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Abstract 

Uncovering slow collective variables (CVs) of self-assembly dynamics is important to 
elucidate its numerous kinetic assembly pathways and drive the design of novel structures for 
advanced materials through the bottom-up approach. However, identifying the CVs for self-
assembly presents several challenges. First, self-assembly systems often consist of identical 
monomers and the feature representations should be invariant to permutations and rotational 
symmetries. Physical coordinates, such as aggregate size, lack the high-resolution detail, while 
common geometric coordinates like pairwise distances are hindered by the permutation and 
rotational symmetry challenge. Second, self-assembly is usually a downhill process, and the 
trajectories often suffer from insufficient sampling of backward transitions that correspond to 
the dissociation of self-assembled structures. Popular dimensionality reduction methods, like 
tICA, impose detailed balance constraints, potentially obscuring the true dynamics of self-
assembly. In this work, we employ GraphVAMPnets which combines graph neural networks 
with variational approach for Markovian process (VAMP) theory to identify the slow CVs of 
the self-assembly processes. First, GraphVAMPnets bears the advantages of graph neural 
networks, in which the graph embeddings can represent self-assembly structures in a high-
resolution while being invariant to permutations and rotational symmetries. Second, it is built 
upon VAMP theory that studies Markov processes without forcing detailed balance constraint, 
which addresses the out-of-equilibrium challenge in self-assembly process. We demonstrate 
GraphVAMPnets for identifying slow CVs of self-assembly kinetics in two systems: 
aggregation of two hydrophobic molecules and self-assembly of patchy particles. We expect 
that our GraphVAMPnets can be widely to applied to molecular self-assembly.  
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I. Introduction 

Self-assembly, the process by which monomers assemble themselves into highly ordered 
structures, has been studied over decades.(1-8) Traditionally, self-assembly can be studied 
thermodynamically(9-15) by comparing the free energies of monomeric and assembled 
structures, however, this may fail to reveal the true nature of those complex self-assembly 
processes which are governed via kinetic control. Therefore, it is important to study the kinetics 
of self-assembly, which provides the opportunity to understand the underlying mechanism of 
self-assembly process and further realize the rational design of advanced materials with novel 
structures through the bottom-up approach.(16-19)  

Molecular dynamic (MD) simulations(20-22) can serve as a powerful tool to elucidate the 
detailed dynamics of self-assembly at a molecular level, while it’s usually difficult for 
experiments to capture the transient intermediate states. However, solely looking at MD 
trajectories is still insufficient as there is a lack of statistical description of major kinetic 
pathways of self-assembly, which may lead to missing or biased interpretations of the relevant 
events in dynamics. Kinetic network models (KNMs)(16) exhibit the great potential to study 
the self-assembly dynamics by statistically combining many MD simulation trajectories. The 
Markovian KNM is also known as Markov state model (MSM)(23-30) and has been widely 
applied for the studies of biomolecular dynamics. For self-assembly, KNMs can be used to 
estimate both thermodynamic and kinetic properties, extract parallel kinetic pathways and 
predict long time-scale dynamics by integrating many short trajectories of assembly processes 
sampled by MD simulations.  

Several key steps are involved in constructing KNM for self-assembly dynamics. The first step 
is to identify collective variables (CVs) that can sufficiently describe the relevant dynamics of 
the system. In general, one can first select the representative features, e.g., physical coordinates 
(such as size of aggregates, asphericity parameter that represents the shape of aggregates etc.) 
or geometric coordinates (such as pairwise distances via permutation-invariant modifications). 
Then, several dimensionality reduction approaches (e.g., time-structure independent 
component analysis (tICA)(31, 32), VAMPnets(33, 34), diffusion maps(35, 36)) can be further 
applied to obtain a reduced kinetic space constructed by the slow collective variables. The 
second step involves discretizing the reduced continuous kinetic space into microstates using 
clustering algorithms (e.g., k-centers(37, 38), k-means(39), density-based clustering(40)), and 
further coarse-graining microstates into macrostates (also called metastable states) based on 
the separations of fast and slow dynamics using kinetic lumping algorithms (e.g., PCCA(41, 
42), PCCA+(43)). The third step is to count the number of transitions between states with a 
certain lag time to obtain the transition count matrix (TCM) and further normalize TCM to 
obtain the Transition probability matrix (TPM). If the model is Markovian, TPM can be used 
to predict the long time-scale dynamics based on master equation: 𝑝!(𝑡 + 𝑛𝜏) = 𝑝!(𝑡)𝑇"(𝜏), 
where 𝑇 is the TPM, 𝑝(𝑡) and 𝑝(𝑡 + 𝑛𝜏) are the distributions of the ensemble at time 𝑡 
and 𝑡 + 𝑛𝜏, respectively. In addition, the first left eigenvector (eigenvalue equals to one) of 
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TPM represents the stationary distribution, and the other correspond to the population-
weighted slowest dynamic modes of the system. Finally, transition path theory (TPT)(44-46) 
can be applied to extract the dominant kinetic pathways from the source state (monomeric 
structure) to the sink state (assembled structure). And mean first passage time (MFPT), defined 
as the average time for the first transition between metastable states, can also be computed 
along these kinetic pathways. 

