuals, and in turn delays or prevents innovation by 

inhibiting a series of slightly deleterious intermediate steps that are needed to find new optima.160 

For this reason, a collection of satisficing solutions can be more useful for our purpose than a few 

highly optimized examples. 

To be more than a theoretical curiosity, it must be possible to synthesize the material. This 

may be subdivided into the question of whether the material can exist (i.e., fundamental 

thermodynamic constraints) and how it can be brought into existence (the sequence of practical 

operations and feasibility of required conditions). The former is partially addressed by the plethora 

of ML models for predicting ground state thermochemistry, along with a proper accounting for 

metastability.35 The latter is partially addressed by ML approaches that use natural language 
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processing on the literature to extract experiment plans (for training) and then generate plans based 

on that data.161 (A parallel discussion of these ideas as they apply to organic chemistry can be 

found in Ref. 157.)   

More broadly, one can think of two extreme versions of this task. At one extreme, 

synthesizability is applied as a filter to a list of generated candidates. For example, using ML 

models to make predictions of superhardness, then applying a formation energy filter to identify 

the feasible compositions.122At the other extreme, synthesizability is imposed to generate 

candidates by enumerating (or defining) a state space of experimentally feasible composition and 

process conditions points and then allowing property prediction models to select within them. A 

more efficient approach would combine these extremes to avoid the need to evaluate candidates 

which are ultimately discarded by the subsequent process. This might range from including 

physics-based symmetry contraints,162 directly incorporating a learned formation energy constraint 

into the generative process,163 or by restricting the generating samples to obey compositional 

“grammatical” rules.164 Fundamentally, the limits of synthesizability are defined in terms of the 

operational capabilities of the autonomous experiment system and what actually happens in the 

lab. Thus, an extreme version of the latter approach is simply to allow an algorithm to guide the 

HTE system directly. An example of this approach is a genetic algorithm optimization of gold 

nanoparticle synthesis experimental parameters to match a specified UV/vis spectra.165  

The important thing is that the ML model leads to samples in the right neighborhood. One 

framework for thinking about this is provided by similarity-based kernel learning approaches, in 

which one can define a cost function associated with acquiring a desired (but difficult) data point 

versus several similar (but more easily acquired) data points, and then use a model trained on the 

local environment to infer the desired point.166 The ease of acquisition can be computed by 
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combining materials, labor, and time constraints.167 Another framework is provided by the Multi-

dimensional Archive of Phenotypic Elites (MAP-Elites) algorithm, an evolutionary algorithm used 

in reinforcement learning, which samples and stores multiple candidate solutions (“elites”) on a 

grid to preserve a diverse set of characteristics for possible solution.168  Zooming-based Bayesian 

optimizations have a similar alternation between global sampling and local optimization.38 This is 

also reminiscent of Lévy flight models of animal foraging behavior, in which the search processes 

is characterized as a random walk with a heavy-tailed distribution of step sizes, and which in 

practice looks like local exploration in a region interspersed by large jumps to new regions.169  

 

Create room (and look) for the unexpected while pursuing your goal.  Scientists are 

trained to minimize the variance in their laboratory procedures. (There is even a new ACS journal, 

Precision Chemistry,170 focused upon this goal.) In contrast, we advocate the opposite approach—

Max Delbruck’s principle of limited sloppiness: “If you are too sloppy, then you never get 

reproducible results, and then you never can draw any conclusions. But if you are just a little 

sloppy, then when you see something startling you … nail it down.”95 A theoretical justification is 

provided by Epsilon-greedy approaches in reinforcement learnings171—while one should mostly 

take what one believes to be the most profitable action, one should also allocate some fraction of 

effort to trying random new actions, just in case something good happens. This is synergistic with 

our previous recommendation to avoid premature optimization.  Sloppiness can be engineered into 

the experiment process in many ways. Examples include adding randomness to materials 

experiment plans,54 using an additional cost function to experiment generation that maximizes 

experiment diversity,49 or taking advantage of uncontrolled changes in laboratory temperature and 

humidity as natural experiments.172 
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Despite advocating for deliberately “sloppy” reaction designs, we emphasize that this 

requires complete data capture of what actually transpired. HTE provides a natural synergy, as it 

enables complete, machine-readable data collection of meta-data and “failed” experiments which 

might not otherwise be recorded, but which are essential for ML training.173 Furthermore, allowing 

for sloppier outcomes might simplify the design tolerances when constructing an HTE system.14 

