
Data-Driven Tailoring of Molecular Dipole Polarizability
and Frontier Orbital Energies in Chemical Compound

Space

Szabolcs Góger, Leonardo Medrano Sandonas, Carolin Müller, and Alexandre
Tkatchenko∗

University of Luxembourg, Department of Physics and Materials Science, L-1511 Luxembourg
City, Luxembourg

E-mail: alexandre.tkatchenko@uni.lu

Abstract
Understanding correlations – or lack thereof – between
molecular properties is crucial for enabling fast and ac-
curate molecular design strategies. In this contribu-
tion, we explore the relation between two key quan-
tities describing the electronic structure and chemical
properties of molecular systems: the energy gap be-
tween the frontier orbitals and the dipole polarizabil-
ity. Based on the recently introduced QM7–X dataset,
augmented with accurate molecular polarizability cal-
culations as well as analysis of functional group compo-
sitions, we show that polarizability and HOMO–LUMO
gap are uncorrelated when considering sufficiently ex-
tended subsets of the chemical compound space. The
relation between these two properties is further ana-
lyzed on specific examples of molecules with similar
composition as well as homooligomers. Remarkably,
the freedom brought by the lack of correlation between
molecular polarizability and HOMO–LUMO gap en-
ables the design of novel materials, as we demonstrate
on the example of organic photodetector candidates.

1 Introduction
Data-driven molecular design is an increasingly pur-
sued strategy in chemical physics and computational
chemistry. The search for novel molecules with tai-
lored physicochemical properties for a given function-
ality is continuously motivating the development of a
great variety of computer-aided molecular design ap-
proaches1–3. The ultimate goal is to establish a feasible
protocol that can be used for exploring the chemical
compound space (CCS) through systematic targeting of
physical properties. Physicochemical quantities, such as
color, conductivity, excited state lifetime, electron affin-
ity, ionization potential, and solubility, are commonly
used in the design of molecular photosensitizers or op-

toelectronic devices, for instance4–7. Given the com-
plexity of a multi-property design task, it is essential to
first have a solid grasp of the physical relationships be-
tween the various target properties8.

Within this context, two fundamental quantum-
mechanical (QM) electronic properties are the optical
gap and the molecular dipole polarizability (α). Optical
gap is an experimental property that measures the en-
ergy corresponding to the lowest observed optical tran-
sition. Many computational studies use the HOMO–
LUMO gap ∆EHL (the difference between the energies
of frontier molecular orbitals in the ground state) as
a starting point in approximating experimental optical
gaps. HOMO–LUMO gap is also related to chemical re-
activity and excitation energies; and thus plays an im-
portant role in the prediction of optical absorption spec-
tra, refractive indices and conductivity9–12. For correct-
ness of terminology, HOMO–LUMO gap obtained from
density functional calculations should be referred to as
Kohn-Sham (KS) gap. Although the relations between
different gaps (Kohn-Sham, fundamental, and optical)
are subtle and have been discussed in detail in the liter-
ature13,14, in this manuscript we will use the KS gap as
a proxy for observable experimental properties.

The molecular dipole polarizability α (referred to
simply as polarizability in the manuscript), on the other
hand, describes the dipolar response of a molecule
to an external electric field, becoming a key quan-
tity for understanding intra- and intermolecular inter-
actions (e.g., dispersion interactions, substituent and
solvent effects as well as supramolecular structure
formation) and for determining spectroscopic proper-
ties of molecules (Raman and sum frequency spec-
troscopy)15–21. These features make both polarizabil-
ity and HOMO–LUMO gap essential in the deriva-
tion of structure-property/property-property relation-
ships and, consequently, in the development of design
strategies for molecules with a targeted array of QM
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properties for applications such as molecular dyes22,
optoelectronic devices23, molecular junctions24,25, het-
erogeneous catalysts26 and materials for non-linear op-
tics27,28.

Various computational methods and predictive mod-
els have been developed to estimate HOMO–LUMO
gaps and polarizabilities for organic molecules with dif-
ferent levels of tradeoff between accuracy and compu-
tational cost29–32. Lately, it has became feasible to ac-
cess a plethora of highly-accurate QM properties – in-
cluding ∆EHL and α – for large swaths of the chemi-
cal compound space (CCS)33–37. Comprehensive anal-
yses of these extensive datasets may help to under-
stand the deeper physical picture behind the inherent
property-property relationships. With this motivation,
we herein perform an exhaustive investigation of the
two-dimensional space defined by HOMO–LUMO gap
and polarizability (i.e., (∆EHL, α)-space) for small or-
ganic molecules with the aim to gain insights into the
intrinsic relationship between these two properties. We
find that while correlation might appear in homolo-
gous molecules, if a large enough subspace of CCS is
considered, HOMO–LUMO gap and polarizability are
essentially uncorrelated and their 2D space is repre-
sented as a structureless “blob”. Through the analysis
of diverse molecular sets, it is shown that this lack of
correlation can be related to the fact that the polariz-
ability is primarily determined by the atomic composi-
tion, while the HOMO–LUMO gap heavily depends on
the arrangement of the atoms into chemical functional
groups. Hence, we expect that our findings will assist
the development of novel design principles in which the
control of multiple electronic properties is relevant, as
we finally demonstrate on the case of molecular pho-
todetectors.

The outline of the paper is as follows: in Sec. 2, we
review accurate and approximate models for polariz-
ability and HOMO–LUMO gap. In Sec. 3, we exhaus-
tively examine the polarizabilities (α) and HOMO–
LUMO gaps (∆EHL) of diverse molecular sets. In do-
ing this, we have extended the QM7–X dataset37 with
functional group information as well as polarizabili-
ties calculated with the hybrid PBE0 functional. In as-
sessing our computational setting, we tested the pre-
dictive power of this functional against coupled clus-
ter CCSD(T) calculations, and found an overall accu-
racy of 1.9%. As a first order approximation to predict-
ing polarizabilities of small organic systems, we con-
sider a linear combination of atomic contributions in
Sec. 3.1. In Sec. 3.2, we then perform PBE0 calcula-
tions of polarizability (see Sec. 6.1 for computational
details) for homologous molecules and explore the re-
lationship with their HOMO–LUMO gaps. A statisti-
cal analysis of the (∆EHL, α)-space using a subset of
molecules contained in QM7–X dataset is carried out in
Sec. 3.3. Our proposed design principle is further dis-
cussed and demonstrated on the case of organic pho-
todetectors, see Sec. 4. The computational methods as
well as the dataset used are presented in Sec. 6, follow-

ing the main conclusions of the manuscript in Sec. 5.

2 Models for Polarizability
and Frontier Orbital En-
ergy Gap

Since our main focus is to have a better understanding
of the relationship between polarizability and HOMO–
LUMO gap in organic molecules, we first revisit dif-
ferent qualitative and quantitative models employed to
compute them. Typically, accurate electronic structure
methods, such as coupled cluster or hybrid DFT are
used to determine these properties38. Practically, any
mean-field electronic structure method allows to calcu-
late a HOMO–LUMO gap, but the results are sensitive
to the method chosen39. Moreover, since the Kohn-
Sham gap is not an experimental quantity, the ambi-
guity regarding the accuracy of different methods is not
trivial to resolve. Polarizability (α) is typically obtained
from finite field, coupled perturbed Hartree-Fock or
density functional perturbation theory (DFPT) calcula-
tions29,30,40. However, these electronic structure meth-
ods need considerable computational resources when
dealing with larger molecules or significant swaths of
the CCS. Accordingly, we will next discuss alternative
physical models, empirical correlations as well as ap-
proximate methods to obtain these QM properties. We
will start with examining the polarizability, for which
analytical models (such as the quantum Drude oscil-
lator, or QDO) as well as empirical correlations and
predictive semiempirical methods are available. After
this, the models for HOMO–LUMO gap will be men-
tioned, before concluding the section by analyzing what
is known about the correlation between these two quan-
tities.

