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Abstract 

Predicting the taste of molecules is of critical importance in the food and beverages, flavor, and 

pharmaceutical industries for the design and screening of new tastants. In this work, we have 

built deep learning models to classify sweet, bitter, and umami molecules— the three basic 

tastes whose sensation is mediated by G protein-coupled receptors. An extensive dataset 

containing 1466 bitter, 1764 sweet, and 238 umami tastants was curated from existing 

literature. We analyzed the chemical characteristics of the molecules, with special focus on the 

presence of different functional groups. A deep neural network model based on molecular 

descriptors and a graph neural network model were trained for taste prediction. The class 

imbalance due to fewer umami molecules was tackled using special sampling techniques. Both 

models show comparable performance during evaluation, but the graph-based model can learn 

task-specific representations from the molecular structure without requiring handcrafted 

features. We further explain the deep neural network predictions using Shapley additive 

explanations. Finally, we demonstrated the applicability of the models by screening bitter, 

sweet, and umami molecules from a large food database. This study develops an in-silico 
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approach to classify molecules based on their taste by leveraging the recent progress in deep 

learning, which can serve as a powerful tool for tastant design.  

Keywords: Tastant, Sweet, Bitter, Umami, Multiclass Classification, Deep Learning, Graph 

Neural Network, SHAP 

 

1 Introduction 

Taste is a sensory modality that governs the interaction of humans with the food they eat. The 

gustatory system, which is responsible for the sense of taste, differentiates healthy nutrients 

from harmful toxins, ensuring survival and a high quality of life. The interplay of five basic tastes 

– sweet, bitter, sour, salty, and umami, constitutes our taste experience [1]. The brain 

associates each taste with an underlying chemical characteristic. Sweetness and umaminess 

indicate the presence of carbohydrates and proteins, respectively, while sourness is linked with 

acids, often due to food spoilage. The unpleasant bitter sensation informs us to avoid the 

ingestion of rotten food and toxic substances, although safe edibles like cocoa and coffee can 

be bitter too. Saltiness relates to minerals like sodium that are essential for regulating body 

fluids. In combination with olfaction (sense of smell) and somatosensation (sense of touch, 

temperature, and pain), gustation determines our overall perception of flavors [2]. 

Taste prediction and the design of tastants play a crucial role in food and beverages, flavor, and 

pharmaceutical industries. For example, the search for safe artificial low-calorie sweeteners 

with similar chemosensory profile as sucrose is still an open research problem. The demands for 

the specialized flavors in the consumer product landscape is evolving rapidly to keep up with 
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the latest trends, and medicinal chemists are constantly looking for taste modulators to 

combine with oral drug formulations. Although taste perception shows variability among 

individuals and demographics due to genetic [3], cultural [4], and medical [5] factors, specific 

biological mechanisms, which are common to all humans, exist for perceiving each of the basic 

taste qualities. Thus, rational approaches can be conceived to design and screen tastants based 

on their chemistry and interactions with the gustatory system. 

Thousands of small protuberances called papillae cover the tongue, each of which contains 

hundreds of taste buds [6]. Each of the taste bud comprises of 50-100 taste cells having 

specialized sensing receptors. Tastants stimulate the receptor cells, leading to signal 

transmission to the gustatory cortex in the brain. Sweet, bitter, and umami receptors belong to 

the family of G protein-coupled receptors (GPCRs) [7]. For structure-based computational 

design and screening of tastant molecules, elucidation of tastant-receptor interactions and the 

subsequent conformational dynamics of the receptor complex play a critical role. However, 

experimental structures of taste receptors are still elusive and in silico techniques like 

homology modeling, molecular docking, and molecular dynamics have been applied as 

surrogates to facilitate virtual screening of tastants [8]. A detailed discussion on taste receptors 

and their molecular modeling can be found in the review by Pallante and co-workers [9]. But 

the absence of accurate receptor structures decreases the reliability of the results, and the 

computational cost prohibits high-throughput screening of large databases. Moreover, no 

simple correlation can be established between the tastant-receptor binding affinity and the 

taste quality or intensity, further complicating the task. 
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Ligand-based structure-property relationship models offer an exciting alternative to rigorous 

molecular modeling techniques. Recent advances in computing capabilities and machine 

learning (ML) algorithms, and availability of curated datasets, make it possible to map 

molecular features to taste qualities with high accuracy. Initial studies mostly focused on 

building sweet/non-sweet and bitter/non-bitter classification models using standard molecular 

descriptors from cheminformatics tools, wherein tastant databases constituted the positive set 

and random molecules were selected to create the negative set [10, 11, 12, 13, 14]. Later, 

efforts were made to address the sweet-bitter dichotomy by considering both the taste 

qualities together [15, 16, 17, 18].  A few studies also reported predictive models to quantify 

the taste intensity of molecules using properties like relative sweetness with respect to sucrose 

[19, 20, 21]. Recently, advanced techniques like ensemble learning, gradient boosting, and 

transformers were employed for sweeteners and bitterants as well, which outperformed 

traditional machine learning models [22, 23, 24, 25, 26]. Data-driven investigations with umami 

focused mostly on peptides— umami/non-umami classifiers were built using the UMP442 

database containing 140 umami and 302 non-umami peptides [27, 28, 29].  A comprehensive 

discussion on databases and ML approaches related to tastants can be found in the recent 

review by Malavolta, Pallante, and co-workers [30]. Integrated data and structure-based 

modeling frameworks, combining structure-property relationship and molecular docking, were 

also proposed to identify potential sweeteners [31] and umami molecules [32]. 