 

Figure 1. Illustration of challenges in feature selection for self-assembly: (a) Permutation-invariance: 
the monomers in assembly system are usually identical. If two monomers exchange their positions, the 
structure is the same but the defined pairwise distances 𝑑!"# and 𝑑"!# will change; (b) Rotational 
symmetry-invariance: the monomers in assembly system could be rotationally symmetric. If the 
hexagonal ring rotates along its 𝐶! axis, the structure is identical but the defined pairwise distances 
𝑑$$# and 𝑑%$# will change. 

In recent years, KNM has become increasingly popular in material science and been adopted 
to study the dynamics of self-assembly, such as ice nucleation(47), colloidal particles(48-50), 
and amphiphiles assembly(51-54). However, there still remain two major challenges for its 
applications in self-assembly(16). Firstly, the selected representative features should be able to 
capture the relevant dynamics but invariant to permutations and rotational symmetries. Usually, 
the selected physical coordinates are invariant to permutations and rotational symmetries but 
requires additional physical insights and may not be able to capture the complex dynamics. 
And for those non-physical coordinates, such as pairwise distances, they can describe the 
assembly structures in more detail but are hindered by permutation and rotational symmetry-
invariance nature in self-assembly dynamics (see Fig 1). Secondly, self-assembly is typically 
an energetically downhill process, which means that the simulated trajectories could be out of 
equilibrium with the insufficient sampling of the backward disassociation processes. However, 
for the method in traditional KNMs construction pipeline such as tICA, it requires the 
additional detailed balance constraint by symmetrizing the time-lagged correlation matrix with 
its transpose, which may result in a highly biased estimation of true dynamics.  

To address the above challenges, we employ GraphVAMPnets(55) (also known as GDyNet(56)) 
which combines graph neural networks with variational approach for Markovian process 
(VAMP)(57) theory to identify the slowest CVs of self-assembly dynamics. GraphVAMPnets 
has been applied to study lithium-ion transport in amorphous polymer electrolytes and 
successfully revealed four distinct solvation environments with implications for ion 
conductivity(56). GraphVAMPnets has also been applied to study protein folding and displayed 
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a faster convergence rate than the original VAMPnets(55). To apply GraphVAMPnets for 
studying self-assembly, we have introduced several methodological advancements in this work. 
Firstly, unlike the previous implementations of GraphVAMPnets that use a fixed number of 
nearest neighbors as edges for each node, we introduce a variable number of edges for each 
node in self-assembly systems, depending on the self-assembled structures. Moreover, we 
define edges beyond the simple distance-based metrics by also considering the orientation of 
particles such as in the patch particle self-assembly. In addition, we initialize particles that are 
identical, subject to permutation or rotational symmetries, with the same node embeddings. 
These node embeddings are constrained to have the same values during the training. To 
demonstrate the power of our method, we apply it to two systems: the aggregation of two 
hydrophobic molecules (9f9f) in water and the self-assembly of patchy particles. For both 
systems, we show that our GraphVAMPnets approach can effectively addresses the two 
aforementioned key challenges and surpasses other similar methods for identifying slow CVs 
for self-assembly.  

II. Methods 

  
Figure 2. A schematic architecture of GraphVAMPnets for identifying the slow CVs of self-
assembly dynamics. The method can be divided into three parts: (A) Pairs of structures separated by a 
lag time 𝜏 are extracted from the dataset. (B) Each pair of structures is represented as graphs and fed 
into two parallel graph convolutional neural networks. (C) Graph embeddings obtained by average 
pooling are fed into a two-lobe deep neural network trained under a VAMP-2 based objective function . 

A. Graph representations 

We first define particles/atoms of the self-assembly system as nodes in the graph and embed 
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them using node vectors {𝑣#}#$%,…,". The particles that are identical or rotational symmetric 
should be initialized with the same node embeddings. Then, we identify all the edges between 
nodes based on one of the following rules: (a) consider the edges that only exist between the 
particles and a certain number of their nearest neighbors; (b) define a cut-off distance and only 
the pairwise particles that have distances within the cut-off are considered as having edges; (c) 
define the edges between particles manually based on the existing bonds/interactions. Then, 
we embed these edges as vectors by using Gaussian expanded pairwise distances: 

 𝑒#() = exp1−
3𝑑#( − 𝑐)6

*

𝜎* 8 (1) 

where 𝑒#()  is the 𝑘+, element of edge vector 𝑒#(, 𝑑#( is the pairwise distance between node 

𝑖 and node 𝑗, and 𝑐) is the center of the expansion function. 