A connection between HOMO–LUMO gap and polar-
izability can be anticipated starting from the perturba-
tive expression for polarizability using the dipole mo-
ment operator µ̂ within second order perturbation the-
ory as17,41

←→α = 2

∞∑
n ̸=0

⟨Ψ0|µ̂|Ψn⟩ ⊗ ⟨Ψn|µ̂|Ψ0⟩
En − E0

, (1)

where Ψ0 and E0 are the ground state wavefunction
and energy, respectively, and n is the index of the ex-
cited states. Indeed, since ∆EHL = E1 − E0 is com-
monly much smaller than the energy gap of higher ex-
cited states, the first term of the sum in Eq. 1 provides
a first-order approximation to the infinite series and,
hence, there could exist an inversely proportional rela-
tionship between ∆EHL and α, i.e., α ∝ (∆EHL)

−1.
Equation 1 can only be analytically evaluated for sim-

ple model systems (such as the hydrogen atom or a
quantum Drude oscillator). For many-electron systems,
the sum can only be evaluated numerically and requires
including bound-bound and bound-continuum transi-
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tion dipoles42. Modeling atoms or larger coarse-grained
fragments with QDOs and solving the dipole-dipole
screening equations is known to be an effective method
to predict polarizability, and it is also the basis for the
Many-Body Dispersion (MBD) method43,44. Since the
response properties of all atoms and molecules can be
represented by QDOs by carefully setting the three pa-
rameters {charge q, frequency ω,mass µ} of the model,
the analysis of the polarizability of the QDO Hamilto-
nian should generally be transferable to any systems.
Therefore, we devote some attention to this model.

Due to selection rules of the dipole operator, only the
first excited state contributes to the dipole polarizability
of a QDO41,45, making it effectively a two-state system

αQDO = 2q2
⟨Ψ0|µ̂|Ψ1⟩⟨Ψ1|µ̂|Ψ0⟩

E1 − E0
=

q2

µω2
, (2)

where q is the magnitude of the charge bound by a har-
monic potential with frequency ω, having a mass µ. The
HOMO–LUMO gap of a QDO is ∆EHL = ℏω, which
indeed appears in the denominator. However, α can
be separately controlled through the other two individ-
ual QDO parameters {q, µ}, independently from ∆EHL.
This means that for the QDO model, the polarizability
and the HOMO–LUMO gap are mutually related, yet
they could be tuned separately from each other.

The idea of approximating the polarizability using
an effective two-state system (so-called Unsøld approx-
imation)41,46 is also useful for understanding qualita-
tive trends. Within this approximation, polarizability is
written using an average excitation ∆E as a fitting pa-
rameter

←→α =
2

∆E

∞∑
n ̸=0

⟨Ψ0|µ̂|Ψn⟩ ⊗ ⟨Ψn|µ̂|Ψ0⟩. (3)

Setting the average excitation to ∆EHL is therefore ex-
act for the QDO model, but the connection between
these quantities for many-electron systems is not known
in general47.

Investigating correlations between polarizability and
various molecular properties can lead to useful relation-
ships such as the recent observation that polarizability
scales with the fourth power of the characteristic size
of the system41. The correlation between polarizability
and orbital energies is relevant from a theoretical stand-
point, as it forms the foundation of Pearson’s hard-soft
acid-base (HSAB) theory48,49. Based on recent theo-
retical works, we can postulate that polarizability can
be expressed as a function of two factors accounting
for i) ground state geometry (e.g., van der Waals ra-
dius or molecular volume) and ii) electronic structure
(e.g., ionization energy or hardness)27,41,50–55. While
these correlations provide useful conceptual insights,
they have not been put to use for constructing accurate
numerical predictions.

There are two types of predictive models for polar-

izability with lower computational burden than elec-
tronic structure calculations. Firstly, approximations for
polarizability can be constructed based on the group
contribution principle, which divides polarizability into
atomic or bond contributions26,56. These models can of-
fer somewhat accurate predictions with minimal molec-
ular information and computational effort, and we will
assess such models in this work. As a second approach,
machine learning (ML) models have been proposed as a
cost-effective solution with improved accuracy31. How-
ever, the training process and accuracy of the ML mod-
els are strongly dependent on the features of the dataset
(e.g., chemical diversity, molecular size, number of sam-
ples) as well as on the ML method itself.

For the case of HOMO–LUMO gap, there is a well-
established underlying physical principle in determin-
ing this property: it is known that the HOMO–
LUMO gap of individual functional groups (called chro-
mophores in this context) is transferable, with values
documented in standard reference texts57. These chro-
mophores also form the foundation for both accurate
ML models and earlier empirical rules for the prediction
of HOMO–LUMO gaps58,59. The HOMO–LUMO gap
of a single functional group can be understood based on
the molecular orbital theory, the most common version
of which is the Hückel theory for conjugated systems.
For instance, the inverse proportionality between the
number of monomers and the HOMO–LUMO gap of
polyenes is well-explained within this theory60. In the
case of non-interacting functional groups, their optical
spectra are effectively independent and, consequently,
the frontier energy gap of a molecule is determined by
the lowest value for the constituent functional groups,
making it an inherently size-independent (intensive)
property.

In agreement with the analysis of the QDO model,
recent studies relying on large datasets (7 k structures
from the GDB-13 dataset as well as the tmQM dataset of
86 k transitional metal complexes) suggest that there’s
no overall correlation between HOMO–LUMO gap and
polarizability61,62. Nevertheless, correlation has been
observed both experimentally and computationally for
different classes of structures (e.g., organic dyes and
inorganic clusters22,63–65), with notable exception of
smaller systems where the HOMO–LUMO transition is
symmetry forbidden21. In the following section, we ex-
plore the source of such seemingly contradictory results
by showing that investigating a reduced subset of the
chemical compound space can lead to correlations be-
tween quantities that are generally uncorrelated.

3 Results and Discussion
3.1 First Order Linear Atomic Ad-

ditive Model for Polarizability
The simplest atomic additive method (motivated by
that of Bosque32) approximates the polarizability of a
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Table 1: Revised linear regression parameters for the atomic additive polarizability model of Bosque et al. Note that the values
in the original paper are presented in Å3, whereas the values here are in bohr3. The relatively low influence of the intercept can
be seen by comparing the last two rows; the rest of our manuscript uses the parameters presented under ”This work”

Intercept C Cl H N O S
Bosque 2.14 10.20 14.60 1.17 6.95 3.85 20.20

This work 1.71 10.10 12.70 0.87 7.88 4.00 19.10
No intercept 0.00 10.37 13.00 0.88 8.11 4.24 19.37

molecule via a linear combination of the number of
each atom-types n weighted with a type-specific factor
Ci, together with an intercept m

α = m+
∑
i

Cini . (4)

Bosque’s model was fit directly using experimental
data of 426 compounds. The fitted m and Ci values for
C, Cl, H, N, O, and S are listed in Table 1. Accordingly,
we have here used the QM7–X dataset37 (see Sec. 6) to
validate the accuracy and reassess the model parame-
ters on a significantly larger swath of the CCS. In do-
ing so, we have considered the first conformer for each
entry in the QM7–X dataset; a total of ≈ 13 k struc-
tures. The linear regression parameters optimized on
QM7–X yield the results listed in Table 1. Bosque’s pa-
rameters hold up relatively well for QM7–X molecules,
accounting for a correlation coefficient (R2 value) of
0.65 with a mean absolute percentage error (MAPE) of
6.11%. However, the re-fitted parameters improve the
correlation coefficient to 0.72 and reduce MAPE value
to 3.94%, i.e., the prediction accuracy is increased by
a factor of 1.6. Note that the presence of the intercept
m in Eq. 4 is just an artifact of the model, since the
prediction should be zero when no atoms are present.
Inclusion or omission of m, however, changes neither
the goodness of the regression, nor the numerical value
of the atomic contributions to a meaningful degree (the
mean absolute error of the linear model goes from 3.078
a.u. to 3.079 a.u.; similarly to what had also been ob-
served by the authors). Therefore, we decided to in-
clude the intercept in our further analysis, to be consis-
tent with Bosque’s approach.

