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Carbon capture and storage is part of the roadmap to-
wards net zero for many countries around the world, since
emissions from existing infrastructure are close to esti-
mated carbon budgets. To address this problem, currently
87 carbon capture projects are proposed worldwide in the
next 10 years. A major class of commercial carbon capture
technology involves capture systems using solvents. Com-
monly carbon capture solvents feature blends of amines
and water. Whilst these blends have proved valuable there
is an increasing need to identify new candidate molecules
which are more efficient and improve performance. Sys-
tematic approaches to improve on the current technology
are now needed with increasing urgency to expedite the in-
troduction of cutting edge carbon capture methods. Here,
we present a chemical space analysis of carbon capture
amines and proceed to show a framework for computa-
tional screening relevant to carbon capture solvents. The
screening approach demonstrates the use of cloud comput-
ing, novel molecular representations and machine learn-
ing to screen potential candidates. Our show the utility of
machine learning in this field for high throughput virtual
screening with an exemplar application to absorption ca-
pacity classification. Additionally, this work discusses the
opportunity for improved data awareness and accessibility
in this field to advance at a pace of its e development.
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Introduction

Climate change driven by emissions from human activ-
ities now poses the greatest environmental concern of
this century.(1) Emissions of greenhouse gases such as
CO2, methane and nitrous oxides (NOx) are the primary
drivers of global warming. CO2 is the largest fraction
of greenhouse gases emitted. (2) Electricity generation
from fossil fuel burning is the largest point source of
CO2 emissions around the world. Yet, fossil fuel burning
infrastructure is still being built.(1) Due to this trend,
committed emissions from existing energy generation
infrastructure jeopardise climate targets.(3)

Modelling suggested that Carbon Capture, Utilization
and Storage (CCUS) for CO2 emissions is a necessary
part of the technological solutions required to meet the
Paris climate accord.(1, 4) CCUS is the only technol-
ogy that can be used to help decarbonise existing en-
ergy infrastructure without decommissioning. CCUS
is also important for hard-to-abate emissions, such as
those in heavy industries.(5) There are approximately
87 planned CCUS plants between 2020–2030 according
to the map of global CCUS projects by the International
Association of Oil and Gas producers(6).
Of the currently available CCUS technologies, absorp-
tion using carbon capture solvents is the most mature,
seeing commercial usage with further plans for new
developments.(7, 8) The technology is dominated by the
use of amine based solvents such as Monoethanolamine
(MEA) or proprietary formulations of blends of amines.
MEA has become a defacto standard as it has shown
good performance in terms of capture capability as
well as being relatively cheap. However, it has sev-
eral drawbacks: high-energy penalty on regeneration,
thermal degradation and corrosion.(7) As a result, new
solvent candidates and new solvent mixtures are being
investigated in both academic and industrial research
laboratories.(9)
In this context, computational techniques can be
used to screen, rank and predict new carbon capture
solvents.(10–14) These computational techniques hold
promise to improve the speed of discovery and innova-
tion if paired with suitable data sets of solvent perfor-
mance. In particular, the field of Chemical Informat-
ics has developed a multitude of methods and prac-
tices, which can be used to address problems in the
field of carbon capture(15). Access to good quality re-
search data and methods is critical to the fast progress
of a field, as demonstrated by examples such as those
in solid state materials design (16) that have benefited
from open innovation.
To inform this study and demonstrate the usefulness of
computational approaches to this field, we have identi-
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fied 167 unique amine molecules which have been re-
ported in the literature(17–25) in relation to a range
of carbon capture performance metrics. We have ex-
tracted string representations for these molecules from
PubChem(26) and ChemSpider(27) in order to perform
an analysis of the chemical space of carbon capture
amines. In addition to this, we have created a new set
of data for 98 amine molecules based on the absorption
capacity of the amine molecules as an aqueous solution
of 30% w/w. We have used a consistent set of exper-
imental measures, making this dataset highly valuable
for training Machine Learning (ML) models upon.
In this work, we use the dataset of 167 molecules to
consider the chemical space of carbon capture amines.
Additionally, we build high throughput virtual screening
(HTVS) methods to predict the absorption capacity over
our own dataset of 98 amine molecules. Our results
are our first step towards accelerating the discovery of
CCUS solvents.

Results

A Data Collection and Curation

Initially, we reviewed the literature searching for exper-
imental absorption capacity measurements. It became
clear that there were potentially issues comparing data
over multiple experimental techniques and conditions
and that the field lacked common data standards for
carbon capture solvents research. Unlike counterparts
in the solid state, such as Metal Organic Frameworks
(MOFs), for which extensive crystal structure databases
have been provided, carbon capture solvents is a rel-
atively data poor field. This in many ways is likely
related to the field’s success in being one of the first
commercially applied carbon capture technologies. As
a result, data may often be considered too sensitive to
be released. This is especially true of formulations and
blended solvents.
This situation is historically reminiscent of fields such as
pharmaceuticals, which, in some cases, have seen bene-
fits from opening up some of the larger internal data sets
from commercial organizations in recent years. (28)
These benefits are both scientific (faster development of
new ideas) (29) and also economic (30). Woelfe et al
(31) provides an example case study on how a commu-
nity accelerated the development of a route to enanitop-
ure Praziquantel. The authors of this manuscript have
demonstrated the use of open data sets towards predict-
ing molecular and material properties such as water sol-
ubility and partition coefficients previously.(32–34)
Opening data in this field could enable a proliferation of
data driven modelling and the establishment of common
standards upon which to fairly compare methods. These
comparisons can drive rapid advancement of computa-
tional screening in this area. This will help to bring re-
search in this area in line with solid state carbon cap-