B. Graph neural network structure and algorithms 

 

Figure 3. Illustration of layers 𝒍 to 𝒍 + 𝟏 in GraphVAMPnets for studying self-assembly. The 
nodes (in blue) with edges (in green) are updated through an interaction block (in grey) before being 
passed to the next layer. 

The graph neural network structure that we employed in GraphVAMPnets is based on SchNet 
framework(58) as shown in Fig 3. In the following section, we show how node vectors at layer 
𝑙 are updated to layer 𝑙 + 1 according to the algorithms given in each interaction block: 

(a). All the node vectors and edge vectors in the graph at layer 𝑙 are mapped into the same 
dimensions by using dense layers:   
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- ATanh3𝑊%0
- 𝑒#(- + 𝑏%0

- 6F + 𝑏*0
-  (2) 

where 𝑣#- and 𝑒#(-  represent the original node and edge vectors at layer 𝑙, while 3𝑣#-6
. and 

3𝑒#(- 6
. correspond to the mapped node and edge vectors with the same dimensions.  

(b). We feed mapped node and edge vectors into the attention weighted continuous filter 
convolutional layer in which the local interaction of each particle 𝑖 from its surroundings is 
obtained: 

 

3𝑧#-6
. =H𝛼#(- 3𝑣(-6

. ∘ 3𝑒#(- 6
.

(

 

𝛼#(- =
exp KA3𝑣(-6

.
∘ 3𝑒#(- 6

.
F
!
𝑊1-L

∑ exp KA3𝑣(-6
. ∘ 3𝑒#(- 6

.
F
!
𝑊1-L(

 

(3) 

where ∘ represents the element-wise multiplication, and 𝛼#(-  is the attention weight, which 

indicates the relative importance of all adjacent particles 𝑗 to their central particle 𝑖 in the 
convolutions.  

(c). The local interactions on particles obtained from convolutional layer are projected back 
and added to the original node vectors via residue connections, where the edge vectors remain 
the same: 

 N
𝑧#- = 𝑊*2

- KTanh A𝑊%2
- 3𝑧#-6

. + 𝑏%2
- FL + 𝑏*2

-

𝑣#-3% = 𝑣#- + 𝑧#-
 (4) 

With the deepening of graph neural networks, the information considering local environments 
of particles are propagated through edges and the representative feature embedding of each 
particle can be successfully obtained with capturing the global multi-body interactions within 
the system. 

C. The VAMP theory 

Variational approach for Markov process (or VAMP) was developed by Wu and Noe(57). The 
theoretical foundation of VAMP relies on Koopman operator theory which originates from fluid 
mechanics field and can be applied to investigate the dynamics of an arbitrary time-
homogeneous Markov process without time-reversible constraints. The Koopman operator 𝒦4 
is defined as follows: 
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𝒦4𝑔(𝑥) = 𝐸+[𝑔(𝑥+34)|𝑥+ = 𝑥]	

= W𝑔(𝑥+34) 𝑝(𝑥+34|𝑥+ = 𝑥)𝑑𝑥+34	

= W𝑔(𝑦)𝑝4(𝑥, 𝑦)𝑑𝑦 

(5) 

where 𝑔(𝑥) is an arbitrary observable defined on the full configuration space, 𝑝4(𝑥, 𝑦) is the 
transition probability from configuration 𝑥 to configuration 𝑦 with a certain lag time 𝜏. The 
Koopman operator is defined to compute the conditional expected value of the observable 
𝑔(𝑥) for a given lag time 𝜏. The Koopman operator is also known as backward operator, 
which can be used to backward propagate the ensemble distribution in the configuration space 
with lag time 𝜏.  

With the above definitions, the goal is to obtain the leading singular functions of Koopman 
operator, which can serve as the slowest dynamic modes of the kinetic system and be 
propagated on average by a linear model: 

 
〈𝜓# , 𝒦4𝜙#〉5! = 𝜎# ,			1 = 𝜎% > 𝜎* ≥ 𝜎6 ≥ ⋯ 

𝔼+[𝝓(𝑥+34)] = 𝐾!𝔼+[𝝍(𝑥+)],				𝐾! = 𝑑𝑖𝑎𝑔(𝜎%, 𝜎*, …	) 
(6) 

where 𝜙# , 𝜓#  and 𝜎#  are the 𝑖𝑡ℎ  left, right singular functions, and singular value of the 
Koopman operator, respectively. 

VAMP utilizes the variational approach (VA) to approximate the leading left and right singular 
functions of Koopman operator with two sets of feature functions 𝐟 = (𝑓%, 𝑓*, … , 𝑓))!, 𝐠 =
(𝑔%, 𝑔*, … , 𝑔))!. It defines the VAMP-2 score (denoted as 𝑅l*) as the summation of the square 
of approximate singular values and aims to find the feature functions which provide the largest 
VAMP-2 score: 

 N
	〈𝑓# , 𝑓(〉5! = 𝛿#( ,					〈𝑔# , 𝑔#〉5" = 𝛿#(

𝑅l* =H 𝜎n#*
)

#$%
=H 〈𝑓# , 𝐾4𝑔#〉5!