A shortcoming of atomic additive methods is that the
same polarizability is predicted for all structural iso-
mers, since only the total number of each atom-types
is used in the prediction. This is manifested in Fig. 1
as having a systematic error within each possible αpred

value, and further demonstrated in the inset on the case
of molecules with chemical formula C6H8O. Indeed,
the reference polarizabilities for this given chemical for-
mula span a range of 30 a.u., but the predicted value is
73.4 a.u. for all molecules, irrespective of the chemical
arrangement of the atoms. From Fig. 1, it can also be
inferred that such a simple additive model will only be-
come worse for molecules of increasing size. Indeed, a
trend appears where larger molecules exhibit stronger
deviations towards higher polarizabilities – a trend that

Figure 1: Performance of the atomic additive method.
The linear regression parameters are fit utilizing our dataset
of 13k molecules computed at the DFT-PBE0 level of theory
(subset of the QM7–X dataset37, see Fig. S 3 of ESI†). The
inset shows the inherent shortcoming of the model, predicting
the same polarizability for all C6H8O isomers.

an additive model is unable to describe. This can be
especially the case for polymeric molecules which form
long chains, whose polarizability is highly anisotropic
and it behaves increasingly non-additively with size.

To differentiate between structural isomers, a de-
scriptor that accounts for different geometric properties
(for example, radius of gyration) might be constructed,
since polarizability is an extensive property52,55. This
extensivity is only partially captured by atomic additive
methods, insofar as increasing the number of atoms in a
molecule is inherently increasing the size as well. More
accurate models should also differentiate between simi-
lar atoms based on their surrounding chemical environ-
ments, as it is done for example in the self-consistent
screening approach used in the Many-Body Dispersion
(MBD) method43,44. Therefore, while the shown first-
order linear model is limited by its accuracy, it can serve
as a baseline for more accurate methods involving cou-
pling between atoms in a molecule.

To summarize, a first-order approximation to polariz-
ability can be constructed just by using an atomic ad-
ditive model without explicit knowledge of the molecu-
lar spatial arrangement or the local chemical environ-
ments. While the predictive power of such a model
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is rather restricted, its rough correlation with refer-
ence electronic-structure calculations (see Fig. 1) gives
a clear evidence that a significant fraction of the polar-
izability is determined by just the atomic composition.

3.2 Case Studies for the Relation
between the HOMO-LUMO
Gap and Polarizability

Experimental studies often focus on examining
molecules with similar electronic structures, leading
to hidden correlations between optical gap and polariz-
ability. In our path towards the general understanding
of the relationship between these QM properties, we
now examine two different cases: (i) molecules having
the same atom-type composition but slightly differ-
ent chemical compositions and (ii) molecules with the
chemical properties fixed while increasing the system
size (e.g., oligomers). In Sec. 3.3, we discuss a broader
case in which a large subset of CCS is analyzed.

Constitution isomers. In general, the functional
groups in a molecule govern the nature and order of
the molecular orbitals, determining the HOMO–LUMO
gap and the orbitals involved in the electronic transi-
tions. To explore the relationship between HOMO–
LUMO gap and polarizability as a function of chemi-
cal functionality, we present select examples of consti-
tutional isomers, i.e., molecules with the same atomic
composition that belong to different substance classes
due to the presence of different functional groups.

As a first example, two constitutional isomers with
the formula C5H8O, namely an α, β- (3-penten-2-one)
and a β, γ-unsaturated enone (4-penten-2-one) is con-
sidered (see Fig. 2(a)). It is noticeable that 3-penten-
2-one has a smaller gap compared to 4-penten-2-one
(by 1.12 eV) because delocalization results in a greater
mobility of π-electrons throughout the molecular struc-
ture. However, both molecules present a similar polar-
izability coming from the identical atomic composition
as well as similar total size.

A second set of constitutional isomers with the for-
mula C8H14O was constructed for molecules bearing
a C=O (oxo-group) and C=C (alkene-group) on an
octane backbone. These isomers are thus formed by
the following substance classes: one ketene, one con-
jugated aldehyde, four conjugated ketones, five non-
conjugated aldehydes and eight non-conjugated ke-
tones (see Fig. 2(b)). While these structures are chemi-
cally quite different, their orbital symmetries are largely
similar, leading to a correlation between their polariz-
ability and HOMO–LUMO gap. Notice, however, that
the polarizabilities of the structures are all within 4 %
of each other, whereas the variation of HOMO–LUMO
gap is about five times larger. As such, the statement
that polarizability is mainly determined by the atomic
composition and HOMO–LUMO gap by the chemical
composition seems to hold, even though some correla-
tion between these two quantities is observed due to

(a)

(b)

C5H8O

isomers

C
H3

O

CH3

1

2

3

4

5

6

7

8

C
H3
C
H3C8H14O

isomers

Figure 2: Two molecules, having the same atomic com-
position but different chemical properties show similar po-
larizabilities but different HOMO–LUMO gaps (a). HOMO–
LUMO gap and polarizability of all possible linear structures
having eight carbon atoms, an oxo group and a double bond
between two of the carbons (the values shown are results of
PBE0 calculations as described in Sec. 6.1). The numbering
of carbon atoms is shown in the case of octane-3-on (b).

the similarity of the structures.
Homologous series of molecules. As previously

elaborated, HOMO–LUMO gap and polarizability can
seemingly correlate for molecules that belong to a ho-
mologous series. This can be explained by the fact
that the electronic nature and order of the frontier or-
bitals is often identical for structurally and electron-
ically similar molecules. Consequently, the decrease
in the HOMO–LUMO gap can correlate with the in-
crease in polarizability when considering molecules of
a homologous series with an increasing number of re-
peating units. To support this assumption, we consider
in the following a series of oligomers, namely alkanes
(CmH2m+2) and alkenes (CmH2m; see Fig. 3). The ex-
ample is taken from Afzal et al.66, with polarizability
and HOMO–LUMO gap recalculated within our com-
putational setup (cf. Sec. 6).