Existing studies on computational taste prediction mostly considers sweet and bitter tastants 

only. However, the approaches can, in principle, be extended to predict multiple taste qualities 

simultaneously. The primary hurdle is the lack of large, curated datasets that can be exploited 



5 
 

to build predictive models. For example, not many umami molecules are known, although their 

perception mechanism is like sweet and bitter molecules (via GPCRs). The exceptional progress 

in molecular ML in recent years, especially deep learning (DL) and graph-based models, offers a 

range of tools to make better predictions using existing and limited data [33, 34]. Nonetheless, 

the enigmatic power of DL algorithms limits the interpretability and explainability of models, 

which leads to skepticism about deployment for industrial use. 

In this work, we develop multiclass classifiers for differentiating between bitter, sweet, and 

umami molecules. We apply deep neural network (DNN), also known as multilayer perceptron, 

and graph neural network (GNN) models on an extensive dataset curated from multiple sources 

in literature. GNNs are especially attractive because molecules can be easily represented as 

graphs, with atoms as nodes and bonds as edges [35]. Additionally, GNNs can work without 

including expert handcrafted features that require domain knowledge. We further try to make 

sense of the results from our DNN models using state-of-the-art explainability methods. An 

analysis of the functional groups in the tastants is presented as well, with an aim to relate the 

taste quality with chemistry. Our work widens the scope and advances the applicability of in 

silico taste prediction using data-driven techniques by inheriting latest developments in DL, 

coupled with insights from chemistry. 

 

2 Methods 

2.1 Dataset 
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A collection of bitter, sweet, and umami molecules was curated using information from the 

ChemTastesDB database [36], the datasets made available by Tuwani and co-workers [16], and 

the UMP442 database (available at https://github.com/Shoombuatong/Dataset-

Code/tree/master/iUmami). All three datasets include tastants from multiple repositories and 

earlier works on data-based modeling, the details of which can be found in the respective 

papers. ChemTastesDB has 2944 verified tastants, both organic and inorganic, belonging to nine 

classes, including the five basic tastes and four additional categories, namely tasteless, 

multitaste, non-sweet, and miscellaneous. We extracted the canonical simplified molecular 

input line entry system (SMILES) representations and the corresponding taste labels of sweet, 

bitter, and umami compounds from the database. Similarly, the sweet and bitter molecules 

used by Tuwani et al. to build the BitterSweet models were obtained. The UMP442 database 

contains the sequence information of 140 umami and 302 non-umami peptides. We obtained 

the umami peptides and converted the sequences into SMILES representation using the 

cheminformatics tool RDKit. The three sets of canonical SMILES were merged and standardized, 

and the duplicates were removed to create our initial raw tastant database. For some of the 

molecules, RDKit could not generate descriptors, and hence they were dropped. The final 

database contained 1466 bitter molecules, 1764 sweet molecules, and 238 umami molecules, 

making up a total of 3468 tastants. For practical applications of multiclass classification models, 

a control set comprising of molecules that exhibit neither of the three taste qualities is 

required. We prepared this control set using the salty, sour, and tasteless entries in 

ChemTastesDB, which made up a total of 238 molecules. Henceforth, all analysis and model 

https://github.com/Shoombuatong/Dataset-Code/tree/master/iUmami
https://github.com/Shoombuatong/Dataset-Code/tree/master/iUmami
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development are performed using the 3706 SMILES strings belonging to four classes – bitter, 

sweet, umami, and control. 

2.2 Featurization and Data Preprocessing 

We generated molecular descriptors using RDKit for building DNN models. The Descriptors 

module of RDKit returns a list of 2-D 208 features for each molecule, which represent the 

structural, physical, and chemical information of the molecule as numerical values. They include 

a wide variety of molecular properties and fragment counts. However, not all features are 

relevant for a particular dataset or task and including them can lead to poor model quality. 

First, we removed all the constant and quasi-constant features in the dataset, as well as those 

features which could not be calculated for a significant number of molecules using RDKit. Then, 

we dropped the features for which less than 20 % of the molecules had non-zero values to 

prevent overfitting. These data cleaning steps reduced the feature set to 118. Subsequently, we 

performed correlation analysis of the features using Pearson correlation coefficient, which 

measures the strength of linearity between two variables. Highly correlated features introduce 

bias in ML models, leading to poor performance and generalization. In our dataset, if two 

features had a correlation coefficient greater than 0.7, one of them was randomly dropped. 

Finally, our clean and processed dataset consisted of 41 features for the 3706 molecules. 

The dataset was split into training and test sets with a train-test ratio of 85:15 for model 

building and evaluation. Multiple training and test sets with different random states were 

created to ensure the reliability of results (see Supporting Information). We applied min-max 



8 
 

scaling and one-hot encoding to transform the features and taste labels, respectively. All 

preprocessing was performed with the Scikit-learn package.  