ture which sees wide spread modelling.(35, 36) Similar
arguments have been proposed and discussed in other
related fields for formulation chemistry.(37)
For these reasons, we have gathered our own data on
a consistent experimental basis. We gathered 98 data
points in total. These molecules were chosen as they
represent a sub-set of previously explored molecules and
unexplored molecules to the best of our knowledge. The
unexplored molecules were chosen based upon expert
input and computational similarity screening. The sim-
ilarity screening was carried out against 11,000 pur-
chasable amines from the ZINC database. We extracted
from PubChem(26) and Chemspider(27) the SMILES
representations of molecules previously tested for car-
bon capture from the literature.(17–19, 21, 22) We used
this set as a comparison set for the similarity screening.
The similarity was determined using Extended Murko
hashes and Tanimoto similarity scores. A final set of
98 purchasable molecules was then selected from the
screening and expert input.
We have performed in-house measurements on the 98
amine molecules using our testing laboratory, which
measures the absorption capacity at 40◦C using a 200µL
sample solution. The CO2 capture measurements are
made using a Non-Dispersive Infrared Sensor (NDIR)
with a 4.3µm absorption band and a 3.9µm reference
band. The experiments take approximately 60 minutes
to complete and are run in duplicate. We have chosen
to focus our HTVS efforts on binary classification for this
initial work. The aim therefore, is to provide HTVS mod-
els which can be applied to prioritise molecules for more
expensive exploration. The classes which we used as tar-
get data in this work are provided in the Table 1. Below
we describe our data curation and classifcation process
in detail.
For each of the 98 molecules we extracted the identi-
fiers and 2D structures of the molecules. We proceeded
to search the PubChem(26) and ChemSpider(27)
databases for entries of these molecules and extracting
further identifiers such that all molecules were specified
by: IUPAC name, InChI, InChIKey and SMILES. In some
cases an entry could not be found and we manually de-
termined the name and generated the SMILES string,
from which, we generated the InChI and InChIKey us-
ing RDKit(38) (version 2022.03.2). These representa-
tions are the most commonly used and are easily parsed
by standard chemical informatics tool kits such as RDKit
and OpenBabel(39). This information is provided in the
.
A range of capacity units are used in the litera-
ture. The most common appear to be: moles(CO2)

moles(N atoms) ,
moles(CO2)

moles(amine molecules) and g(CO2)
g(amine molecule) . Another unit

which we encountered several times was g(CO2)
L(solution) .

This unit requires knowledge of density to accurately
convert, as the solution includes the solvent volume
as well as the amine volume. We have used the unit
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B Infrastructure

moles(CO2)
moles(N atoms) for our absorption capacities and provide
conversion factors in the equation 1.

B Infrastructure

In this work we used cloud based computing as this of-
fers us flexibility to scale the resources to our needs.
This cluster consisted of eight nodes, each with 8 virtual
CPUs and 32GB of RAM. This allowed us to quickly pro-
vision infrastructure to run our modeling.(37, 40, 41)

C Computational Modelling

In this work we have applied a range of methods to ex-
plore the properties of the proposed solvents. These
methods broadly fall into the category of data driven
chemical informatics, including chemical graph analy-
sis, sub-structure searching and machine learning.(15)
To our knowledge, the application of chemical space
analysis and the subsequent bespoke fingerprinting is a
novel contribution to this field and present a new anal-
ysis of the molecules most commonly used for carbon
capture solvents.

C.1 Substructure searching and Topological Data
Analysis

In the first part of this work, we analyze the structures
of the molecules which have been considered as possi-
ble carbon capture solvents. We then compared these
molecules with a set of 20,938 commercially available
amines taken from the ZINC database (42).
The purpose of this analysis is to identify chemical func-
tionality strongly associated with carbon capture perfor-
mance and to highlight potentially under-explored, yet
synthetically accessible, regions of the amine chemical
space. To achieve this, we used sub-structure searching
over 3D molecular graphs which were generated from
SMILES strings using RDKit. We extend this analysis
with Topological Data Analysis (TDA) applied on the
chemical space to produce a skeletonized representation
of the high-dimensional molecular data set via Mapper
TDA (43–54).
Mapper TDA is a technique to visualise the topology of
high-dimensional data, such as point clouds. The con-
struction is related to the concepts of a Reeb graph and
pullback covers (45, 52). Mapper TDA tracks the evolu-
tion of the level sets of a real-valued function associated
with the data points, known as the filter function. The
filter function can be selected to reflect some geometric
properties of the points in the dataset, such as eccentric-
ity (position relative to the center of the data) or local
density. The range of filter function values is split into
overlapping intervals, also referred to as level sets. Map-
per TDA tracks evolution of these level sets. For each
interval, the corresponding subset of the data points is
clustered. Finally, a graph is constructed where each

node represents a cluster and two nodes are linked if the
corresponding clusters overlap. Two Mapper TDA clus-
ters can overlap because the filter function intervals are
allowed to overlap. Further, it is customary to associate
some attributes, such as filter function values or some
scalar properties, with the nodes and visualize them as
colors. The number of data points in the cluster is often
visualized as the node size. The output of Mapper TDA is
highly dependent on the choice of hyper-parameters. A
comprehensive analysis of Mapper TDA parameters can
be quite involved and equivalent to a standalone com-
putational task (48).