Fig. 3 shows a decreasing behaviour of HOMO–
LUMO gap for oligoethylene and oligoacetylene as a
function of the number of monomers n, in agreement
with previous works as well as qualitative predictions
from the Hückel model60,67. Indeed, we have found
that the absence of a qualitative change to the elec-
tronic structure within the ethylene oligomers leads
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Figure 3: HOMO–LUMO gap (blue dots) and polarizability (red dots) of the oligomers of (a) ethylene and (b) acetylene. The
calculations of both properties were carried out as described in Sec. 6.1.

to a relatively small HOMO–LUMO gap change going
from n = 1 → 7 (≈1.5 eV) compared to the acetylene
oligomers, where every monomer modifies the conju-
gation, producing a more significant change of ≈5.0 eV.
Unlike HOMO–LUMO gap, the behavior of polarizabil-
ity in the molecular chains can not be simply explained.
The observation that polarizability monotonously in-
creases with n is in line with both the principles of
atomic additive models and the correlation with molec-
ular size. However, the absolute magnitude of the po-
larizability values is significantly different for the two
sets of oligomers, and this difference increments with
increasing the number of monomers. This quantitative
difference can neither be explained by atomic additive
models nor correlations using molecular size, but it cor-
relates with the reductions in HOMO–LUMO gap. No-
tably, not even AlphaML31 can predict this behavior: the
model predicts 181 a.u. for oligoethylene and 227 a.u.
for oligoacethylene in the n = 7 case, with the DFPT re-
sults being 177 a.u. and 360 a.u., respectively. The dif-
ference due to conjugation is therefore underestimated
by a factor of four even when using ML methods, and
this error is expected to increase with increasing the
chain length. Up to now, we are not aware of any other
simple polarizability estimation method that can accu-
rately predict the values in Fig. 3. These findings pro-
vide clear evidence that further work is necessary to en-
hance our understanding and improve and accuracy of
computational methods used for calculating polarizabil-
ity, even for relatively simple molecules such as hydro-
carbon oligomers.

3.3 Clustering of Structures in the
(∆EHL, α)-Space

All previously presented examples might suggest that
there is a correlation between HOMO–LUMO gap and
polarizability. However, these examples considered sim-
ilar molecules with respect to their functionality or
chemical composition — factors that essentially deter-
mine both the HOMO–LUMO gap and polarizability.
From optical spectroscopy, it is known that the optical

gap is primarily determined by the functional groups
in a molecule. This is reflected in characteristic opti-
cal gaps (vertical excitation energies of the lowest elec-
tronic transitions) per functional groups, e.g., the ππ∗

absorption of an isolated alkene-group as chromophore
is between 7.51 and 6.70 eV. Since we are assuming
that HOMO–LUMO gap is a good starting point in de-
termining the optical gap of a molecule, it would be
expected to find that ∆EHL values are also clustered by
certain functional groups. In contrast, our analysis has
shown that polarizability (α) is primarily determined
by the atomic composition of a molecule. To draw
more general conclusions about these properties, we
analyse the two-dimensional (2D) property space de-
fined by HOMO–LUMO gap and polarizability for a se-
lected subset of QM7–X molecules8 (see Sec. 6.2). This
dataset enables us to study the (∆EHL, α) relationship
more broadly because it covers a considerable number
and variety of chemical compounds.

Fig. 4(a) shows the (∆EHL, α)-space for the QM7–X
molecules – indicating no direct relationship between
the two quantities across the chemical compound space
spanned by this dataset (R2 = 0.13). Furthermore,
the role of the two main factors that determine ∆EHL

(functionality) and α (atomic composition) are high-
lighted in Fig. 4. The panels (b) and (c) exemplarily
display the distributions of ∆EHL and α for aldehydes
and primary alcohols, i.e., molecules that bear one of
the respective functional groups. The subplots (d) and
(e) show the respective distributions for molecules with
equal atomic positions, namely with the molecular for-
mulas C4H8O and C4H9N, respectively.

Functional groups & HOMO-LUMO gap.
In Figs. 4(b,c), we highlight the frequency plots of

∆EHL and α values for all non-conjugated aldehydes
(blue) and primary alcohols (pink) of our select dataset.
Fig. 4(c) clearly reflects the common notion of chro-
mophores, namely that HOMO–LUMO gap is mainly
determined by the type of chromophore (e.g., alde-
hyde or primary alcohol group) and the character of
the lowest energy electronic transition (e.g., nπ∗- or
nσ∗-transition). Thus, ∆EHL values for aldehydes only
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(c)

(e)

(d)(b)(a)

Figure 4: (a) Polarizability (α) vs. HOMO–LUMO gap
(∆EHL) for molecules of the subset of QM7–X under study
(see text). Histograms of the HOMO–LUMO gaps (b) for all
non-conjugated aldehydes (blue) and primary alcohols (pink)
and (d) for structures having the atomic composition C4H8O
(black) and C4H9N (blue). Histograms of polarizabilities (c)
for all non-conjugated aldehydes (blue) and primary alcohols
(pink) and (e) for structures having the atomic composition
C4H8O (black) and C4H9N (blue). The difference between the
clustering in the two quantities is reflected in the degree of
separation between the histograms.

show a value of circa 6.5 eV while, for primary alcohol
group, they extend from 7.2 eV to 7.8 eV.

To fully explore the role of functional groups on the
(∆EHL, α) relationship, the QM7–X molecules were cat-
egorized into twelve major classes based on the func-
tional groups they are bearing (see Sec. 6.2). Fig. S 4†

shows that the distribution of all detected functional
groups in the dataset, confirming that ∆EHL is clus-
tered along the chemical properties of the molecules.

Unlike ∆EHL, molecules containing aldehydes (blue)
and primary alcohols (pink) exhibit polarizabilities that
extend throughout the entire range of the dataset
(cf. Fig. 4(b)). This finding is further reflected in the av-
erage Kolmogorov-Smirnov-metric (measuring the sta-
tistical distance between two general distributions, see
Sec. II of ESI†) of the individual molecular classes in the
(∆EHL, α)-space, which is 0.81 and 0.40 for ∆EHL and
α, respectively. Our analysis then demonstrates that
functional groups primarily affect HOMO–LUMO gap
rather than the polarizability, resulting in well-defined
molecular clusters on the ∆EHL-axis.

Atomic composition & polarizability.
According to the Kolmogorov-Smirnov analysis in

Sec. II of the ESI†, the functional groups only indirectly
influence the magnitude of the polarizability in a given

molecule, whereas the atomic composition is a crucial
factor for the determination of the polarizability. This
finding is also in line with the fact that a good corre-
lation is achieved between the first-order atomic addi-
tive model and the reference DFT data shown in Fig. 1.
The ∆EHL and α values for a set of two constitution
isomers, namely with the chemical formula C4H8O (in-
cluding aldehydes, dialkyl ethers, enol ethers, as well as
primary and secondary alcohols) and C4H9N (including
carbonitriles and primary/secondary aliphatic amines)
is also presented in Figs. 4(d), showing a narrow po-
larizability distribution. These results are another clear
evidence that α, to a reasonable approximation, is in-
dependent of the actual chemical arrangement of the
atoms in the molecule but it mainly depends on the to-
tal number of atom-types.

In summary, we can conclude that the lack of over-
all correlation observed in (∆EHL, α)-space is a conse-
quence of two main facts: (i) the HOMO–LUMO gap is
determined by the nature of the chemical composition
(cf. Fig. 4c vs. 4e) and (ii) the polarizability is largely
determined by the atomic composition (cf. Fig. 4b vs.
4d).

4 Case Study: Design of Pho-
todetectors

A common challenge in materials science is the effective
design of photodetectors. These optoelectronic devices
capture light and convert it to electric signal, there-
fore playing an important role in sensing, monitoring
and optical communication. The wide range of physic-
ochemical properties spanned by organic molecules en-
ables various design strategies, which ultimately led
to the emerging field of organic photodetectors68,69.
HOMO–LUMO gap is one of the key quantities that
can be used to approximate the coupling strength of
molecules with light, thereby any design strategy mo-
tivated by optics will be initially based on this prop-
erty70,71. Since the fundamental function of photode-
tectors is to convert light into electrical current, control-
ling the electrochemical behavior is also crucial. Specif-
ically, the electrochemical work function plays a critical
role in the description of organic photodetectors72,73, as
opposed to organic semiconductors, where the focus is
usually on the charge carrier mobility74. The work func-
tion ϕ of an electrode is known to change with the po-
larizability of the absorbed molecules as well as the sur-
face coverage, as described by the Topping equation75

(written for a square lattice)

e∆ϕ = ± eµθ

ε0d2

(
1 + 9α′

(
θ

d2

)3/2
)−1

. (5)

This expression highlights that the work function ϕ also
depends on the the dipole moment µ0 and polarizability
α of the molecules, besides the surface coverage θ and
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the lattice constant of the absorbate d. Notice that an ef-
fective polarizability α′ is used to represent the proper-
ties of the absorbed molecules in Eq. 5, which is usually
an order of magnitude larger than free molecular po-
larizability76,77. Despite being acknowledged to fluctu-
ate with the coverage rate, this equation can serve as a
useful initial reference to screen potential molecules for
photosensitizers according to the intended work func-
tion72,73. Indeed, this relationship between both prop-
erties makes it important to regulate the polarizability
of molecules for achieving a desired electrochemical be-
havior. Through this connection, it can be seen that
molecules with higher polarizability tend to facilitate
electron injection while those with lower polarizability
tend to facilitate hole injection73.