*
)

#$%

 (7) 

In practical, the feature functions can be further decomposed as the linear combinations 𝐟 =
𝑈!𝓧𝟎,			𝐠 = 𝑉!𝓧𝟏  of two set of basis functions 𝓧𝟎 = (𝒳9%, 𝒳9*, … ,𝒳9:)! ,			𝓧𝟏 =
(𝒳%%, 𝒳%*, … ,𝒳%")!, and the problem can be converted as following: 

 N
𝑈!𝐶99𝑈 = 𝐼,				𝑉!𝐶%%𝑉 = 𝐼

𝑅l* =	H (𝑢#!𝐶9%𝑣#)*
)

#$%

 (8) 
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where the time-instantaneous and time-lagged covariance matrices are defined as: 

 N
𝐶99 = 𝔼+[𝓧𝟎(𝑥+)𝓧𝟎(𝑥+)𝑻]
𝐶%% = 𝔼+[𝓧𝟏(𝑥+34)𝓧𝟏(𝑥+34)𝑻]
𝐶9% = 𝔼+[𝓧𝟎(𝑥+)𝓧𝟏(𝑥+34)𝑻]

 (9) 

To solve the above optimization problem, 𝐶99 and 𝐶%% can be further split as the product of 

their square roots 𝐶99
<"# , 𝐶%%

<"# , and the singular values of matrix 𝐾= = 𝐶99
<"#𝐶9%𝐶%%

<"#  can be 

selected as equivalent to the approximate singular values of Koopman operator. As a result, the 
VAMP-2 score equals the square of Frobenius norm of 𝐾=: 

 𝑅l* = v𝐶99
<%*𝐶9%𝐶%%

<%*v
>

*

= v𝐶9̅9
<%*𝐶9̅%𝐶%̅%

<%*v
>

*

+ 1 (10) 

where the matrices with bars represent the remove-mean covariance matrices. The time 
evolution equation of the average observable functions can be rewritten with respect to the 
arbitrary basis functions: 

 𝐸+[𝓧𝟏(𝑥+34)] ≈ 𝐾!𝐸+[𝓧𝟎(𝑥+)] (11) 

where 𝐾 is known as Koopman matrix and is equal to 𝐶99<%𝐶9%. The Koopman matrix can also 
be interpreted as the reduced Koopman operator which governs the dynamics of latent variables 
𝓧𝟎, 𝓧𝟏  by a finite-dimensional linear model with the minimum least square error 
𝐸+[‖𝓧𝟏(𝑥+34) − 𝐾!𝓧𝟎(𝑥+)‖*]. 

Based on VAMP theory, Noe et al. further developed VAMPnets(33, 59), in which the basis 
functions 𝓧𝟎 and 	𝓧𝟏 are parameterized by two parallel deep neural networks to introduce 
non-linearity and the loss function is designed as the negative VAMP-2 score. By minimizing 
the loss function of VAMPnets, VAMP-2 score is maximized, and the trained neural networks 
can thus serve as the optimal basis functions to reconstruct the feature functions 𝐟 and 𝐠 
which best approximate true singular functions of the Koopman operator. These features 
functions are also called the slow CVs, capturing the relevant dynamics of the system.  

In our GraphVAMPnets method, the graph neural networks with average pooling layer can 
serve as the basis functions in VAMP theory to embed each MD data frame, where 𝒐+ =
(𝒳9%(𝑥+), … ,𝒳9:(𝑥+)	)! , 𝒐+34 = (𝒳%%(𝑥+34), … ,𝒳%:(𝑥+34)	)!  (see Fig. 2C). As a result, 
the empirical remove-mean covariance matrices 𝐶9̅9, �̅�9%, 𝐶%̅% can be estimated. From these 
matrices we can compute the VAMP-2 score. The parameters in the graph neural networks are 
then updated by minimizing the negative VAMP-2 score and the optimal approximated leading 
singular functions of Koopman operator (𝐟 = 𝑈!𝓧𝟎,			𝐠 = 𝑉!𝓧𝟏 ) can be obtained. These 
singular functions can then serve as the slow CVs to construct the reduced kinetic space for 
projection. 
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D. Permutation and rotational symmetry-invariance of GraphVAMPnets 

One of the key properties of graph neural networks is that the learned representation of each 
node only depends on its local environment instead of the node index, which is called index 
equivariance of node embeddings. After the average pooling of all node vectors in the graph, 
the obtained graph representation is therefore invariant to the node indexing. In self-assembly 
systems, if two particles are identical with respect to permutations or rotational symmetries, 
they should be initialized with the same node embeddings and constrained to have the same 
values during the training. Thus, if two of these identical particles exchange positions through 
permutations or rotations, it is equivalent to the exchange of their node indices. As a result, the 
same graph embedding can be obtained corresponding to the same conformations in the self-
assembly system.  