Once the data is collected, ML methods for anomaly detection enable Walpolian and Mertonian 

serendipity (a targeted search that solves an unexpected problem, or a known problem in an 

unexpected way, respectively95). The role of structural anomaly detection in the discovery of 

superhard materials was discussed in Sect. IV.B,128 and similar opportunities have been discussed 

for computer-vision-based scanning electron microscopy characterizations174 and surface-

enhanced Raman.175 In their simplest form, this might take the form of detecting whether an 

unexpected change has occurred in one or more spectra is observed. This has been used to discover 

new organic synthesis reactions.176,177 Coupling the observation of change in the spectra to neural 

network models of molecular structure has been used to steer the experimentation towards less 

predictable reactions.178  

Data-reuse and sharing can also enable finding unexpected trends within and between labs 

by data sharing.179  We are particularly interested in the model of Stephanian serendipity,95 in 

which a prior solution (for example, a compound that was made and characterized for a different 

purpose) is found to solve a later problem because of some new insight. The best example we 

know is the identification of lead titanate as a stable photocathode for dye sensitized solar cells 

(DSSC), based on band structure similarity to known photocathodes.180 Requirements by funders 

and publishers around FAIR (findable, accessible, interoperable, reusable)181,182 and TRUE 



   
 

   
 

34 

(Transparent, Reproducible, Usable by others, Extensible)183 data practices can help create such a 

resource for retroactive discovery.  

 

Try to fill-in-the-blanks of input and output space. There is a great opportunity to 

develop ML methods that enable the other half of the taxonomy of serendipity, namely untargeted 

search (Bushian and Stephanian approaches).95 Closely related is the importance of uncertainty 

quantification—fill in the portions of the map with the greatest uncertainty. The obvious way to 

frame this is in terms of the types of inputs (e.g., compositions and structure) that have not been 

observed before. Identifying where these gaps exist can be done by using databases, such as the 

identification of compositional gaps in the Materials Projects database discussed in Section III and 

Figure 3(b). Proactively, a strategy is to identify these unexplored compositions, use constraints 

(such as ML-based formation enthalpy estimators of stability) to determine which compositions 

are feasible, and then target experimental searches to fill in those blanks.184  For example, the 

discovery of the many high-temperature cuprate superconductors was directly enabled by the 

Goldschmidt tolerance factor185 which enables the determination of feasible compositions likely 

to result in the formation a perovskite.  This, coupled with the solid-state literature and nascent 

Inorganic Crystal Structure Database,186 resulted in a host of experiments targeted at potential 

novel materials that were both feasible and unreported. More recently, ML-based approaches have 

been applied to better explore the space of cuprate-like compounds.187  

Another way to frame this problem is in terms of the types of outcomes that have not been 

observed before. The information entropy of the observed property distribution can be useful for 

identifying these dataset imbalances, and active learning used to prioritize new samples to correct 

these imbalances, recently demonstrated in the context of formation energy/structure biases of 
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intermetallic compounds.36 In the context of exceptional materials, we are trying to understand 

how properties are coupled to one another.   It might therefore be useful to fill in contraindicated 

regions with undesirable tradeoffs (“anti-exceptional materials”) which might be equally rare. To 

achieve this one must learn general ways for getting to arbitrary output, which can serve as 

steppingstones to the desired solution. An extreme version of this approach explicitly rejects 

objective-based search, and focuses solely on output novelty.188 Empirical evidence suggests that 

novelty-only strategies (which ignore any type of fitness objective function) can be highly effective 

in complex environments, such as video games.189 Random goal exploration algorithms190,191 

select a random target defined in the space of possible outcomes and then infer the necessary inputs 

needed to achieve that goal. The process can be repeated iteratively until the target is reached, 

refining the model’s knowledge of the input-output relationships. These methods have been 

demonstrated in the context of an HTE system for identifying novel protocell lipid formulations.192 

Blending the distinction between input- and outcome- oriented approaches, the so-called diversity 

is all you need strategy in reinforcement learning suggests optimizing for both novel outcomes and 

novel synthetic paths (inputs), again, without imposing other types of fitness objective functions.193 

Regardless of the specific optimization strategy, appropriate data sharing (vide supra) is a 

necessary ingredient for creating a synoptic data resource that can be used to identify the 

underexplored input and output spaces. 