In the preceding sections, we have postulated that po-
larizability and HOMO–LUMO gap are uncorrelated if
a large enough subset of the CCS is considered. This
law can now be translated to the domain of organic
photodetectors: since HOMO–LUMO gap and polar-
izability are generally independent, it should be pos-
sible to design a photodetector with a given detection
peak having an arbitrary work function. Alternatively,
if matching of electrochemical properties of different
systems is the goal, it should be possible to design or-
ganic photodetectors with each having arbitrary opti-
cal detection windows, yet having the same effect on
the work function of electrodes. To demonstrate this
statement, we use a dataset generated by Xu et al.71,
who employed a self-improving Bayesian search to pre-
dict possible photodetector molecules in a large subset
of CCS. The selection criterion for possible photodetec-
tors was based on both HOMO–LUMO gap and singlet-
triplet energy gap, which were evaluated from ground
state DFT and TD-DFT calculations, respectively. From
all predicted molecules having a donor and an acceptor
site (DA structures), we have only selected those cases
which have the same atom types as QM7–X molecules
(see also in Table 1), leading to a total of 5, 311 struc-
tures. Using the atomic additive model described in
Sec. 3.1, we have estimated the polarizabilities of the
selected structures; the plot of the polarizability versus
HOMO–LUMO gap is shown in the top panel of Fig. 5.
Here, one can see that most structures are found in a
relatively extended region having ∆EHL between 3 and
5 eV and α between 200 and 400 a.u., with the possibil-
ity to find outliers in all directions around this cluster. In
particular, if a high shift in the work function is desired,
there appear to be several good candidates with varying
optical absorption ranges (see bottom of the graph).

Moreover, our calculations show that the polarizabil-
ity of these structures can vary by a factor of up to
six, depending on the specific values of the HOMO–
LUMO gap. To demonstrate this flexibility in α, Fig. 5
also shows the four molecules corresponding to the four
quartiles having a HOMO–LUMO gap of 4 ± 0.1 eV,
selected to correspond to the maximum density of
data. For this specific HOMO–LUMO gap, polarizabil-
ity changes between 149.9 a.u. and 451.1 a.u. Tak-
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Figure 5: HOMO–LUMO gap and polarizability of the
structures in the donor-acceptor (DA) dataset of Xu et al.71.
The maximum of the HOMO–LUMO gap density (4 eV) is
marked with a blue line. The four structures corresponding
to the four quartiles in the predicted polarizability (within ±
0.1 eV) are also shown, together with the predicted values (in
a.u.).

ing the tenfold enhancement between the polarizabil-
ity of the free molecule and the absorbed α′ into ac-
count and using approximate values of µ = 4 D and
d = 1.5 nm with a full surface coverage, this would
mean that changes in work function could range from
0.9 eV to 1.5 eV. These variations are larger than usually
achievable by modifications of a semiconductor struc-
ture or controlling the surface coverage77,78. Therefore,
our analysis shows that work function can be, for prac-
tical purposes, freely tailored, even with a very specific
design requirement on HOMO–LUMO gap.

This flexibility is also relevant in the task of design-
ing wavelength-selective detectors, which would imply
hard constraint on HOMO–LUMO gap. If ∆EHL and
α could not be controlled independently, then optical
design restrictions would directly influence the electro-
chemical behavior. The decoupling of ∆EHL and α
means that the wavelength of detection and the work
function can be controlled independently. Fine-tuning
the work functions to achieve matching on the metal-
organic interface at the electrode is crucial for effi-
ciency. Thus, with the existent “freedom of design” in
(∆EHL, α)-space, we have demonstrated that an effi-
cient detection can be theoretically achieved for any de-
tection wavelength. Alternatively, since the work func-
tion can be tailored to match any detection wavelength,
it is also possible to design detectors for different detec-
tion ranges having equivalent electrochemical proper-
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ties such as sensitivity, dark current, adhesion behavior
as well as any other properties determined by the work
function.

5 Conclusions
Predictive molecular design is an emerging tool in mod-
ern molecular physics and chemistry which heavily re-
lies on the understanding of relationships between key
structural and electronic properties. Identifying and
explaining correlations between properties necessitates
either deep physical understanding or exhaustive data
analysis. Herein, we present a comprehensive inves-
tigation of the intricate interplay between the HOMO–
LUMO gap and dipole polarizability – two central prop-
erties in designing molecules with tailored optical prop-
erties and intermolecular interactions.

Despite the fact that both quantities have their root in
the molecular electronic spectrum, understanding their
correlation is quite complex. On one hand, the proper-
ties are essentially uncorrelated when accounting for a
vast chemical space. On the other hand, when exam-
ining a small subset of the chemical compound space
with similar functionalities, such as homologous series
of molecules like oligomeric hydrocarbons, we show
that the properties can be observed as being correlated.

To perform a data-driven analysis, we extended the
QM7–X database with functional group labels and ac-
curate polarizabilities to explain the physical cause of
this phenomenon. Our results demonstrate that the
atomic composition has a major role in determining po-
larizability, while the arrangement of these atoms into
chemical functional groups dictates the HOMO–LUMO
gap. The physical origin of molecular polarizability was
elaborated by studying conceptual models as well as in-
terpreted with the help of a first order linear atomic
additive model. Finally, the “freedom of desing” arising
from the interaction of HOMO–LUMO gap and polar-
izability was used on the example of organic photode-
tectors, demonstrating that the electrochemical proper-
ties of such molecules can be freely tailored even with
specific requirement on the optical properties. The the-
oretical insights gained from this work can give the
basis for expanding the understanding of the relation-
ship between HOMO–LUMO gap and polarizability by
incorporating additional descriptors such as molecular
size and electronic mobility. Additionally, the unraveled
“freedom of desing” could be applied to the develop-
ment of new compounds with tailored optical and elec-
tronic properties for use in applications such as organic
electronics, sensing or energy harvesting.