For building the GNN model, we obtained the SMILES strings of the molecules from the 

database for conversion to graph objects, keeping the training and test sets same as previously 

discussed. In the GNN framework, molecules are treated as undirected graphs. Each heavy 

atom (non-hydrogen) in a molecule is considered as a node, and we compute the following 

node features: one-hot encoding of the element, degree of the atom, whether the atom is 

aromatic or not, number of attached hydrogen atoms, and the implicit valence. The bonds are 

homologous to graph edges with the following edge features: one-hot encoding of the bond 

order or aromaticity, whether the bond is part of a ring, and whether the bond is conjugated. In 

addition, an adjacency matrix is generated for each molecule which contains information about 

the neighbors of all the atoms. The atom and node features are same as those used by 

Duvenaud et al. in their paper on graph convolutions on which our GNN model is based [37].   

2.3 Model Development 

We first built a DNN model to classify the 3706 tastants in our database into four taste 

classes— bitter, sweet, umami, and control. The architecture consisted of the input layer, two 

hidden layers, and the output layer. Both the hidden layers were made up of 128 neurons each 

and activated by a rectified linear unit (ReLU) function. To reduce overfitting, the dropout 

technique was employed after the first hidden layer with a probability 0.3. Four output 

neurons, with SoftMax activation, predicted the probability of molecules belonging to each of 

the three classes. We chose the class with the highest probability as the model output for taste 
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prediction. The input data was fed to the DNN model in batches of 32. The Adam optimizer with 

a learning rate of 0.0001 and the categorical cross-entropy loss function were used to train the 

model. 15 % of the training data was kept aside for validation, and the model with lowest 

validation loss obtained during the training process of 200 epochs was saved as the best model. 

We arrived at the chosen architecture after running multiple experiments with different 

number of hidden layers and a range of values for the number of units in each hidden layer, 

along with various dropout strategies, to maximize validation accuracy and ensure minimal 

overfitting. Finally, the model was evaluated on the test set by computing the overall accuracy, 

confusion matrix, and classwise precision, recall, and F1 scores. The Keras API of TensorFlow 2 

was used to implement the DNN model. 

As our dataset includes far fewer umami and control compounds than sweet or bitter, the 

problem of class imbalance arises. Imbalanced datasets can lead to inferior performance for the 

minority class, even though the overall accuracy may be quite high. We attempt to solve this 

problem using the synthetic minority oversampling technique (SMOTE), a popular method of 

data augmentation which generates synthetic datapoints based on the original data but not its 

duplicates [38]. SMOTE randomly selects instances of the minority classes, finds their five 

nearest neighbors of the same class and chooses one at random, and synthetically generates 

samples as a convex combination of the two points in the feature space. We applied the ‘not 

majority’ settings for SMOTE, wherein all classes except the majority class are resampled. 

We further built a GNN model based on convolutional neural networks operating directly on 

molecular graphs, as proposed by Duvenaud and co-workers [37]. The architecture consists of 

two identical convolution blocks, each of which is made of a graph convolution layer and a 
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graph pooling layer, with batch normalization applied between the two layers. The convolution 

blocks update the per-atom feature vectors in a non-linear way by incorporating information 

from its bonds and adjacent atoms. A channel width of 128 and ReLU activation function is used 

for the graph convolution layer and max-pooling is used for aggregating the neighborhood 

information of an atom. Finally, a graph gather layer combines the node-level feature vectors 

into a single graph-level feature vector that represents the entire molecule. This feature vector 

is then passed through a dense layer of 150 neurons to the output layer that predicts the 

desired probabilities of the four taste classes. The dropout technique was used after each layer 

with probability 0.1 to reduce overfitting. The applied layers, node and edge features, and 

model mechanisms are the same as the original paper; we finetuned the channel width, dense 

layer units, and other parameters for our task. Figure 1 presents a schematic of the information 

flow in the GNN architecture. Additional details regarding the model architecture can be found 

in the original paper. Like DNN training, the input data was fed to the model in batches of 32, 

the categorical cross entropy loss function was employed, and 15 % of the training data was 

kept aside for validation. The model was trained for 50 epochs and the hyperparameters were 

optimized using random search to minimize the validation loss. We implemented the GNN 

model using the DeepChem framework [39]. 

The class imbalance problem is particularly challenging for GNNs to tackle. We experimented 

with oversampling using SMILES enumeration. 7 variants of each SMILES string were generated 

for the umami and control molecules in the training set and augmented with the original 

training data. This additional data made the number of umami and control samples of the same 

order as bitter and sweet. It is to be noted that although the initial inputs for the augmented 
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date are different, GNNs are, by nature, permutation invariant. Hence, the learnt 

representation after the two convolutional blocks is same for all the SMILES variant of a 

molecule, which effectively makes the data transformation a case of oversampling.  

 

 

Figure 1: Flow of information in the graph neural network architecture. The input molecular 

graph with its node features is processed by two convolution blocks. A graph gather layer 

combines the per-atom representations to generate a molecule-level fingerprint vector, which 

is processed by a dense layer. The four output nodes predict the probability of a molecule being 

either bitter, sweet, umami, or control. 