C.2 Machine learning and Model Evaluation

In the second part of this work we describe a workflow
for the classification of carbon capture molecules us-
ing several learning algorithms. The machine learning
models include the Logistic Regression Classifier (55–
57), Ada Boost Classifier (58, 59) and Gaussian Process
classifier (60) as implemented in Scikit-learn (61) (ver-
sion 1.0.2). We envision the classifiers as a first step to-
wards high throughput virtual screening of carbon cap-
ture molecules. In many cases classification may be suf-
ficient in order to prioritise and decide upon whether a
molecule will go on to further more elaborate screen-
ing. The classification methods have been widely used
for chemical property predictions previously.(62–64)
Gaussian Processes have been used in chemical mod-
elling in many instances.(65–68) These are a stochastic
process, which perform Bayesian inference over a space
of functions that map a representation to a probability
space, for the class of a molecule. A prior is used to de-
fine a probability distribution over functions. As data is
provided to train the model, the functions which most
suitably represent the data are selected leading to the
posterior probability distribution. For classification, a
logit function is used to output class probabilities. More
details are give in chapter 3 of Williams et al (60).
Ada Boost, as implied by the name, is a boosting algo-
rithm that combines multiple weak classifiers to increase
the accuracy. In our case we use decision trees as our
weak learners. The Ada Boost method works by initial-
izing all training data with equal weights. After the first
classifier is trained, examples which are incorrectly clas-
sified by the first classifier are given a higher weighting.
The process is repeated for N weak learners.
Finally, Logistic Regression in its basic form uses a logis-
tic function to model a binary dependent variable. This
is done using a standard linear regression model which
is mapped through a logistic function to give probabili-
ties. Each molecule is assigned a probability for class 0
and 1 with a sum of one.
All models are assessed in terms of multiple perfor-
mance metrics: accuracy, sensitivity, specificity, Re-
ceiver Operating Characteristics (ROC) curves and
(69) Matthews Correlation Coefficient (MCC) (70, 71).
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These metrics can all be formulated mathematically
from a confusion matrix, which identifies the correct
predictions, True Positives (TP) and True Negatives
(TN), along its main diagonal and the two types of error
associated with binary classification, False Positive (FP)
and False Negative (FN), in the off diagonal elements.
The equations used for these metrics are given in the
equations 2 - 7.

Briefly, these metrics comprise the most commonly ap-
plied metrics for classification problems and well char-
acterise the performance of our methods. Accuracy is
likely the most common classification metric.(71) It is
a ratio of the number of correct predictions over the
total number of predictions. This leads to a ratio de-
scribing the fraction of predictions which are correctly
classified in the set. This simple metric is a valuable
high level overview of the performance of a classifier.
The sensitivity and specificity each focus on the mod-
els ability to correctly predict the positive or negative
class respectively. These metrics provide a greater in-
sight into the potential errors and biases of the models.
The ROC curves describe the model performance over
decision thresholds with a FN rate on the x axis and
TP rate on the y axis. These thresholds can be consid-
ered as balancing the positive an negative predictions,
i.e. lowering the threshold will increase the number
of positive predictions, which is the sum of true posi-
tive and false positive predictions. The Area Under the
Curve (AUC) for a ROC curve is the integral of the area
under the ROC curve and provides a single value metric
for this trade off. The MCC metric is a powerful sum-
mary metric which ranges from -1 to +1 describing the
skill of the classifier to predict positive cases as positive
and negative cases as negative even when the classes are
imbalanced.(71).

C.3 Computational workflow

The workflow to generate these models is given in Fig-
ure 1. The workflow contains two K-fold Cross Valida-
tions (CV) one nested within the other. The external CV
holds a portion of the data set out as a validation set
whilst providing all other points as training data. The
internal CV uses the training points from the external
CV to optimize the hyper-parameters and train a clas-
sifier for each external k-fold.(72) This means that the
predictions are made for all 98 molecules over our ex-
ternal K-fold without biasing the models. Additionally,
we can make an assessment of the models robustness to
training set changes. We have chosen this method as it
enables us to optimally use the small data set we have
been able to gather from the literature.(72)

Fig. 1. Workflow to make classification predictions of each molecules in our data
set.

To describe these molecules, we used three methods.
The first are standard chemical informatics descriptors,
generated through the Mordred descriptor calculator,
(73) which produces over 1800 features of molecular
characteristics. From the 1800 descriptors calculated,
we identified the ones that correlate significantly with
the properties of interest using the Spearman correla-
tion coefficient between each Mordred descriptor and
the respective property of interest.
Another way to describe molecules is via molecular fin-
gerprints. Molecular fingerprints are vectors that en-
code structural information about a molecule. Com-
monly, this information is stored as binary digits rep-
resenting presence and absence of a structural feature.
There are different types of fingerprints available such
as Morgan fingerprints (74), MACCS fingerprints (75)
or MinHashed Atom Pair (MAP) fingerprints (76). In
this work we have used the commonly applied MACCS
fingerprints.
Additionally, we have defined our own structure based
fingerprint (CCS fingerprint) following consideration
of the literature and our own chemical space analy-
sis. The latest version of the source code for gener-
ating these fingerprints and the data set we generated
can be found https://github.com/Jammyzx1/
Carbon-capture-fingerprint-generation (as
of submission) and archived under DOI 10.5281/zen-
odo.7828285. This fingerprint is a fixed length (72
elements) with each element representing a chemical
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A Chemical Space Analysis of Carbon Capture Amine Molecules

group or groups. These chemical groups comprise those
commonly seen in carbon capture solvents and those
found more broadly across amine chemical space. Each
bit is defined by a SMARTS string and substructure
searching is carried out in parallel using DASK(77) (ver-
sion 2022.02.0) and RDKit(38) (version 2022.03.2) to
generate the fingerprint vector.
In this section we outline our chemical space analysis,
models and property predictions. We begin exploring
the molecular data set, seeking trends across the data in
terms of the chemical structures. We proceed with using
the learning models discussed previously to predict ab-
sorption capacity. We complete this work by evaluating
our models and considering the impact of our predic-
tions.