III. Results and Discussions 

A. Aggregation of two hydrophobic molecules in water 

To demonstrate the power of the GraphVAMPnets in identifying the slow CVs that are invariant 
to permutation and rotational symmetry, we investigated an aggregation process consisting of 
two indistinguishable hydrophobic molecules (i.e., (9-(Diphenylmethylene)-9H-fluorene) or 
9d9f) in water (see Fig. 4A). Our MD dataset consists of 40 MD trajectories, with an aggregated 
simulation time of 4𝜇𝑠. In order to establish the permutation and rotational symmetry-invariant 
nature of the system, we measured (𝜃%, 𝜃*) as the angles between the normal vectors and the 
center of mass displacement vectors of 9d9f molecules for each structure (Fig. 4B left panel). 
As shown in Fig. 4B right panels, the conformation with the angle of 𝜃 is identical with the 
conformation with the angle of (180° − 𝜃), as the two conformations can be perfectly overlaid 
via the permutation and rotation of 9d9f molecules. Subsequently, we projected all MD 
conformations onto the (𝜃%, 𝜃*) constructed space, where four identical regions with the same 
conformations can be observed (see Fig. 6A).  

Figure 4. Illustrations of two aggregation-prone molecules (9d9f) and the rotational symmetry-
invariant features of the system. (a) The chemical structure of 9-(Diphenylmethylene)-9H-fluorene 
(9d9f) molecule. (b) 𝜃$ and 𝜃! are defined as the angles between the normal vectors and the center 
of mass displacement vectors of 9d9f molecules. When two 9d9f molecules are exchanged, the angles 
change from (𝜃$, 𝜃!) to (180 − 𝜃$, 180 − 𝜃!), while the structure is identical. When one of the 9d9f 
molecules (yellow) rotates along its 𝐶! axis, 𝜃! becomes 180 − 𝜃!, while the structure of the system 
remains the same.  
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We then compare the performance of tICA, VAMPnets, and GraphVAMPnets in identifying 
the slow CVs for the aggregation of two 9d9f molecules. For tICA and VAMPnets, we selected 
14 representative carbon atoms of each 9d9f molecule, and subsequently extracted 196 inter-
molecular pairwise distances between pairs of these atoms on different molecules as the input 
features (see Fig. 5A). For the GraphVAMPnets approach, we represented each conformation 
using a graph. In particular, we selected the same 14 carbon atoms of each 9d9f molecule and 
embedded these atoms with node vectors, where permutable or rotationally symmetric atoms 
are embedded with the same node vector (denoted as of the same color as shown in Fig. 5B). 
We then considered the edges existing between each atom and its 10 nearest neighbors and 
identified all the edges for each conformation accordingly. In addition, we created a control 
test of GraphVAMPnets (so-called GraphVAMPnets-rand), in which node embeddings are not 
constrained based on their symmetries. All the methods were conducted using the same 
hyperparameters (see SI Table. S1) and two collective variables were successfully obtained 
from each method. The training curves of GraphVAMPnets and the implied time scales (ITS) 
plots of two collective variables from different methods are shown in SI Figure S1 and S2. 

 

Figure 5. Feature embedding of 9d9f system using different methods. (A) For tICA and VAMPnets, 
14 carbon atoms (in grey circle) are selected in each of the 9d9f molecules, forming a set of 196 inter-
molecular pairwise distances (represented by orange arrows). (B) For GraphVAMPnets method, the 
same 28 carbon atoms are embedded with node vectors. The atoms circled with the same color are 
identical with respect to permutations and rotational symmetries and hence constrained to have the same 
node embeddings. 

In Fig 6, we visualized the two slowest CVs obtained from different methods (i.e., tICA, 
VAMPnets, GraphVAMPnets-rand, and GraphVAMPnets) in the (𝜃%, 𝜃*)  space. Each CV 
represents a specific dynamic mode of the system with respect to the transitions between its 
positive and negative regions. As shown in Fig 6C (top row), the first CV obtained from each 
method is consistent. Specifically, there exist four symmetric positive regions of the CV1 (see 
red regions in the top row of Fig 6C), and aggregate conformations in each of these regions are 
identical and only subject to a rotation (see example conformations in Fig. 6B). However, the 
second CV (bottom row in Fig 6B) shows different dynamic modes of transitions obtained from 
different methods. Specifically, the second mode from tICA, VAMPnets and VAMPnets-rand 
corresponds to the dynamic transition between structurally identical states (they differ by 
permutations or rotations along 𝐶* axis of 9d9f molecules instead of the actual conformational 
change). In contrast, the second mode obtained from our GraphVAMPnets exhibits a 
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symmetrical pattern consistent with four identical regions in the (𝜃%, 𝜃*) space. These results 
demonstrate that GraphVAMPnets can yield correct CVs of the aggregation dynamic that are 
invariant to permutation and rotational symmetries.  