 

3 Results and Discussion 

3.1 Exploratory Data Analysis 

The final set of 3706 tastants, belonging to any one of the three taste qualities— bitter, sweet, 

or umami, or the control set, was analyzed for characteristics, patterns, and insights. Figure 2 
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(a) shows the density distribution plot of molecular weights of the tastants. Molecular weight 

relates to the size of molecules, and hence affects ligand binding to a receptor. We observe that 

most tastants have molecular weights within 1000 Daltons, and thus can be considered as small 

molecules, although a few molecules with higher weights exhibit taste qualities as well. The 

molecular weights are normally distributed, with umami tastants more likely to be heavier than 

sweet and bitter compounds. The molecules in the control set, which are sour, salty, or 

tasteless, show a normal distribution of molecular weights as well, and the range and expected 

values are roughly similar to those of the sweet, bitter, and umami tastants. Figure 2 (b) shows 

the density distribution of the octanol-water partition coefficient logP, a measure of 

hydrophobicity. We find a good mix of hydrophilic (logP < 0) and hydrophobic (logP > 0) 

molecules in the sweet, bitter, and control categories, while most umami molecules are 

hydrophilic. Di Pizio et al. reported in a study with limited datapoints (677 bitter and 312 sweet) 

that bitter compounds have higher hydrophobicity than sweet ones, while sweet compounds 

have a wider size range [40]. However, our work, based on a superset of their data, reveals that 

such conclusions may not be drawn with certainty. The distributions of the two key properties, 

molecular weight and logP, for all the classes, demonstrate that the control set is chemically 

similar to the other tastants, and hence, the classification problem is well formulated. Figures 2 

(c), (d), and (e) highlight the hydrogen bond-forming tendencies of the three classes of tastants. 

Hydrogen bond stabilizes protein-ligand complexes and thus crucially affects the binding 

affinity. In agreement with our expectations, most tastant molecules have hydrogen bond 

donors and acceptors, which enable them to interact with the residues in the binding pockets 

of the receptors. 
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Figure 2: Dataset characteristics based on key molecular properties. Density distribution of (a) 

molecular weight and (b) octanol-water partition coeffcient logP of bitter, sweet, and umami 

compounds in the dataset. Hydrogen bond donors and acceptors in the (c) bitter, (d) sweet, and 

(e) umami molecules. A single point in (c), (d), and (e) can be an overlap of multiple tastants – 

transperancy rendering has been used to show the extent of overlap. 

 

To further explore the dataset visually, we performed principal component analysis (PCA) to 

reduce the high dimensional data. PCA is an unsupervised learning technique that transforms a 

large set of correlated variables into a smaller set of uncorrelated variables, while maintaining 

the variation of the original dataset. Figure 3 (a) shows the relationship between the first and 
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second principal components. As evident from the PCA plot, the tastants have ample structural 

diversity. But the overlap between the three taste qualities is significant and no trivial way to 

separate them is apparent. Furthermore, the control set also overlaps with all the three taste 

qualities. Thus, the multiclass classification task is highly complex, and needs non-linear 

functions to distinguish between the molecules of different tastes, making neural networks the 

suitable choice for model building. The first principal component explains 22 % of the total 

variance, and the second one explains around 14 %. We also generated t-distributed stochastic 

neighbor embedding (t-SNE) plots for our dataset, as shown in Figure 3 (b). t-SNE is also an 

unsupervised dimensionality reduction technique, more powerful than PCA for visualizing 

complex data in two-dimensional space [41]. It minimizes the divergence between the 

distribution that measures pairwise similarities of input objects and the distribution that 

measures pairwise similarities of the corresponding embeddings. We assessed the performance 

of the algorithm for different values of the two key hyperparameters, perplexity and learning 

rate, by visually comparing the generated plots after optimizing for 2000 iterations. A perplexity 

of 100 and a learning rate of 800 was found to be suitable. t-SNE concurs with PCA regarding 

the structural diversity of the tastants in the dataset and the difficulty of the classification task. 

Although small clusters of similar tasting compounds can be observed, the overlap between the 

classes is high. No clear distinction between the taste qualities is apparent from the t-SNE 

visualization. It is to be noted that cluster size and distance between clusters in t-SNE plots bear 

no significance. 

 

  



15 
 

 

Figure 3: Unsupervised dimensionality reduction using (a) PCA and (b) t-SNE techniques. 

Molecules are colored according to their taste. Transperency rendering is applied to show 

overlap. 

 

All results from our exploratory data analysis confirm the huge diversity of molecules, mostly 

within the small molecule chemical space with a few exceptions. Distributions of important 

molecular properties, as well as low-dimensional representations of the dataset, point to 

significant overlap between the three taste qualities, as well as the set of molecules used as 
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control. The structural similarities between many sweet and bitter compounds have been long 

known in the scientific community, with multiple cases of taste alteration on slight 

modifications in the structure [42]. Our work demonstrates this complication using data 

analytics and adds an added layer of complexity by including umami tastants within its scope. 