1 Results and Discussion

A Chemical Space Analysis of Carbon Cap-
ture Amine Molecules

First, we explore and compare the structures of the
amine molecules we extracted from carbon capture
literature with those we extracted from the ZINC
database(42) which are commercially available.
Several authors have reported chemical sub-structures
which influence carbon capture capabilities.(10, 17–19)
In particular, Singh et al(18, 19) developed structure
activity relationships based on chemical functionalities.
Their work studies the effects of many chemical func-
tionalities on carbon capture loading and develops de-
sign considerations for carbon capture amines. These
included alkyl chain length and functional group sep-
aration measured in number of carbon atoms. Addi-
tionally, consideration of ring substituent and their po-
sitions was provided in a later publication.(19) Work by
Papadopoulos et al(10) provided a computational de-
sign system. This work also identified a small number
of chemical structures which were useful as descriptors
for their models. Work by Puxty et al(17) reports the
position of OH moieties relative to the amine nitrogen
to be important. Steric hindrance around the amine
nitrogen is another chemical feature reported to be of
importance. It has been shown that steric hindrance
can change the reaction route of primary and secondary
amines towards that of tertiary amines. This is an impor-
tant observation owing to the differing atom efficiency
between the two routes. Primary and secondary amines
have been shown to react with CO2 through a pathway
requiring a second molecule to complete the reaction,
see figure 2. The second molecule may be water in some
cases or a second primary or secondary amine. Tertiary
amines have been shown to react in a one to one fash-
ion with CO2 effectively acting as a catalyst see figure
3.(12, 17, 78, 79)

2 HNR1R2 + CO2 R1R2NCO
	
O + H2

⊕
NR1R2

H2O HOOC
	
O + H2

⊕
NR1R2 + HNR1R2

Fig. 2. Primary and secondary amine general reaction scheme.

NR1R2R3 + CO2 + H2O HOOC
	
O + H2

⊕
NR1R2

Fig. 3. Tertiary amine general reaction scheme.

We have taken these considerations a step further, defin-
ing the CCS chemical fingerprint based upon these ob-
servations and our own analysis of commercial amines.
Our analysis identified common functionalities in com-
mercial amines such as benzene rings, five member car-
bon rings, nitrogen containing hetrocycles and halogen
groups some of which are not commonly found among
amines tested for carbon capture. The CCS fingerprint
we define combines the SMARTS definitions for com-
mon chemical sub-structures in molecules tested for car-
bon capture and wider commercial amines. We apply
this tool here in consideration of the relative abundance
of these sub-structures in carbon capture and commer-
cial amines.
The inclusion of both chemical functionalities common
in carbon capture amines and those more broadly in syn-
thetic amines was done to enable the fingerprint to cap-
ture the differentiation between the two groups. We use
sub-structure searching over a fixed order of chemical
sub-structures, defined by SMARTS, in order to produce
the CCS fingerprint. The fingerprint definition in terms
of the order and SMARTS patterns used for substruc-
ture matching are included in the . Each of the SMARTS
patterns defines one bit in our fingerprint. In total there
are 72 elements and hence 72 sub-structure searches per
molecule. In order to make this computationally rea-
sonable we apply sub-structure searching through RD-
Kit and parallelize over batches of 1000 molecules using
DASK(77, 80). With this implementation we are able to
produce the fingerprint in approximately 5 minutes on
a laptop for the set of 20,938 molecules compared to
several hours when run in serial.
Considering these points Figure 4 displays a fingerprint
based comparison of the 167 amines trialled for carbon
capture compared to the 20,938 amines collected from
ZINC which are commercially available.
The list of carbon capture molecules collected in this
work is not exhaustive, but is a representative sample of
the published amine solvent molecules which have been
openly reported. As a result the aim here is to provide
an analysis which highlights the most explored regions
of the amine chemical space and point out synthetically
accessible areas of amine chemical space which may be
under explored in terms of carbon capture. Figure 4 dis-
plays a histogram with the normalized count of occur-
rences of the given sub-structures across molecules in
both sets (blue is the carbon capture trialled data set of
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167 molecules, red is the commercial amines data set of
20,938 amines). Clearly there is a substantial difference
in the size of these data sets, hence the normalization
allows one to consider relative abundance rather than
absolute counts.

Fig. 4. Fingerprint comparison over two data sets of amines, 20,938 commercially
available amines and 167 amines tested for carbon capture abilities. All bits are
found in the larger data set at least once except ammonia, however their occurrence
may be rare enough that it is not clearly visible on the normalized x-axis. Where this
occurs we have decided to include the bit as it has been noted in other literature
sources as potentially important.