 
Figure 6. Visualization of the identified CVs from different methods in (𝜽𝟏, 𝜽𝟐) space. (A) Free energy 
landscape of all MD conformations projected on the (𝜃$, 𝜃!)  space. (B) Identical representative 
conformations from the four regions labeled I through IV are illustrated . (C) Projection of CV values 
onto the (𝜃$, 𝜃!) space. All tested methods identified the same first CV, however, only GraphVAMPnets 
identified the second CV that is symmetric with respect to permutation and rotation of molecules in the 
system.  

To further analyze the dynamics of aggregation, we projected all the MD conformations onto 
the reduced space constructed by the two CVs obtained from GraphVAMPnets (see Fig. 7B). 
To understand the physical insights of each CV, solvent-accessible surface area (SASA) and 𝜙 
angle (representing the relative orientation of two 9d9f molecules) are reported in Fig. 7B. 
Interestingly, we found that the SASA feature keeps decreasing along CV1, indicating the 
aggregation process from the left to the right in the projected 2D free energy map. Furthermore, 
we noticed that the 𝜙 angle spans from nearly 0 to 180 degrees along CV2, which reveals a 
structural rearrangement of 9d9f aggregates. Specifically, the free energy basin at the left side 
of the map represents a dispersed state (left insert panel of Fig. 7B), where two 9d9f molecules 
are separated and the rotation angle 𝜙 between two molecules equals to ~90 degrees. The free 
energy basins at the right represent various aggregation states. Specifically, the top one contains 
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conformations in which two 9d9f molecules stack with each other along the same directions, 
while the bottom one corresponds to conformations in which two 9d9f molecules stack in an 
opposite way. In addition, the asymmetric behavior along the CV2 of the map also corresponds 
to slightly different free energies of the two aggregated conformations (i.e., stacking along the 
same and opposite directions). These observations suggest that the conformation of the 
aggregate state with two 9d9f molecules stacked in the opposite way is slightly more compact 
and displays a smaller SASA. As a results, this aggregate state (bottom basin with negative 
values of CV2 in Fig. 7B) is slightly more stable than the other aggregate state with two 9d9f 
molecules stacked in the same direction (top basin with positive values of CV2 in Fig. 7B). 
This result is consistent with the chemical intuitions, as two phenyl groups have a steric 
hindrance effect if the two 9d9f molecules approach at the same direction, resulting in the less 
𝜋 − 𝜋 stack interactions between fluorenyl-rings of 9d9f molecules and an increase in free 
energy. 

 

Figure 7. Conformations of 9d9f aggregation-system in the space of the two slowest collective 
variables identified by the GraphVAMPnets approach. (A) 𝜙 is defined as the angle between the 
two vectors pointing from fluorenyl rings to phenyl rings in 9D9F molecules, which represents the 
relative orientation of two 9d9f molecules. (B) The free energy landscape of all MD conformations in 
CV1 and CV2 space. Solvent-accessible surface area (SASA) decreases along CV1. 𝜙 is decreasing 
from 180 to 0 degrees along CV2. Three representative conformations, i.e., a dispersed structure (left) 
and stacked structures (right) with the same and opposite directions correspond to the three energy 
basins in this projection. 

B. Self-assembly of patchy particles 

In this section, we applied GraphVAMPnets to find the slow CVs and build a KNM to 
investigate the dynamics for the patchy particle self-assembly system.(48) In this system, our 
dataset taken from previous studies(48, 60, 61) consists of 60 coarse-grained MD simulation 
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trajectories of the self-assembly based on the soft patchy particle models (SPPMs). Each MD 
trajectory contains 2,000 frames where the saving interval for each frame is 1,000 MD steps 
and the assembled dodecahedral cages are formed in these MD simulations (see Fig. 8B). For 
each MD frame, there are 960 patchy particles in the simulation box, and each patchy particle 
consists of one sphere particle at the center and three patches with the half opening angle 𝜃:) =
55° along different directions, and the angles between patches are 108°, 108°, and 120° 
respectively (see Fig. 8A). To build GraphVAMPnets, we first identified all existing 
interactions (bonds) as edges between patchy particles in a MD frame. Specifically, if the 
distance between the centers of particles is smaller than 0.75 and each particle contains a 

patch with the angle from 𝑟#( smaller than the half opening angle (𝜃#) ≤ 55°, 𝜃(? ≤ 55°), we 

consider that there exists a bond between these two patchy particles (see Fig. 8C). Then, we 
embedded all the conformations using graphs, in which each patchy particle corresponds to 
one node vector in the graph. We selected 100 frames (i.e., 100,000 MD steps) as the training 
lag time and set two output nodes at the last layer for obtaining two slowest dynamic modes 
(or CVs). And the GraphVAMPnets was trained for 50 epochs and repeated for 10 times, where 
the validation scores had shown perfect convergence (see SI Fig. S3 and the values of 
hyperparameters are listed in SI Table S2).   