3.2 Functional Group Analysis 

To look deeper into the chemistry of tastants, we analyzed the functional groups present in the 

bitter, sweet, and umami compounds in our database. In-built modules in RDKit can compute 

the frequency of a predefined list of 85 substructures in a molecule, and we evaluated only 

those fragments for our analysis. Figure 4 shows the most common functional groups in the 

three classes of tastants along with their frequencies of occurrence. Carbonyl oxygen, which 

can belong to aldehydes, ketones, carboxylic acids, esters, amides, and other functional groups, 

is the most common fragment in both bitter (62.8 %) and sweet (65.1 %) molecules, and 

present in a majority (80 %) of umami compounds. In Figure 4, we consider only non-

overlapping groups, and hence carbonyl is not shown— aldehyde, ketones, and other unique 

groups are treated as separate entities. It is visible from our analysis that many functional 

groups occur often in both bitter and sweet molecules, which agrees with our earlier discussion 

on the structural similarities between the two tastes. Apart from benzene, ether, aliphatic 

hydroxyl, and secondary amine, which are among the five most frequently occurring groups in 

both sweet and bitter compounds as shown in Figure 4, we also find carboxylic acid (12.4 % 

bitter and 29.2 % sweet), methoxy (16.8 % bitter and 17 % sweet), primary amine (9.1 % bitter 

17 % sweet), tertiary amine (31.7 % bitter and 15.4 % sweet), and ester (23.9 % bitter and 32.5 



17 
 

% sweet) in many molecules of the two classes. About 45.8 % bitter and 15.3 % sweet 

compounds have bicyclic rings in their structure. 

 

R 

R 

R’ 

R’ 

R’’ 

R 

R’ 

50.8 % 

R R’ 

50.6 % 

R 

39.2 % 

R” 

R 
R’ 

31.6 % 26 % 

R 

62.5 % 

R R’ 

33.6 % 32.5 % 

32.1 % 29.8 % 

R’ 
R 

R 

R’ 

R 

89.9 % 72.3 % 70.2 % 

70 % 47.1 % 

R 



18 
 

Figure 4: Most common functional groups in bitter, sweet, and umami compounds. The bar 

plots denote the percentage of compounds in each of the taste classes having the functional 

groups. The chemical structure of the functional groups and their exact percentage are 

provided beside each of the bar plots. Red, green, and blue in the bar plots correspond to 

bitter, sweet, and umami tastants, respectively. 

 

Umami molecules are rich in nitrogen containing functional groups, as evident from Figure 4. 

Primary, secondary, and tertiary amines are present in 70 %, 89.9 %, and 37 % of umami 

compounds, respectively, the former two being among the five most common groups. Amide 

(70.2 %) and imidazole (25.63 %) exist widely as well. Imidazole and phosphate ester (23.9 %) 

strikingly distinguish umami as these two groups are scarcely found in sweet (0.3 % contain 

imidazole, 0.06 % contain phosphate ester) and bitter (1.9 % contain imidazole, 0.07 % contain 

phosphate ester) compounds. Like sweet and bitter, ether (27.3 %), carboxylic acid (72.3 %), 

and aliphatic hydroxyl (47 %) can be found frequently in umami molecules too. Sulfide group 

occur in 8.8 % of umami compounds, compared to 1.8 % and 3.6 % for bitter and sweet, 

respectively. As about 60 % of the umami compounds are UMP442 peptides, we observe such a 

high proportion of amines and amides. Salts of reactive metals like calcium, potassium, sodium, 

and magnesium make up slightly more than half of the non-peptide umami molecules in our 

database, with disodium salts being the most common. 

Only five fragments, among the 85 calculated by RDKit, are not present in any of the molecules 

in our entire database. The bitter class shows the greatest diversity in terms of groups present 

in at least one compound. Even rare functional groups (present in less than 5 % of tastants for 

all three classes) occur more often in bitter molecules than in sweet or umami. This diversity 

can be attributed to the 25 T2Rs that can bind to a wide variety of ligands and elicit a taste 
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sensation. In contrast, we observe the least number of functional groups in umami molecules, 

which can possibly be the cause or consequence of the smaller set of known umami-tasting 

compounds. Overall, the functional group analysis sheds light on the chemical make-up of 

tastants and corroborates the inferences from exploratory data analysis regarding the 

complexity of the classification problem. 

 

3.3 DNN Model Performance 

The predicted taste classes from the DNN model were compared to the actual taste labels in 

our dataset to evaluate its performance. Figure 5 shows the confusion matrices of the DNN 

model with and without SMOTE for both the training and test sets. The hold-out test set 

contains 216 bitter, 270 sweet, 38 umami, and 32 control molecules, which roughly preserves 

the classwise distribution of tastants in the entire dataset. The overall prediction accuracies of 

the DNN model without SMOTE are 0.88 and 0.81 for the training and test sets, respectively. On 

applying SMOTE, the corresponding accuracies rise to 0.93 and 0.83. Although the values 

indicate some degree of overfitting in the model, it occurs principally due to the control set 

predictions. As the control set is a mixture of diverse molecules which do not belong to any 

particular category, the model tries to learn complex commonalities where there are none. In 

other words, the training and test are chemically dissimilar and the model just trains on noise. 

Only considering bitter, sweet, and umami molecules, the test set accuracies are 0.84 and 0.86 

without and with SMOTE, respectively. An interesting observation is that the model rarely 

mislabels sweet or bitter compounds as umami. While these results are satisfactory, accuracy is 



20 
 

not always the appropriate measure of model performance in classification problems, 

especially with imbalanced datasets. We calculate more insightful metrics— precision, recall, 

and F1 score, for the three taste classes, as shown in Table 1. Precision is defined as the ratio of 

true positives to total predicted positives, while recall is the ratio of true positives to total 

actual positives. F1 score, which is the harmonic mean of precision and recall, strikes a balance 

between the two, and takes uneven class distribution into account. For multiclass classification 

tasks, especially with class imbalance, classwise F1 score, and confusion matrix gives a complete 

description of the prediction performance. We see that the F1 scores of all three classes 

improve on applying SMOTE. The precision and recall values are consequently higher as well. In 

particular, the umami F1 score changes more than the other two tastes, which was the main 

motivation for using SMOTE to resample the dataset.  