From Figure 4 it is clear that the carbon capture data set
includes molecules which contain a sub-set of chemical
moieties more commonly compared to the commercial
amine data set. For example, in the alkanolamines sub-
structures in the centre of the y-axis. This subset may be
somewhat expected given the wide spread use of MEA
and related molecules. It is also clear that structures
such as carbonyls, halo-carbons and aromatic groups are
relatively less common in the carbon capture data set
compared with commercially available amines. We note
that substances such as benzylamine have been used as
promoters within formulated blends rather than capture
solvents themselves. Such molecules are not captured
in this analysis.(81, 82) This analysis suggests there is
likely a defined sub-space of the amine chemical space,
which is more likely to be associated with amines suit-
able for carbon capture.
Figure 5 displays the chemical space graphically and
follows the protocol described in some of the author’s
previous work.(83) In this figure each molecule is rep-
resented as a node in the graph and the most similar
(Tanimoto similarity scores of ≥ 0.7 using Morgan fin-
gerprints with a radius of 2 and 2048 bits) are con-
nected. The graph topology is generated through the
Fruchterman-Reingold force-directed algorithm(84) us-
ing Python’s NetworkX package (v.2.6.3). This algo-

rithm treats the nodes as a set of spring connected
particles and simulates the graphs topology to a quasi-
equilibrium state. In this case the springs were weighted
by the Tanimoto similarity score, making those more
similar node relatively more attractive to one another.
The highlighted nodes are molecules which have been
reported in the literature as trialled for carbon capture
capability previously.

Images/manuscript_1_results/dandilion_plot/paper_graph_final_0.7.png

Fig. 5. Force directed graph of the amine chemical space. The highlighted nodes
are molecules which have been reported in the literature as trialled for carbon cap-
ture capability previously. The cyan nodes are commercially available amines which
to the best of our knowledge have not been tested for carbon capture capability.

We can see that molecules which have reported car-
bon capture properties are not evenly distributed. The
nodes tend to be away from the centre and distributed
throughout the shell of the graph. The graph is gen-
erated based upon molecular similarity such that those
with more connections remain closer to the centre of the
graph. As the carbon capture molecules tend to exist
in the shell they can be considered relatively dissimilar
to the commercial amines which remain in the centre.
Still most of the carbon capture amines posses at least
one connection, suggesting they are not special isolated
cases. Generally the carbon capture amines appear to
inhabit sub-sections of the amine chemical space based
upon molecular similarity.
To elucidate this sub-space more clearly we have ap-
plied TDA. A skeletonized representation of the set of
the topological data associated with both sets of amines
described above is shown in Figure 6. Mapper TDA is
applied to the molecular point cloud in the space of the
CCS structural fingerprints equipped with pair-wise dice
distances. During Mapper construction, we chose eccen-
tricity of the molecules in the point cloud as the filter
function. Here, eccentricity refers to the position of the
molecule relative to the “center" of the point cloud; it
increases further from the center towards the outskirts.
The range of the eccentricity values was split into 40
intervals with 50% overlap between intervals. This pro-
duced 40 level sets of amines which were clustered with
Agglomerative Clustering on the pre-computed matrix
of dice distances.
Figure 6A shows the produced Mapper graph where
nodes represent clusters within level sets, nodes are
linked if respective clusters have common members,
color encodes the filter function (eccentricity), and the
node size encodes the number of amines in the respec-
tive cluster. Figures 6B and C maintain the layout of the
graph in Figure 6A and the encoding of the number of
amines in a cluster by the node size. Figure 6B shows the
anomaly scores of the molecules in the dataset evalu-
ated using the Isolation Forest algorithm, averaged over
clusters, and encoded as the node color. High positive
values of the anomaly score indicate inliers, decreasing
values indicate higher level of abnormality, and negative
values indicate outliers. Figure 6C uses color to encode
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B Carbon Capture Absorption Capacity Classification

the fraction of the carbon capture amines in each clus-
ter. We note that the highest content of carbon capture
amines in the Mapper clusters does not exceed 20%.
Comparison of Figures 6A and C suggests that carbon
capture amines live primarily on the outskirts of the
data set. This finding can be interpreted as a sign of
under-utilization of the space of amines in the stud-
ies of utility for carbon capture. One possible reason
could be a bias of the majority of amines towards bio-
chemical/medicinal applications leading to unnecessar-
ily complex and/or expensive structures. Comparison
of Figures 6B and C shows that carbon capture amines
are not outliers, as the only cluster with the average
anomaly score characteristic of outliers has zero frac-
tion of carbon capture amines. Carbon capture amines
are not the most “normal" amines either, the average
anomaly scores of the clusters rich in carbon capture
amines are shifted towards zero.

Fig. 6. Mapper graph of the combined dataset of amines. Eccentricity of amines in
the combined dataset is used as the filter during Mapper construction. Node size is
proportional to the number of amines associated with the node. Thickness of a link
between two nodes is proportional to the number of amines that are associated with
both nodes. Panel A: color encodes mean eccentricity of the molecules associated
with the node. Panel B: color encodes mean anomaly score (Isolation Forest) of the
molecules associated with the node. Panel C: fraction of amines from CCS dataset
among molecules associated with the node.

Considering all aspects of this analysis it appears that
the carbon capture amines considered here are repre-
sentatives of a sub-space in amine chemistry. Many
of the commerical amines are likely to have been de-
veloped for diverse industrial applications and as such
many will be unsuitable (too costly, over complex or
only available in small quantities) for carbon capture.
The analysis does suggest though that there is consider-
able unexplored, or at least unreported, areas of amine
chemical space which may hold novel candidates for
carbon capture.