After the training, we successfully obtained two CVs, and we further projected all the 
conformations onto these two CVs (see Fig. 8D for the 2D free energy map). The ITS of these 
two CVs are also reported in Fig. 8E, and they exhibit good separations of time scales and 
reach convergence within 50 frames. Furthermore, we explored the underlying physical 
meanings of these identified CVs and found that the first CV has the strong correlation to the 
average aggregate size (with the Pearson correlation coefficient of 0.94) while the second CV 
corresponds to the average asphericity parameter (or Ap) of the aggregates (with the Pearson 
correlation coefficient of 0.58). We note that Ap is the morphology parameter where 0 
represents perfect sphere and 1  represents perfect rod for aggregates. To facilitate the 
visualization, we also projected the MD conformations onto the CV versus the average 
aggregate size (see Fig. 8F) and onto the second CV versus the average Ap (see Fig. 8G). These 
two projected free energy maps demonstrate that the majority of MD conformations lie along 
the diagonal of the plots, indicating their strong correlations. Moreover, when we plot the first 
CV and the average aggregate size (see Fig. 8H) or the second CV and the average Ap (see Fig. 
8I) as a function of simulation time, we observe similar correlations.    
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Figure 8. Illustration of the patchy particle system and the two slowest collective variables 
obtained from GraphVAMPnets. (A) The structure of a single patchy particle, where directions of 
three patches are 𝑛&$ = (0,0,1)' , 𝑛&! = (0,−0.9531,−0.309)' , 𝑛&" = (0.5257, 0.6935,−0.5038)' . 
The opening angle 𝜃()  of each patch equals to 55° . (B) The self-assembled structure of patchy 
particles, i.e., dodecahedral cage. (C) Two patchy particles are considered as connected if 𝑟&* ≤ 0.75 

and 𝜃&) , 𝜃*+ are smaller than 55°. (D) The free energy landscape of all MD conformations projected 

onto CV1 and CV2 identified by GraphVAMPnets. (E) The implied time scales (or ITS) of the two 
identified CVs. (F) Histogram of all conformations in the CV1 vs average aggregate size space. The 
Pearson correlation coefficient equals 0.95. (G) Histogram of all conformations in the CV2 vs average 
asphericity parameter (Ap) space. The Pearson correlation coefficient between CV2 and average Ap 
equals to 0.56. (H) Time evolution of CV1 and average size along an MD trajectory. (I) Time evolution 
of CV2 and average Ap along an MD trajectory.  

After obtaining slow CVs, we constructed a KNM to analyze the dynamics of the patchy 
particle self-assembly process. Following the key steps of KNM construction outlined in the 
introduction, we first discretized the two-dimensional continuous space into one hundred 
microstates (see Fig. 9A) using the k-means clustering algorithm and then lumped these 
microstates into five larger macrostates (see Fig. 9B) by the PCCA+ method. The 
corresponding ITS plots for microstate-model and macrostate-model are shown in SI Figure 
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S4, respectively. We then examined the physical properties of five metastable macrostate. As 
shown in Fig. 9C, the average aggregate size increases from State 4 to 0, indicating an overall 
aggregation process across states 4 → 3 → 2 → 1 → 0 . At the first stage ( 4 → 3 ), the 
concentration of monomers rapidly decreases and approaches zero at State 3 (see Fig. 9D). At 
the second stage (3 → 2), aggregates containing 12 pentacycles begin to appear, and these 
aggregates already have a similar shape to the final self-assembled structures, namely 
dodecahedral cages formed by 12 pentagonal rings. In the third stage (2 → 1), small aggregates 
collide and form larger aggregates, including those composed of 12 pentacycles (Fig. 9E and 
F). At the final stage (1 → 0), the number of aggregates and the number of 12-pentacycle 
aggregates do not change significantly. However, we observed that in State 0, nearly all 
aggregates with 12 pentacycles form additional hexagonal rings, while those dodecahedral 
cages (i.e., 12-pentacyle aggregates containing zero hexagonal rings) mostly disappear (see Fig. 
9G). This result indicates that the kinetics from State 1 to State 0 is related to a structural 
rearrangement that breaks the dodecahedral cage to form larger aggregate containing more 
hexagonal rings.  

We next estimated the MFPTs between each pair of states along the aggregation pathway via 
maximum likelihood estimation (MLE) (see Fig. 9H). The results revealed a downhill dynamic 
process of patchy particle self-assembly from the monomeric state (State 4) to the dodecahedral 
cage state (State 1), because the forward aggregation processes are significantly faster than 
their backward transitions. In addition, our results show that the dodecahedral cage is the 
thermodynamically most-favorable structure. Moreover, an off-pathway intermediate state 
(State 0) was also identified where the dodecahedral cage undergoes further structural 
transitions to form larger aggregates containing additional hexagonal rings, resulting in an 
increase in free energy (estimated from the ratio of forward and backward MFPTs between 
State 1 and 0).  