As evident from Table 1, the model greatly overfits on the control set due to training on noise 

as described earlier, which is an unavoidable outcome of multiclass classification problems 

using ML. But using a control set for prediction problems like ours is indispensable, since the 

three categories of concern are not exhaustive. But, for practical applications, great model 

performance for the control set is not required. We desire a model that can reliably identify 

bitter, sweet, and umami tastants from large molecule databases of food and flavor 

compounds, natural products, and drug-like compounds. Figure 5 and Table 1 demonstrate that 

the DNN model can perform that task with high accuracy and precision. The confusion matrices 

also show us that many sweet molecules are mislabeled as bitter and vice versa. The model is 

not able to entirely resolve the complexity of classification due to the structural similarity 

between sweet and bitter compounds. Although direct comparisons with existing literature is 
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not possible due to the novelty of the multiclass problem and disparity between datasets, the 

accuracies and F1 scores are comparable to those obtained in the simpler sweet/non-sweet and 

bitter/non-bitter classification models, many of which further suffer from additional limitations 

like small dataset size, random negative set, unverified taste information, and lack of chemical 

diversity [11, 12, 13, 16]. Hence, our results indicate that neural networks can tackle complex 

classification problems in the biochemical domain by learning representations, provided that 

properly curated datasets are available. 

 

Figure 5: Confusion matrices based on the predictions of the DNN model with and without 

SMOTE for training and test sets. The numbers in each cell denote the absolute number of 

datapoints that satisfy the condition of the cell. 
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Table 1: Classwise precision, recall, and F1 scores of the training and test sets for the DNN 

model with and without SMOTE 

Sampling Dataset Metric 
Taste Class 

Bitter Sweet Umami Control 

Without 

SMOTE 

Training 

Precision 0.91 0.87 0.95 0.71 

Recall 0.87 0.94 0.93 0.51 

F1 Score 0.89 0.91 0.94 0.60 

Test 

Precision 0.82 0.82 0.89 0.45 

Recall 0.81 0.87 0.84 0.31 

F1 Score 0.81 0.84 0.86 0.37 

With SMOTE 

Training 

Precision 0.95 0.93 0.97 0.80 

Recall 0.91 0.94 1.0 0.98 

F1 Score 0.93 0.94 0.99 0.88 

Test 

Precision 0.84 0.86 0.94 0.38 

Recall 0.85 0.86 0.89 0.38 

F1 Score 0.85 0.86 0.92 0.38 

 

3.4 Explaining DNN Predictions using SHAP 

Despite exceptional predicting capabilities, neural networks are infamous for their lack of 

interpretability and explainability. The two terms are often used interchangeably, but a subtle 

yet crucial difference exists. Interpretability is the extent to which a cause-and-effect 

relationship can be determined to consistently predict how the output changes given a change 

in input. High interpretability often comes at the cost of performance, as it is difficult to 

establish cause-effect relationships beyond simple ML models like linear regression and 

decision trees. For the DNN model, we are concerned with explainability, which aims to 

understand the behavior of ML algorithms in human terms. Much effort in ML research has 
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been directed towards explainability in recent years, and we chose the Shapley additive 

explanations (SHAP) technique because of its unified framework for interpreting predictions 

[43]. SHAP uses a cooperative game-theoretic approach to compute the contribution of each 

feature towards the prediction and provides Shapley values as output. Specifically, we leverage 

the DeepExplainer method, which is suitable for neural networks. Figure 6 shows the average of 

absolute SHAP values over the entire test set for the ten key features based on the prediction 

of the DNN model with SMOTE. The features are ranked according to their overall relative 

importance, as explained by SHAP. The average SHAP values are computed separately for each 

taste class and control and plotted together by stacking. Detailed visualization for the three 

taste classes and individual SHAP values corresponding to each test example and each feature is 

shown in supporting information. 
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Figure 6: Bar plots of the mean absolute SHAP values for the test set of the ten important 

features, ranked in order of their relative importance, based on the predictions of the DNN 

model with SMOTE. Stacking is used to visualize the SHAP values of all three taste classes and 

control in a single chart. 

 

Comparing the 20 main features (only ten are shown in Figure 6) of the DNN model with and 

without SMOTE (not shown in the manuscript), 13 are common to both, although their relative 

importance changes. Resampling with SMOTE helps the model to learn the relevant 

information to adequately represent all the classes. We observe that electrostatic (PEOE_VSAs), 

polarizability (SMR_VSAs), and electro-topological (EState_VSAs/VSAEStates) properties, along 

with drug-likeness and counts of fragments like benzene, aliphatic hydroxyl, and ester, are the 

crucial features that determine the taste of molecules. The SHAP explanation agrees with our 

current understanding of the physics of receptor-ligand interactions, where these properties 

(electrostatic, polarizability, etc.) determine the affinity of molecules towards a binding pocket. 