B Carbon Capture Absorption Capacity
Classification

In this section we outline our absorption capacity clas-
sifications. We begin generating QSAR models for the
classification of molecules based on absorption capacity.
We complete this work by evaluating our models and
considering the impact of our predictions.
Here, we report the results for the classification models
generated with MACCS fingerprints, CCS fingerprints
and Mordred descriptors against absorption capacity in
units of (molCO2/molN ).

There are 98 molecules in our absorption capacity data
set, classified to binary classes. Class 1 represents higher
values and class 0 represents lower values of absorption
capacity. The molecules are classified based upon the
amine functionalities they contain. Both primary and
secondary amines are thought to react with CO2 through
a mechanism requiring two amine molecules to com-
plete the reaction. Therefore, a primary or secondary
amine has a theoretical absorption capacity of 0.5 per
primary or secondary amine group. Tertiary amines are
thought to react in a one to one mechanism therefore
have a theoretical absorption capacity of 1.0 per tertiary
amine group. We classify molecules by summing up
these expected contributions per amine group. Where
mixtures of primary or secondary with tertiary amines
arise we applying a weighting based upon the number
of tertiary amine groups, as both of the proposed amine
reaction routes are possible and can be competitive in
terms of the kinetics. We therefore down scale the ter-
tiary contributions to 0.5. If this value is below the ex-
perimental absorption capacity then class 0 is assigned
to the molecule; if the experimental absorption capacity
is greater than or equal to the value then class 1 is as-
signed to the molecule. From this dataset, 71 molecules
are class 0, and 27 molecules are class 1.

The two classes are highly imbalanced. To achieve
better performance in the models, we generate addi-
tional sampling points for the minority class using the
Synthetic Minority Over-Sampling Technique (SMOTE)
(85) for non-categorical features and Synthetic Minority
Over-sampling Technique for Nominal (SMOTEN)(85)
for categorical features. This is implemented in the im-
balenced learn Python package (version 0.9.0). In both
cases, these methods select the five nearest minority
class neighbours in feature space to the kth example mi-
nority point, choose at random one of the five and gen-
erate a synthetic sample point along the connecting line
between the example point and the random neighbour.
Note that the methods have no information about the
majority class.

These techniques provide a better balance between the
classes and hence improve the learning of a decision
boundary. We apply the SMOTE algorithms to each
training set in the K-fold cross validation independently
to avoid data leakage from the test sets. We note that
pre-computing the SMOTE synthetic points prior to train
test splits in the K-fold cross validation can lead to no-
table data leakage and over optimistic metrics for the
model performance. We explored the impact of this in
our work and found that on the headline accuracy met-
rics data leakage could provide approximately an 7-8%
over estimate in a models predictive accuracy. Here we
present how Gaussian Process, Logistic Regression and
Ada Boost methods perform on the balanced data sets.
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B.1 Mordred descriptors as features

For each molecule, we generate over 1500 descriptors
using Mordred.(73) The list of Mordred descriptors can
be found at reference (86). From these descriptors, we
are only interested in those that have a notable correla-
tion with absorption capacity. We thus set a Spearman
correlation cutoff of 0.5 and further analysed these fea-
tures for significance using a two-tailed p-test(87) over
5000 random sample permutations using the Spearman
correlation coefficient as the test statistic, which leaves
us with 35 features which have a significant p-value at
95%. The list of features which correlate are given in
the . Following feature generation, we apply one-hot
encoding for categorical features and min-max scaling
for continuous features. There were 6 features consid-
ered as categorical out of the 35 (nBondsM, nBondsKD,
C1SP2, HybRatio, FCSP3, ETA_beta_ns). Categorical
in this case includes features with specific increments
such as counts. Following one hot encoding the fea-
ture set extends to 84 as every unique value of the cat-
egorical features becomes a binary feature array. Scikit-
learn(88) was employed to perform one hot encoding
and min-max scaling.(61)

B.2 Molecular fingerprints as features

As discussed above we have developed a new finger-
print, CCS fingerprint, for carbon capture solvents based
upon the chemical space analysis and the presence or
absence of substructure searches using SMARTS strings.
They are composed of 72 binary features. The features
are not pre-processed in any other way. The SMARTS
definitions are provided in . The use of such fingerprints
can enhance the interpretability of models in terms of
the chemical structures and their correlation with the
properties of interest.

Additionally, we compared our CCUS fingerprint with
the well established MACCS keys (89, 90). The MACCS
keys are composed of 166 binary bits which also rep-
resent the presence and absence of chemical features.
MACCS keys have been widely used, especially in the
pharmaceutical industry. The bits represent a wide sub-
set of chemical space.

B.3 Results for Mordred Descriptors

We begin our modelling of absorption capacity using
the Mordred descriptors as features to represent the
molecules. Figure 7 and table 1 provide a summary of
the performance of the three models generated from Lo-
gistic Regression, Ada Boost and Gaussian Process clas-
sification methods.

Table 1. Classifier metrics for balanced data for absorption capacity with models
built from Mordred features. MCC is the Matthew’s correlation coefficient.