6 Computational Methods
6.1 Target Molecular Property

Space
Generally, molecular design is a multi-property opti-
mization problem and requires an exhaustive analysis
of diverse structure-property and property-property re-
lationships1,6. In this contribution, we have opted to
focus on the examination of the two-dimensional prop-
erty space defined by ∆EHL and α (i.e., (∆EHL, α)-
space), as motivated in the introduction (see Sec. 1).
To perform a purely data-driven study, we utilize the
QM7–X dataset37 containing 42 physicochemical prop-
erties of ≈4.2 M (equilibrium and non-equilibrium) or-
ganic molecules with up to seven heavy (non-hydrogen)
atoms (including C, O, N, S and Cl), spanning a practi-
cally important subset of CCS. Accordingly, a subset of
QM7–X considering only one equilibrium constitutional
isomers and stereoisomers per unique molecular graph
is selected for further analysis (≈13 k molecules). In
QM7–X, the molecular structures were optimized using
the third-order self-consistent charge density-functional
tight binding method (DFTB3)79 supplemented with a
treatment of many-body dispersion/van der Waals in-
teractions via the MBD approach44,80. However, for our
studies concerning polarizability, α was computed di-
rectly, employing density functional perturbation theory
(DFPT)29 by means of the PBE081 functional as imple-
mented in the FHI-aims code82 (version 190205). The
tight basis set settings were also applied for all atoms
(C, H, N, O, S and Cl). To ensure the transferability of
the values, we store the molecular (mean) polarizability
(denoted as α and simply referred to as polarizability in
other parts of the manuscript)

α =
1

3
(←→α xx +←→α yy +

←→α zz) , (6)

which is independent of the molecular orientation. A
second orientation-independent observable, the polar-
izability anisotropy (∆α) is also often reported, defined
as

(∆α)2 = 3(←→α 2
xy +

←→α 2
xz +

←→α 2
yz)+ (7)

1

2
((←→α xx −←→α yy)

2 +(←→α xx −←→α zz)
2 + (←→α yy −←→α zz)

2).

This quantity is mainly used in the description of macro-
molecules and supramolecular systems, and since our
focus is small organic molecules, we don’t analyze the
anisotropy in this manuscript.

To estimate the accuracy of the DFPT calculations,
the respective mean polarizabilities were compared
with the values documented in the QM7b database83,84.
This comparison ensures an accurate assessment of the
prediction error due to the following two reasons: i)
there is a large overlap between the structures in the
QM7b and QM7–X databases, and ii) QM7b provides
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highly accurate α values obtained at the linear-response
coupled cluster singles and doubles (LR-CCSD) level of
theory31,54. Then, we computed the polarizabilities of
300 randomly selected structures of QM7b employing
the same DFPT computational setup described above.
The selected level predicts α with a mean average error
of 1.9 % with a standard deviation of 1.1 % (cf. Fig. S 1
of the ESI†). This accuracy is higher with respect to av-
erage DFT methods which produce mean average errors
between 2.5 % and 3.8 %85, underlining the benefits of
calculating polarizabilities using the PBE0 functional.
Polarizability anisrotropy is predicted with a mean aver-
age error of 10.2 % with a standard deviation of 5.1 %,
which is in line with previously reported values86,87. In
general, the mean polarizability is slightly underesti-
mated, whereas the anisotropy is almost always over-
estimated by PBE0.

6.2 Molecular Classification: Func-
tional Groups

A workflow has been implemented to identify chem-
ical functional groups from the molecular structure
in two steps: firstly, we save the Cartesian coordi-
nates of molecules in a MDL Molfiles format using the
standard implementation in Open Babel88. Secondly,
Checkmol89 is employed to detect the functional groups
(204 tags) based on the connectivity tree. In total, 61
unique functional groups were detected for the sub-
set of the ≈ 13 k QM7–X-molecules37, demonstrating
that the dataset covers a considerable sector of CCS
(cf. Fig. S 2 of the ESI†). Since Open Babel predicts
valencies only based on the distance between pairs of
atoms, the functional group detection scheme is prone
to errors for molecules with rare functional groups.
Moreover, the functional group definitions of Checkmol
have significant overlaps, e.g., the molecules detected
as alkylamines are also detected as primary amines. To
ensure that these shortcomings do not influence our
conclusions, we base our analyses only on the sub-
set of the 14 k molecules that have certain functional
groups. These groups are chosen to be chemically im-
portant, non-overlapping, and each of these categories
contain at least 500 entries. The number of structures
containing one of these functional groups is 9604. For
the analysis in section 3.3, only molecules containing
a single functional group are considered, i.e., 1626 en-
tries of our dataset (see Fig. S 3). Based on these con-
straints, the following eleven classes of molecules are
identified: aldehydes, carbonitriles, dialkyl ether, enol
ether, hydrazones, ketones, oximes, primary alcohols
and amines, as well as secondary alcohols and amines
(see labels in Fig. 4(a)).
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Dietzek-Ivanšić, B. Photoinduced electron trans-
fer in triazole-bridged donor-acceptor dyads – A
critical perspective. Coord. Chem. Rev. 2022, 472,
214764.

(5) Kranz, C.; Wächtler, M. Characterizing pho-
tocatalysts for water splitting: from atoms
to bulk and from slow to ultrafast processes.
Chem. Soc. Rev. 2021, 50, 1407–1437, DOI:
10.1039/D0CS00526F.

(6) Zhao, Z.-J.; Liu, S.; Zha, S.; Cheng, D.; Studt, F.;
Henkelman, G.; Gong, J. Theory-guided design
of catalytic materials using scaling relationships
and reactivity descriptors. Nat. Rev. Mater. 2019,
4, 792–804.

(7) Wang, X.; Zhang, G.; Yang, L.; Sharman, E.;
Jiang, J. Material descriptors for photocata-
lyst/catalyst design. Wiley Interdiscip. Rev.: Com-
put. Mol. Sci. 2018, 8, e1369.

(8) Sandonas, L. M.; Hoja, J.; Ernst, B. G.; Vazquez-
Mayagoitia, A.; DiStasio Jr, R. A.; Tkatchenko, A.
Quantum Mechanics Enables" Freedom of Design"
in Molecular Property Space. ChemRxiv 2021,
DOI: 10.26434/chemrxiv–2021–q9rc2.

(9) Katritzky, A. R.; Sild, S.; Karelson, M. Correlation
and Prediction of the Refractive Indices of Poly-
mers by QSPR. J. Chem. Inf. Comput. Sci. 1998,
38, 1171–1176.

(10) Takimiya, K.; Yamamoto, T.; Ebata, H.; Izawa, T.
Design strategy for air-stable organic semiconduc-
tors applicable to high-performance field-effect

10



transistors. Sci. Technol. Adv. Mater. 2007, 8, 273–
276.

(11) Mazinani, S. K. S.; Meidanshahi, R. V.;
Palma, J. L.; Tarakeshwar, P.; Hansen, T.;
Ratner, M. A.; Mujica, V. Polarizability as a
Molecular Descriptor for Conductance in Organic
Molecular Circuits. J. Phys. Chem. C 2016, 120,
26054–26060.

(12) Gryn’ova, G.; Lin, K.-H.; Corminboeuf, C. Read be-
tween the Molecules: Computational Insights into
Organic Semiconductors. J. Am. Chem. Soc. 2018,
140, 16370–16386.

(13) Bredas, J.-L. Mind the gap! Mater. Horiz. 2014, 1,
17–19.

(14) Stein, T.; Eisenberg, H.; Kronik, L.; Baer, R. Fun-
damental Gaps in Finite Systems from Eigenval-
ues of a Generalized Kohn-Sham Method. Phys.
Rev. Lett. 2010, 105, 266802.

(15) Karplus, M.; Kolker, H. J. Van der Waals Forces in
Atoms and Molecules. J. Chem. Phys. 1964, 41,
3955–3961.

(16) Hohm, U. Is There a Minimum Polarizability Prin-
ciple in Chemical Reactions? J. Phys. Chem. A
2000, 104, 8418–8423.

(17) Stone, A. J. The Theory of Intermolecular Forces;
Oxford University Press: New York, 2016.

(18) Xie, C.; Oganov, A. R.; Dong, D.; Liu, N.; Li, D.;
Debela, T. T. Rational design of inorganic dielec-
tric materials with expected permittivity. Sci. Rep.
2015, 5, 16769.

(19) Sabirov, D. S. Polarizability as a landmark prop-
erty for fullerene chemistry and materials science.
RSC Adv. 2014, 4, 44996–45028.