The DNN model discovers this physics without being explicitly programmed and makes 

predictions accordingly. However, we should avoid inferring a strong association between the 

binding physics and model mechanism because many of the initial features generated by RDKit 

were dropped using correlation analysis. Some properties like hydrophobicity/hydrophilicity 

(SlogP_VSAs) and Lipinski parameters (HeavyAtomCount, NumHDonors, NumHAcceptors, 

NumRotatableBonds, etc.) play an important role in receptor-ligand binding but were mostly 

removed randomly due to strong correlation with other features. SHAP analysis only explains 

how the model makes the decisions, which provides some physical insights and explainability of 

black-box neural networks, but cannot be interpreted as hard truth of the physical phenomena 
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itself. Our work demonstrates the capability of neural networks in learning complex structure-

property relationships in molecules, while still being explainable to some extent with assistance 

from techniques like SHAP. Incorporating explainability within the realm of DL, especially in 

biochemical applications, can play a paramount role in bolstering its acceptance in industrial 

settings and bridging the gap with physics-based theoretical understanding of various 

phenomena.  

3.5 GNN Model Performance 

Similar to the DNN model, we compared the predictions of the GNN model with the actual taste 

labels and computed the performance metrics. Figure 7 shows the confusion matrices for the 

GNN model with and without oversampling. The overall prediction accuracies without 

oversampling are 0.91 and 0.80 for the training and test sets, respectively, which are 

comparable to the DNN model accuracies. Like DNN, the GNN model also mislabels many sweet 

molecules as bitter and vice versa. We experimented with different dropout probabilities and 

found 0.1 for all layers to be an optimum value that reduced the extent of overfitting without 

compromising on the test set performance. SMILES enumeration for handling class imbalance is 

especially helpful to create valid synthetic data that is different from the original data, when 

string-based featurization is used for building ML models. However, for graph-based 

featurization, different SMILES for the same molecule lead to node feature and adjacency 

matrices with different row ordering, which ultimately generates the same embedding as 

permutation invariancy is a precondition of all GNNs. But oversampling of the minority classes 

is also a valid resampling technique for dealing with class imbalance. The prediction accuracies 

with oversampling are 0.91 and 0.81 for the training and test set, respectively.  
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Like the DNN model, the GNN model too suffers from an extent of overfitting due to the control 

set for reasons discussed in section 3.3. Only considering bitter, sweet, and umami molecules, 

the test set accuracies without and with oversampling are 0.82 and 0.84, respectively. Table 2 

shows the classwise precision, recall, and F1 score of the GNN model for the training and test 

sets. We observe that most metrics are comparable or slightly inferior to those of the DNN 

model. Oversampling slightly improves the predictions of the three taste classes during 

evaluation of the test set. Hence, the performances of both of our DL models are roughly 

similar on all metrics. 
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Figure 7: Confusion matrices based on the predictions of the GNN model with and without 

oversampling using SMILES enumeration for training and test sets. The numbers in each cell 

denote the absolute number of datapoints that satisfy the condition of the cell. 

 

Table 2: Classwise precision, recall, and F1 scores of the training and test sets for the GNN 

model with and without oversampling 

Sampling Dataset Metric 
Taste Class 

Bitter Sweet Umami Control 

Without 

Oversampling 

Training 

Precision 0.95 0.90 0.97 0.68 

Recall 0.89 0.95 0.97 0.69 

F1 Score 0.92 0.93 0.97 0.68 

Test 

Precision 0.83 0.82 0.91 0.38 

Recall 0.76 0.87 0.79 0.44 

F1 Score 0.79 0.85 0.85 0.41 

With 

Oversampling 

Training 

Precision 0.96 0.91 0.95 0.67 

Recall 0.88 0.95 0.99 0.74 

F1 Score 0.92 0.93 0.97 0.70 

Test 

Precision 0.88 0.81 0.85 0.33 

Recall 0.77 0.89 0.87 0.31 

F1 Score 0.82 0.85 0.86 0.32 

 

Although graph-based DL techniques have proved to be powerful tools for various molecular 

property prediction tasks, they often require large datasets to surpass the performance of 

traditional ML models. Otherwise, the likelihood of overfitting and poor test set performance is 

significant. Our tastant dataset only consists of a few thousand datapoints, which is typically 

not enough for GNNs. But we show that the graph convolutional approach proposed by 

Duvenaud et al. performs satisfactorily on the dataset and classifies bitter, sweet, and umami 
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molecules with high accuracy, precision, and recall. As discussed earlier, GNNs have the 

additional advantage of learning directly from the molecular structure and the associated 

chemical information like atom type, valance, aromaticity, etc., without the need for software-

based featurization and expert feature cleaning. The number of descriptors, their values and 

calculation methodology, as well as the range of information can vary widely among the various 

commercial and free cheminformatics tools. Hence, if better or comparable performance is 

achieved, it is desirable to use GNNs in automated workflows over DNNs or traditional ML 

models. When larger datasets are obtained in the future from experiments, simulations, and 

data curations, GNNs are likely to outperform other alternatives. Our work demonstrates that 

even within the limitations of the current state of data availability, GNNs can be an attractive 

choice for screening and classifying tastants. 