 

Do not confuse human understanding and model interpretability. The debate about 

whether deeper forms of knowledge exist and are more valuable than a merely true belief is one 

of the oldest discussions in epistemology, going back to Plato’s Meno.194  Suppose you have an 

oracle (perhaps even a GPT-3 based language model making chemical property predictions68) that 
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tells you where you can get lucky—does it matter how the prediction is made, provided you can 

verify it is true? Once the initial discovery is validated experimentally, the traditional scientific 

method can be unleashed to understand underlying causes systematically. We saw this pattern in 

the case study of high-Tc superconductors discussed previously, and there is no reason to hold ML-

assisted discoveries to a higher standard. Essentially, we argue that the initial discovery stage 

should prioritize a form of reliabilism (defining knowledge as a reliably-formed true belief), with 

an emphasis placed on Ryle’s knowledge-how (in contrast to knowledge-that).  This neither 

requires an explanation of the workings of an arbitrary black-box ML model, nor is it recognizable 

as constituting a proper “scientific” explanation. (Whatever “explanation” means in practice.129)  

Leo Breiman famously contrasted model culture, which uses data to estimate the values of 

physically meaningful parameters, against algorithm culture (what we would now call ML) which 

views the algorithm as a black box whose parameters are meaningless apart from prediction 

quality. 77    The confusion between these two cultures leads to misapplication and misinterpretation 

about the scope of explainable AI (XAI) methods for communicating the inner workings of ML 

algorithms to humans. For a very recent review of trends in this field more broadly, see Ref.195; 

for reviews of interpretable and explainable methods applied specifically to materials science, see 

Refs. 196–200. In practice common XAI methods can be misleading; a case study of the limitations 

of methods like SHAP and ensemble feature importance measures in experimental materials 

science problems has been discussed by Lei et al.140 At best, XAI methods generate low-

dimensional descriptions of how the model outputs behave based on changes to the inputs.  That 

is, they only indicate features correlated to the model's output, with no claim of physical meaning 

or causality.  Determining whether these features are meaningful requires human input.  Practically 

speaking, XAI methods may be unnecessary for the initial discovery of exceptional materials.  
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Model explainability in these early stages is unnecessary because the models will be based on 

limited data, and thus prone to overfitting and oversimplification. Moreover, the most appropriate 

models for initial discovery—for both interpretability and extrapolation—may be the types of 

feature-selected linear models discussed above,131 obviating the need for more sophisticated black-

box model interpretability methods.  In many cases, automatic identification of anomalies (vide 

supra) for review by a human operator suffices, so long as the anomalies are rare. The human 

scientist can then invoke their own reasoning, statistical evidence, or other forms of investigation 

to study the problem.  

ML can certainly also play a role in building scientific understanding after initial discovery 

of an exceptional material.  Most scientists adopt the epistemology advanced in Plato’s Phaedo, 

but most popularly associated with Aristotle’s Physics, which associates the inquiry into nature as 

a knowledge of causes.201  Obtaining knowledge of causal relationships is useful, and can be 

automated by the use of modern causal influence methods202 which have recently been applied to 

catalysis203 and scanning probe microscopy.204–206 Ultimately, causal explanations must go beyond 

merely the brute details of the experiments (such as the input settings on a particular instrument), 

and draw upon deeper semantic relationships underlying structure, property, processing, and 

characterization encoded in an explicit and machine-readable way. Ideally, this information is 

incorporated into interoperable knowledge graphs that would allow scientists (and automated 

inference engines) to operate on fully linked concepts and data instances.207  In contrast to the 

statistical inference methods that constitute most of the applications of ML, semantic 

representations allow for logical inferences characteristic of symbolic AI (so called “good old 

fashioned AI”) en vogue during the 1950s-1990s.208 Progress towards semantic representations of 

chemistry and materials data and their applications are discussed in Refs. 207,209,210. 
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Provocatively, even without model interpretability or causal explanations, merely having 

access to “superhuman” AI improves human decision-making.  This has been observed in the 

context of the board game Go.211 In the 60 years of tournament data prior to AlphaGo, human 

decision quality remained roughly constant and human decision novelty decreased.  The advent of 

AlphaGo caused both human decision quality and novelty to increase, which is attributed to the 

AI’s use of optimal decisions free of historical biases, which in turn created new opportunities for 

human players to learn and innovate. In the context of scientific discovery, this suggests that 

merely employing the novelty-enhancing recommendations suggested above may be sufficient to 

improve human scientific understanding, even in the absence of model explainability, per se.  