Overall, our KNM reveals a downhill process of patchy particle self-assembly from the 
monomeric structures (State 4) to the dodecahedral cages (State 1), while aggregates with 
hexagonal rings (State 0) are kinetically reachable, but energetically unfavorable. Our results 
agree well with the physical insights provided by a previous study of the same system(48). 
Specifically, one patchy particle contains three patches with angles between them as 
108°, 108°, 120°, respectively. As the formation of the pentagonal rings are favored by patches 
with 108°  angles, the dodecahedral cage consisted of pentagonal rings is the 
thermodynamically favorable assembled structure (i.e., State 1). However, the additional 120° 
angle in each patchy particle allows the formation of the hexagonal rings, leading to the 
metastable state of State 0. Our results open up a window of opportunities for the rational 
design of self-assembly structures with varying yields of dodecahedral cages (containing only 
pentagonal rings) versus those containing hexagonal rings, achieved by tuning the angles 
between patches in patchy particles. 
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Figure 9. Analysis of patchy particle self-assembly dynamics. (a) Projection of all the MD conformations 
onto the CV1, CV2 space. The 100 microstates obtained by the k-means clustering method are shown with 
red dots. (b) Projection of all the MD conformations onto the CV1, CV2 space colored according to their 
macrostate labels. (c) Average size of aggregates including monomers for the conformations in each state. 
(d) Concentration of monomers in each state. (e) Number of aggregates in each state. (f) Number of 
aggregates with 12 pentagonal rings (12-pentacycle-aggregate) in each state. (g) Distributions of the number 
of hexagonal rings in each 12-pentacycle-aggregate for states excluding State 4. (h) Mean first passage time 
(MFPT) between states along the assembly process from state 3 (orange) to state 0 (blue). In panels (c)-(f) 
the height of bars represents the mean value and the error bar represent standard deviation. 

In this study, we tackled the inherent challenges in kinetics of self-assembly systems by further 
developing GraphVAMPnets. In the original GraphVAMPnets(55), each node is connected to 
a fixed number of nearest neighbors. This approach may work for systems with a relatively 
stable structure (e.g., a protein in the native conformation), but is ill-suited for self-assembly 
systems where the number of neighbors can change dramatically. By using a variable number 
of edges, our model adapts to changes in local particle density, allowing a more accurate 
description of the dynamics. Additionally, in self-assembly systems, particles are defined as 
identical if they are symmetric to permutations or rotations. By initializing these particles with 
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the same node embeddings, our model can obtain the slow CVs that invariant to these 
symmetries. Finally, our approach allows us to embed the whole simulation box, providing a 
wholistic model of the dynamics crucial in many-body systems. With these enhancements, we 
demonstrated that our method is superior to other methods traditionally used to construct 
KNMs for self-assembly. While the implementation of our GraphVAMPnets is general to self-
assembly, we anticipate that multi-component systems might require a hierarchical approach 
to achieve adequate resolution. In the future, our model may also adopt the iVAMPnets 
framework(62) to decompose the system into separate Markovian domains or conduct the 
cluster-level pooling to obtain the appropriate feature embeddings for individual aggregates. 
We foresee that our GraphVAMPnets holds potential to be applied to study other systems, for 
example, phase separation of intrinsically disordered proteins. 

IV. Conclusion 

In this work, we developed GraphVAMPnets for studying dynamics of self-assembly processes. 
GraphVAMPnets takes the advantages of graph neural networks (i.e., SchNet), in which the 
complex and diverse structures that arise in self-assembly processes are represented as graphs. 
This representation captures the system's local environment and global many-body interactions 
while being invariant to permutations and rotational symmetries. By optimizing the graph 
neural networks using the VAMP-2 score, slow CVs can be obtained for the self-assembly 
process. To apply the GraphVAMPnets approach to self-assembly systems, we have introduced 
several methodological advancements. These include allowing for a variable number of edges 
for each node, considering particle orientation when defining edges, and initializing particles 
that are identical subject to permutation or rotational symmetries with the same embeddings. 
To demonstrate the effectiveness of our method, we applied it to two different systems: the 
aggregation of two hydrophobic molecules in water and the self-assembly of patchy particles. 
For hydrophobic aggregation, our GraphVAMPnets approach successfully distinguished the 
permutation and rotational symmetry-invariant aggregation pathways, while other commonly 
used methods (such as tICA) failed to achieve this. For the self-assembly of patchy particles, 
our approach identified two slow CVs which well described the average size and shape of the 
patchy particle conformations and allowed us to distinguish metastable states in patchy particle 
aggregation with subtle differences in the ring structure of aggregates, which is infeasible with 
traditional approaches such as tICA. We anticipate that the GraphVAMPnets approach shows 
great promise for widespread application in the study of self-assembly dynamics and for 
facilitating the rational design of advanced materials with novel self-assembled structures. 

V.  Data Availability Statement  

The source code and simulation datasets are available from the following website:  

https://github.com/xuhuihuang/graphvampnets. 
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Supplementary material consists of supplementary tables: Table. S1 & S2 and supplementary 
figures: Fig. S1 to S4. 
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