 

3.6  Applications of the DL Models 

The principal aim of building ML models for molecules is to deploy them for practical 

applications for improving screening efficiency and reducing cost. The two deep learning-based 

classification models developed in this paper can be applied for screening bitter, sweet, and 

umami tastants. Existing works on data-driven taste predictors, as discussed in the introduction, 

can mostly handle one taste at a time. While higher accuracies can be obtained for binary 

classification problems, an array of different models is necessary to treat molecules of different 

taste qualities, which are trained on different datasets, have different applicability domains, 

and often at conflict with each other. For industrial use cases, which often deal with large 
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datasets, the ability to simultaneously identify multiple classes of tastants, albeit with slightly 

lower accuracy, is desired over highly accurate classifiers that identify molecules of a single 

taste only. Experimental validation is essential before manufacturing a novel molecule or 

formulation, and hence minor differences in the accuracies of ML models used for initial 

screening do not have any practical implications.  

During the prediction phase of ML models, defining an applicability domain (AD) is important to 

selectively remove molecules whose structures are significantly dissimilar from the ones in the 

training set. The Organization of Economic Cooperation and Development has set guidelines for 

structure-activity relationship models, which we followed for our application. We employed 

two metrics – Euclidean distance and Tanimoto similarity coefficient to define the AD. If the 

median Euclidean distance in the feature space of a new molecule from its five nearest 

neighbors in the training set is greater than 1.5, then it is considered lying outside the AD of the 

models. The distance is calculated using all the 41 features used for building the DNN model, 

normalized by min-max scaling. Additionally, if the Tanimoto coefficient, computed using RDKit, 

of a new molecule with all the molecules in the training set is lesser than 0.6, then it is outside 

the AD. Both conditions are to be applied simultaneously to define the search space of the DL 

models for screening. It is to be noted that these thresholds and parameters are not strict and 

can be modified based on the end use and desired confidence.  

Both the DNN model with SMOTE and the GNN model with oversampling were employed to 

screen the FooDB (https://foodb.ca/) database. FooDB contains around 70,000 food-related 

compounds, out of which 8957 were within our defined AD. The DNN model predicted 6700 

molecules to be bitter, 1767 to be sweet, and 382 to be umami. The GNN model predicted 6492 

https://foodb.ca/
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molecules to be bitter, 2027 to be sweet, and 375 to be umami. A high number of FooDB 

entries are estimated to be bitter probably due to the flavonoids, alkaloids, and other bitter-

tasting plant-derived compounds. But the proportion of bitter, sweet, and umami molecules as 

predicted by the models should not be considered as a reflection of the entire database. The 

number of compounds falling within our AD is about 13 % of the entire database, and hence the 

proportions cannot be generalized. However, based on requirements, the AD parameters can 

be made more lenient so that the models can be used to predict the taste of more molecules. 

For greater reliability of application, we prescribe taking the consensus of the DNN and GNN 

models to identify novel tastants. Comparing the predictions, we found that 6088 molecules 

were predicted to be bitter by both the models, 1452 to be sweet, and 288 to be umami.  

 

4 Conclusions 

In this paper, we present a data-driven approach for analysis and classification of tastants. 

Among the five basic tastes, bitter, sweet, and umami are sensed via GPCRs and hence are 

considered for a multiclass classification problem. We curated an extensive dataset of verified 

tastants from literature, which included a diverse class of molecules. The characteristics of the 

dataset including key chemical properties and functional groups are discussed in detail. 

Significant structural similarities between sweet and bitter molecules are observed from our 

data analysis, which revalidates the existing ideas on taste. To classify the molecules, we built 

and trained a descriptor-based DNN model and a graph-based GNN model. Both showed 

comparable performance in terms of multiple metrics. The GNN model has a notable advantage 
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of being able learn from the molecular structures without requiring handcrafted features and 

expert feature cleaning. As the number of umami molecules in the dataset is much lower 

compared to bitter and sweet, we applied special techniques to handle the class imbalance. 

Additionally, the SHAP method was utilized to explain the predictions of the DNN model. We 

observed that the neural network attributed more importance to features that correspond to 

physically relevant properties for molecule binding to a receptor. Finally, we defined an AD for 

model deployment in real-life scenarios and used both the models to simultaneously identify 

potential bitter, sweet, and umami compounds from the FooDB database. 

Future directions in computational taste prediction include expanding the ideas we have 

established in this paper to all the five basic tastes, multitaste, and tastelessness. Achieving this 

would require curating datasets with a significant number of molecules belonging to all the 

different classes, as the performance of ML techniques strongly depends on the data. Currently, 

our models or, to the best of our knowledge, any other model in literature, cannot handle 

molecules exhibiting multiple taste qualities, and any such compound was not considered in 

our training and test sets. Estimating the relative taste intensities of molecules with respect to a 

reference is productive as well, but, except for sweetness, the progress is limited due to lack of 

experimental results. For industrial applications, simultaneously predicting one or more taste 

labels for a molecule, along with the taste intensity, will be of great economic advantage. Taste 

prediction can be further combined with cheminformatics approaches for oral bioavailability 

and toxicity analysis to screen databases for potential tastants with desired properties. Finally, 

an integrated computational framework can include a molecular docking or molecular dynamics 

module at the end of the pipeline to validate the screened molecules. This work contributes a 
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foundation to this framework and demonstrates that DL can be a powerful tool for food and 

flavor applications. 
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