 

VI. Conclusion: Integrated Workflows for Exceptional Material Discovery  
 

Traditional “manual” and autonomous materials discovery is based on a synthesize, 

characterize, learn, plan loop, depicted schematically in Figure 6a. (Similar process loops, with 

slightly different names, occur in a variety of scientific fields and the automation thereof, as 

discussed in Ref. 78.) Existing machine learning approaches accelerate this process by assisting in 

various optimization subtasks.14 For example, the inevitable fine-tuning of synthesis and testing 

operations when dealing with new precursors can be delegated to algorithms, reducing the need 

for skilled labor in operating tools. The characterization process can be accelerated by using ML 

to automate spectral interpretation199 and plan characterization campaigns that reduce the number 

of measurements required to more efficiently use available resources.212  ML can also be used 

extract additional information from existing spectroscopy and microscopy methods.213,214  As 

discussed in Section III.B, existing ML approaches excel at the variety of research-related 

optimization tasks. 
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Figure 6: (a) Block diagram of typical autonomous workflow; (b) Block diagram of an autonomous 

workflow oriented towards exceptional materials. 
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How might the discovery workflow change to discover exceptional materials? A schematic 

is depicted in Fig 6b. As discussed in Section III.C, it is necessary to increase both p (corresponding 

to the learn and plan phases) and N (corresponding to synthesize and characterize). Section V 

presented examples and suggestions of how new types of ML can increase p. Given the low 

probability of exceptional materials, one might introduce an intermediate constrain phase to limit 

the possibilities. While this may include the types of thermodynamic and synthetic feasibility 

determination methods discussed in Section V, it is potentially broader in scope.  For example, Liu 

et al. described how to merge human observation of sample quality into an ML acquisition function 

using soft constraints,19 and Zubarev et al. recently described software to assist in eliciting and 

systematizing human subject matter expert advice about prioritization, level-of-knowledge, and 

risk assessments used as input to ML-assisted discovery of new photoacid generator for EUV 

lithography.215   

Given the rarity of exceptional materials, it is also crucial to increase N, the number of 

unique material compositions tested per unit time by HTE methods, discussed in Section III.C. 

Broadly, this can be accomplished can either automating existing laboratory processes or 

developing new types of miniaturized processes. An extreme version of the former is a mobile 

robotic arm that uses the same synthesis and characterization equipment as a human chemist,216 

but it might consist of a dedicated “ChemPU” device217,218 or a collection of modified-equipment 

capabilities orchestrated by a central sample management system.219 While this has the advantage 

of using well-understood techniques, the opportunity for acceleration and scaling is limited by 

those existing synthesis and characterization techniques.  An alternative is to embrace new types 

of miniaturized and high-throughput synthesis and characterization methods such as microfluidics 

systems,220,221 direct writing from liquid precursors,222,223 combinatorial deposition of sample 
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libraries,224 and atomic scale dip-pen nanolithography.225,226 (Given their novelty, the design of the 

devices themselves are a subject for traditional ML-based optimization.227) While these synthesis 

methods can potentially increase N by orders of magnitude, it introduces doubt whether the 

resulting products are representative bulk samples. These approaches make characterization the 

rate limiting step, requiring a shift to faster optical or electrical proxy measurements. The open 

challenge is to define the limits within which proxies are valid or fail, and how to dispatch the 

discovery process across these different types of modalities. As illustrated in Figure 6, this will 

require research efforts to demonstrate equivalence between standard and novel synthesis and 

characterization techniques. This would initially take the form of explicit trust building 

experiments conducted on both sets of instruments, but ideally could also be automated. At the 

level of understanding, this might take the form of knowledge-graph approaches to represent 

semantic relationships between the results of different types of methods applied to a sample.207   

Finally, at the level of planning and coordination between these different types of 

modalities, the use of intelligent agents can be used to direct guide more purpose-driven planning 

and design tools, and automate aspects of the reasoning process across multiple facilities with 

different capabilities.228,229 Putting these recommendations into the form of an integrated workflow 

should better enable the discovery of exceptional materials.  
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