Algorithm Accuracy Sensitivity Specificity MCC
Gaussian Process 0.73 0.30 0.90 0.25
Logistic Regression 0.81 0.63 0.87 0.51
Adaboost 0.74 0.48 0.85 0.34

From the results in figure 7 and table 1 overall all mod-
els have a fair predictive accuracy’s between 0.73 and
0.81. The Gaussian Process and Ada Boost methods
have broadly performed similarly in terms of accuracy,
but the Logistic Regression method has a notable im-
provement with an accuracy over 0.80. However, for
all three model there are notable differences in the sen-
sitivity and specificity. The Gaussian Process and Ada
Boost models both struggle similarly in terms of sensi-
tivity. This is demonstrated clearly in figure 7 A and C.
Plot A shows roughly the same number of and CCUS
fingerprint predictions coupled with a larger number of
predictions whilst plot C shows a near even spread over
, CCUS fingerprint and . This suggests the models are
very poor in terms of predicting the positive class. The
Logistic Regression model shows improvement beyond
Gaussian Process and Ada Boost with respect to sensi-
tivity, with noatbely higher prediction proportion. All
models show much better performance in terms of pre-
dicting . The MCC values highlight this imbalanced pre-
dictive accuracy with fairly low values; noting that val-
ues of 0.0 for MCC correspond to random, these predic-
tions are showing limited improvement above this.

B.4 Results for MACCS fingerprints

Turning to the MACCS fingerprint representation, figure
8 and table 2 provide a summary of the models perfor-
mance.
Table 2. Classifier metrics for balanced data for absorption capacity with models
built from MACCS fingerprint features. MCC is the Matthew’s correlation coefficient.

Algorithm Accuracy Sensitivity Specificity MCC
Gaussian Process 0.78 0.48 0.89 0.40
Logistic Regression 0.83 0.63 0.90 0.55
Adaboost 0.78 0.56 0.86 0.43

Using the MACCS fingerprints, and considering the met-
rics in figure 8 and table 2 all three models again make
a reasonable prediction of the molecules class consider-
ing the accuracy metric that ranges between 0.78 and
0.83. As for the Mordred descriptors, delving a bit
deeper using the sensitivity and specificity metrics we
find that predictions of the positive class are poorer that
for the negative class. Again we the Logistic Regression
model out performing the other two, however, there is
a notable improvement in the prediction of the positive
class for the Gaussian Process and Ada Boost models.
The specificity has remained at a similar level of accu-
racy compared to the Mordred models. We note that
the MCC scores have improved overall representing the
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B Carbon Capture Absorption Capacity Classification

Fig. 7. Confusion matrices and ROC Curves for the balanced data against absorption capacity classification using the Mordred chemical features.

Fig. 8. Confusion matrices and ROC Curves for the balanced data against absorption capacity classification using the MACCS keys as features.

better balance over the three model in predicting both
classes.

B.5 Results for CCS fingerprints

The last representation is that of our CCS fingerprint;
figure 9 and table 3 provide the summary results for the
three models trained on this representation.
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Fig. 9. Confusion matrices and ROC Curves for the balanced data against absorption capacity using CCS fingerprints as features.

Table 3. Classifier metrics for balanced data for absorption capacity with models
built from CCS fingerprint features. MCC is the Matthew’s correlation coefficient.

Algorithm Accuracy Sensitivity Specificity MCC
Gaussian Process 0.82 0.67 0.87 0.54
Logistic Regression 0.84 0.70 0.89 0.59
Adaboost 0.83 0.70 0.87 0.57

From figure 9 and table 3 it appears that all three mod-
els make good predictions of the molecules classes. The
accuracy of all models is greater than 0.8, with the accu-
racy range of 0.82 - 0.84. In the Logistic Regression and
Ada Boost models we note a much improved sensitivity
of 0.70 shown diagrammatically in figure 9 where we
can now see the majority of positive class molecules are
predicted correctly by all three models.There is a slight
improvement in the specificity also overt he three mod-
els compared to the models using Mordred or MACCS
representations. Overall the MCC scores are now all
over 0.5 showing the more balanced predictive accuracy.
Comparing the models on their summary metrics we see
that in general figures 7 - 9 and tables 1 - 3 suggest that
classification of molecules using shallow learning algo-
rithms for absorption capacity is a difficult task. Across
the models presented we have used several molecular
representations. The Mordred descriptors are composed
of a range of well known 2D molecular descriptors en-
coding information of electronic state, graph topologies
and molecular properties. We found 35 had a notable
correlation with absorption capacity but this vector ex-
tended to 84 when one-hot encoding was applied. This
means a notable part of the representation contains a

null representation. It is possible that with a larger data
set the most explanatory features could be more readily
identified and the models improved. The current mod-
els struggle particularly to correctly separate molecules
into the promising class, with a fairly balanced error rate
across CCUS fingerprint and predictions.
The MACCS fingerprints are a standard fingerprint rep-
resentation which has been employed many times in
materials modelling. To our knowledge, it has not been
applied previously to predicting absorption capacity. In
this work we see that the MACCS fingerprint performs
reasonably as a representation but struggles with the
classification of molecules in the promising class. This
is clearly shown in the sensitivity and specificity values.
The MACCS fingerprints are the largest representation
used in this work at 164 elements each, with every ele-
ment requiring a sub-structure match to build the repre-
sentation. This can be a relatively computationally ex-
pensive task.
Having considered these two standard representation
methods, we developed our own fingerprint, inspired by
the MACCS scheme, which encoded the sub-structures
noted by the carbon capture community to correlate
with carbon capture performance. We also wished to
generate a more condensed representation which with
equivalent software implementation could reasonably
be expected to be generated with fewer sub-structure
matches. From this we developed the CCS fingerprint.
The models generated above show the result is promis-
ing. All of the models built using the CCS fingerprint
perform with an accuracy higher than the standard fea-
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C Feature Importance