(20) Kamada, K.; Ueda, M.; Nagao, H.; Tawa, K.; Sug-
ino, T.; Shmizu, Y.; Ohta, K. Molecular Design for
Organic Nonlinear Optics: Polarizability and Hy-
perpolarizabilities of Furan Homologues Investi-
gated by Ab Initio Molecular Orbital Method. J.
Phys. Chem. A 2000, 104, 4723–4734.

(21) Pouchan, C.; Bégué, D.; Zhang, D. Y. Between
geometry, stability, and polarizability: Density
functional theory studies of silicon clusters Sin
(n=3–10). J. Chem. Phys. 2004, 121, 4628–4634.

(22) Targema, M.; Obi-Egbedi, N. O.; Adeoye, M. D.
Molecular structure and solvent effects on the
dipole moments and polarizabilities of some ani-
line derivatives. Comput. Theor. Chem. 2013,
1012, 47–53.

(23) Kim, T.-D.; Lee, K.-S. D-π-A Conjugated Molecules
for Optoelectronic Applications. Macromol. Rapid
Commun. 2015, 36, 943–958.

(24) Wang, D.; Fracasso, D.; Nurbawono, A.; Anna-
data, H. V.; Sangeeth, C. S. S.; Yuan, L.; Ni-
jhuis, C. A. Tuning the Tunneling Rate and Dielec-
tric Response of SAM-Based Junctions via a Sin-
gle Polarizable Atom. Adv. Mater. 2015, 27, 6689–
6695.

(25) Kaasbjerg, K.; Flensberg, K. Strong Polarization-
Induced Reduction of Addition Energies in Single-
Molecule Nanojunctions. Nano Lett. 2008, 8,
3809–3814.

(26) Jaque, P.; Toro-Labbé, A. Characterization of cop-
per clusters through the use of density functional
theory reactivity descriptors. J. Chem. Phys. 2002,
117, 3208–3218.

(27) Meyers, F.; Marder, S. R.; Pierce, B. M.;
Bredas, J. L. Electric Field Modulated Nonlinear
Optical Properties of Donor-Acceptor Polyenes:
Sum-Over-States Investigation of the Relation-
ship between Molecular Polarizabilities (.alpha.,
.beta., and .gamma.) and Bond Length Alterna-
tion. J. Am. Chem. Soc. 1994, 116, 10703–10714.

(28) Otto, P. Recent developments in the theoretical
design of low-gap polymers and their nonlinear
optical properties. Int. J. Quantum Chem. 1994,
52, 353–364.

(29) Shang, H.; Raimbault, N.; Rinke, P.; Schef-
fler, M.; Rossi, M.; Carbogno, C. All-electron, real-
space perturbation theory for homogeneous elec-
tric fields: theory, implementation, and applica-
tion within DFT. New J. Phys. 2018, 20, 073040.

(30) Karna, S. P. A “direct” time-dependent cou-
pled perturbed Hartree–Fock–Roothaan approach
to calculate molecular (hyper) polarizabilities.
Chem. Phys. Lett. 1993, 214, 186–192.

(31) Wilkins, D. M.; Grisafi, A.; Yang, Y.; Lao, K. U.;
DiStasio, R. A.; Ceriotti, M. Accurate molecular
polarizabilities with coupled cluster theory and
machine learning. Proc. Natl. Acad. Sci. 2019,
116, 3401–3406.

(32) Bosque, R.; Sales, J. Polarizabilities of Solvents
from the Chemical Composition. J. Chem. Inf.
Comput. Sci. 2002, 42, 1154–1163.

(33) Curtarolo, S.; Hart, G. L. W.; Nardelli, M. B.;
Mingo, N.; Sanvito, S.; Levy, O. The high-
throughput highway to computational materials
design. Nat. Mater. 2013, 12, 191–201.

11



(34) Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von
Lilienfeld, O. A. Quantum chemistry structures
and properties of 134 kilo molecules. Sci. Data
2014, 1, 140022.

(35) Gromski, P. S.; Henson, A. B.; Granda, J. M.;
Cronin, L. How to explore chemical space us-
ing algorithms and automation. Nat. Rev. Chem.
2019, 3, 119–128.

(36) Gadaleta, D.; Benfenati, E. A descriptor-based
analysis to highlight the mechanistic rationale of
mutagenicity. J. Environ. Sci. Health, Part C 2021,
39, 269–292.

(37) Hoja, J.; Sandonas, L. M.; Ernst, B. G.; Vazquez-
Mayagoitia, A.; DiStasio Jr, R. A.; Tkatchenko, A.
QM7-X, a comprehensive dataset of quantum-
mechanical properties spanning the chemical
space of small organic molecules. Sci. Data 2021,
8, 1–11.

(38) Cramer, C. J. Essentials of computational chem-
istry: theories and models; John Wiley & Sons:
West Sussex, 2013.

(39) Ramakrishnan, R.; Hartmann, M.; Tapavicza, E.;
von Lilienfeld, O. A. Electronic spectra from
TDDFT and machine learning in chemical space.
J. Chem. Phys. 2015, 143, 084111.

(40) Medved’, M.; Stachová, M.; Jacquemin, D.; An-
dré, J.-M.; Perpete, E. A. A generalized Romberg
differentiation procedure for calculation of hyper-
polarizabilities. J. Mol. Struct.: THEOCHEM 2007,
847, 39–46.

(41) Szabó, P.; Góger, S.; Charry, J.; Karimpour, M. R.;
Fedorov, D. V.; Tkatchenko, A. Four-Dimensional
Scaling of Dipole Polarizability in Quantum Sys-
tems. Phys. Rev. Lett. 2022, 128, 070602.

(42) Buckingham, R. The quantum theory of atomic
polarization I–Polarization by a uniform field.
Proc. R. Soc. London, Ser. A 1937, 160, 94–113.

(43) Mayer, A.; Åstrand, P.-O. A Charge-Dipole Model
for the Static Polarizability of Nanostructures In-
cluding Aliphatic, Olephinic, and Aromatic Sys-
tems. J. Phys. Chem. A 2008, 112, 1277–1285.

(44) Tkatchenko, A.; DiStasio, R. A.; Car, R.; Schef-
fler, M. Accurate and Efficient Method for Many-
Body van der Waals Interactions. Phys. Rev. Lett.
2012, 108, 236402.

(45) Jones, A. P.; Crain, J.; Sokhan, V. P.; Whit-
field, T. W.; Martyna, G. J. Quantum Drude oscil-
lator model of atoms and molecules: Many-body
polarization and dispersion interactions for atom-
istic simulation. Phys. Rev. B 2013, 87, 144103.

(46) Sylvain, M. G.; Csizmadia, I. Average dipole po-
larizabilities from the unsold approximation and
ab initio data. Chem. Phys. Lett. 1987, 136, 575–
582.

(47) Roberts, R. E. Scaled Unsöld Approximation for
Atoms and Molecules. J. Chem. Phys. 1967, 47,
1873–1873.

(48) Pearson, R. G. Hard and soft acids and bases,
HSAB, part 1: Fundamental principles. J. Chem.
Educ. 1968, 45, 581.

(49) Pearson, R. G. Hard and soft acids and bases,
HSAB, part II: Underlying theories. J. Chem. Educ.
1968, 45, 643.

(50) Brinck, T.; Murray, J. S.; Politzer, P. Polarizability
and volume. J. Chem. Phys. 1993, 98, 4305–4306.

(51) Politzer, P.; Jin, P.; Murray, J. S. Atomic polar-
izability, volume and ionization energy. J. Chem.
Phys. 2002, 117, 8197–8202.