tures together with much improved predictive accuracy
for the positive class, of approximately 70%. The mod-
els using the CCS fingerprint maintain high predictive
accuracy for the negative class inline with the values
seen from the standard features of 0.85 - 0.90. Ow-
ing to the improved predictive performance of the pos-
itive class these models also achieve the highest MCC
scores demonstrating a more balanced predictive capa-
bility over the classes.
The best overall positive class predictor comes from the
use of the CCS fingerprint features using the Logistic
Regression classifier with 0.89 promising class correctly
predicted 0.89 negative class correctly predicted and an
overall accuracy of 0.84. The Logistic Regression models
across all feature sets have tended to provide the most
promising predictive accuracy over the classes. All mod-
els show a reasonable capability to predict the molecules
which are unlikely to be promising in terms of capacity,
which for HTVS may still be a useful and computation-
ally inexpensive filter. The Use of the CCS fingerprint
provides improved predictions of the positive class sug-
gesting it could be useful in HTVS in terms of prioritisa-
tion of laboratory testing.

C Feature Importance

We have performed feature importance analysis using
the Logistic Regression classifiers over the difference
feature sets. The importance of a feature is reflected
by the magnitude of the linear regression coefficients in
the models. We show in figure 10 the mean feature im-
portance over the cross validation.
Whilst being careful not to over interpret these fig-
ures, as they are based on no underlying fundamen-
tal physics or chemical theory, we can see some trends
in the feature which are important. Looking at sub-
figure A, using Mordred descriptors we note number
of auto-correlation feature have large magnitude coef-
ficients. These auto-correlation coefficients relate to
valence electrons and charges suggesting the model is
largely relying on fairly simplistic representations of the
electronic structure of the molecule. These models my
be improved with a better description of the electronic
structure.
We see large magnitudes in the linear coefficients for the
CCS fingerprint for features related to the nitrogen en-
vironment, separating distances between amine and al-
cohol groups and chain lengths together with whether a
molecule contain multiple amine functionalities. These
are structural features which have been highlight by oth-
ers as correlating with absorption capacity. As for the
MACCS keys this is a reassuring set of feature impor-
tance’s. We provide in the a SHAP (91) analysis of each
of these models over cross validation for the 20 most
important features as determine by SHAP. This analysis
was performed on a subset of the each folds test data.
This analysis shows similar trends to the feature impor-

tance.

2 Conclusions

This work displays an analysis of the chemical space of
carbon capture amines against a background of com-
mercially available amines. This analysis shows that car-
bon capture amines inhabit an edge region of the chem-
ical space, but are not outliers in their structure com-
pared to the wide set of commercially available amines.
This is promising as it suggests that there may be other
commercially available amines which will be suitable for
carbon capture with out expensive new synthesis path-
ways being required. It also highlights chemical func-
tional groups which are relatively less common in car-
bon capture amines. It remains unclear whether these
are less common due to a lack of reporting on carbon
capture capabilities for molecules containing these func-
tionalities or due to these chemical functionalities hav-
ing a consistent detrimental impact on carbon capture
performance. This is an area for further exploration
which could have a notable impact on the field by im-
proving knowledge, data availability and thus modelling
validation capabilities.
We used this chemical space analysis to define a novel
fingerprint for the modelling of amine molecules used in
carbon capture. This fingerprint has been shown to be
an effective featurization method for QSAR modelling
and a way to analyze the chemical space. We have also
tested the use of commonly applied featurization meth-
ods through the Mordred engine and MACCS finger-
prints. The models built here show that QSAR predic-
tion for absorption capacity is challenging with the lim-
ited available data. Some of our model show promise
for HTVS of carbon capture amines in the future. The
use of the CCS fingerprint gave the most accurate classi-
fication models for each class. The CCS fingerprint also
showed the most balanced model in terms of predictive
accuracy for each class.
One of the biggest challenges to this work is relative
lack of open available data in this field. This leads to
small-data issues and limits the potential use of more
complex modelling. We have used our own data for our
HTVS models in this work. We will be publishing this
data in due course. Opening data in machine readable
formats (such as csv, json and HDF5 files for example)
will enable computational scientist to better explore this
area.
As policy shifts towards a net zero carbon world and
carbon capture, usage and storage is deployed, the re-
lease of more data in the open literature related to these
technologies will become more vital. This data can be
enhanced with computation to help in the search for
more efficient solvents, and carbon capture materials
more generally, as we have demonstrated in this work.
Further, the overlap of computational and experimen-
tal work is a powerful combination. Computation can
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Fig. 10. Feature importance metrics using Logistic Regression over all feature sets. The mean regression coefficients are plotted as measures of importance. Sub-figure A is
for Logistic Regression using the Mordred feature set, sub-figure B is for Logistic Regression using the MACCS fingerprints and sub-figure C is for Logistic Regression using
the CCS fingerprints

rapidly screen and rank materials. Discovering more ef-
ficient materials for carbon capture is a goal that is re-
quired to avoid the more catastrophic effects of climate.
Additionally, these tools can help to mitigate against po-
tential future environmental threats from the use of car-
bon capture technology using predictive models for a
wide range of properties. To mitigate the effects of cli-
mate change is likely to require great urgency in collab-
orating at scale across the world to accelerate the devel-
opment and understanding of the most promising net
zero technologies.
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