(52) Blair, S. A.; Thakkar, A. J. Relating polarizabil-
ity to volume, ionization energy, electronegativ-
ity, hardness, moments of momentum, and other
molecular properties. J. Chem. Phys. 2014, 141,
074306.

(53) Choudhary, S.; Ranjan, P.; Chakraborty, T. Atomic
polarizability: A periodic descriptor. J. Chem. Res.
2020, 44, 227–234.

(54) Yang, Y.; Lao, K. U.; DiStasio, R. A. Influence of
Pore Size on the van der Waals Interaction in Two-
Dimensional Molecules and Materials. Phys. Rev.
Lett. 2019, 122, 026001.

(55) Fedorov, D. V.; Sadhukhan, M.; Stöhr, M.;
Tkatchenko, A. Quantum-mechanical relation be-
tween atomic dipole polarizability and the van
der Waals radius. Phys. Rev. Lett. 2018, 121,
183401.

(56) Thakkar, A. J. A hierarchy for additive models of
polarizability. AIP Conf. Proc. 2012, 1504, 586–
589.

(57) Gilbert, A.; Baggott, J. E. Essentials of molecular
photochemistry; Wiley-Blackwell: Oxford, 1991.

(58) Joung, J. F.; Han, M.; Hwang, J.; Jeong, M.;
Choi, D. H.; Park, S. Deep Learning Optical Spec-
troscopy Based on Experimental Database: Po-
tential Applications to Molecular Design. JACS Au
2021, 1, 427–438.

(59) Woodward, R. B. Structure and the Absorption
Spectra of a,b-Unsaturated Ketones. J. Am. Chem.
Soc. 1941, 63, 1123–1126.

12



(60) Bahnick, D. A. Use of Huckel Molecular Orbital
Theory in Interpreting the Visible Spectra of Poly-
methine Dyes: An Undergraduate Physical Chem-
istry Experiment. Journal of Chemical Education
1994, 71, 171.

(61) Balcells, D.; Skjelstad, B. B. tmQM Dataset–
Quantum Geometries and Properties of 86k Tran-
sition Metal Complexes. J. Chem. Inf. Model.
2020, 60, 6135–6146.

(62) Montavon, G.; Rupp, M.; Gobre, V.; Vazquez-
Mayagoitia, A.; Hansen, K.; Tkatchenko, A.;
Müller, K.-R.; Von Lilienfeld, O. A. Machine learn-
ing of molecular electronic properties in chemical
compound space. New J. Phys. 2013, 15, 095003.

(63) Wang, J.; Yang, M.; Wang, G.; Zhao, J. Dipole po-
larizabilities of germanium clusters. Chem. Phys.
Lett. 2003, 367, 448–454.

(64) Alyar, H.; Kantarci, Z.; Bahat, M.; Kasap, E. In-
vestigation of torsional barriers and nonlinear op-
tical (NLO) properties of phenyltriazines. J. Mol.
Struct. 2007, 834-836, 516–520.

(65) De Proft, F.; Ayers, P. W.; Fias, S.; Geerlings, P.
Woodward-Hoffmann rules in density functional
theory: Initial hardness response. J. Chem. Phys.
2006, 125, 214101.

(66) Afzal, M. A. F.; Cheng, C.; Hachmann, J. Combin-
ing first-principles and data modeling for the ac-
curate prediction of the refractive index of organic
polymers. J. Chem. Phys. 2018, 148, 241712.

(67) Zade, S. S.; Bendikov, M. From Oligomers to Poly-
mer: Convergence in the HOMO-LUMO Gaps of
Conjugated Oligomers. Org. Lett. 2006, 8, 5243–
5246.

(68) Brédas, J. L.; Calbert, J. P.; da Silva Filho, D. A.;
Cornil, J. Organic semiconductors: A theoretical
characterization of the basic parameters govern-
ing charge transport. Proc. Natl. Acad. Sci. 2002,
99, 5804–5809.

(69) Yang, D.; Ma, D. Development of Organic Semi-
conductor Photodetectors: From Mechanism to
Applications. Adv. Opt. Mater. 2019, 7, 1800522.

(70) Narsaria, A. K.; Poater, J.; Fonseca Guerra, C.;
Ehlers, A. W.; Lammertsma, K.; Bickelhaupt, F. M.
Rational design of near-infrared absorbing or-
ganic dyes: Controlling the HOMO–LUMO gap us-
ing quantitative molecular orbital theory. J. Com-
put. Chem. 2018, 39, 2690–2696.

(71) Xu, S.; Li, J.; Cai, P.; Liu, X.; Liu, B.; Wang, X. Self-
Improving Photosensitizer Discovery System via
Bayesian Search with First-Principle Simulations.
J. Am. Chem. Soc. 2021, 143, 19769–19777.

(72) Castellani, M.; Winkler, S.; Bröker, B.; Baum-
garten, M.; Müllen, K.; Koch, N. Work function
increase of transparent conductive electrodes by
solution processed electron acceptor molecular
monolayers. Appl. Phys. A 2014, 114, 291–295.

(73) Peng, X.; Hu, L.; Qin, F.; Zhou, Y.; Chu, P. K. Low
Work Function Surface Modifiers for Solution-
Processed Electronics: A Review. Adv. Mater. In-
terfaces 2018, 5, 1701404.

(74) Kunkel, C.; Schober, C.; Margraf, J. T.; Reuter, K.;
Oberhofer, H. Finding the Right Bricks for Molec-
ular Legos: A Data Mining Approach to Organic
Semiconductor Design. Chem. Mater. 2019, 31,
969–978.

(75) Topping, J. On the mutual potential energy of a
plane network of doublets. Proc. R. Soc. London,
Ser. A 1927, 114, 67–72.

(76) Maurer, R. J.; Ruiz, V. G.; Tkatchenko, A. Many-
body dispersion effects in the binding of adsor-
bates on metal surfaces. J. Chem. Phys. 2015, 143,
102808.

(77) Widdascheck, F.; Hauke, A. A.; Witte, G. A
Solvent-Free Solution: Vacuum-Deposited Or-
ganic Monolayers Modify Work Functions of No-
ble Metal Electrodes. Adv. Funct. Mater. 2019, 29,
1808385.

(78) Naghdi, S.; Sanchez-Arriaga, G.; Rhee, K. Y. Tun-
ing the work function of graphene toward appli-
cation as anode and cathode. J. Alloys Compd.
2019, 805, 1117–1134.

(79) Seifert, G.; Porezag, D.; Frauenheim, T. Calcu-
lations of molecules, clusters, and solids with a
simplified LCAO-DFT-LDA scheme. Int. J. Quan-
tum Chem. 1996, 58, 185–192.

(80) Ambrosetti, A.; Reilly, A. M.; DiStasio, R. A.;
Tkatchenko, A. Long-range correlation energy cal-
culated from coupled atomic response functions.
J. Chem. Phys. 2014, 140, 18A508.

(81) Adamo, C.; Barone, V. Toward reliable density
functional methods without adjustable parame-
ters: The PBE0 model. J. Chem. Phys. 1999, 110,
6158–6170.

(82) Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.;
Havu, V.; Ren, X.; Reuter, K.; Scheffler, M. Ab
initio molecular simulations with numeric atom-
centered orbitals. Comput. Phys. Commun. 2009,
180, 2175–2196.

(83) Blum, L. C.; Reymond, J.-L. 970 Million Drug-
like Small Molecules for Virtual Screening in
the Chemical Universe Database GDB-13. J. Am.
Chem. Soc. 2009, 131, 8732.

13



(84) Rupp, M.; Tkatchenko, A.; Müller, K.-R.; von
Lilienfeld, O. A. Fast and accurate modeling of
molecular atomization energies with machine
learning. Phys. Rev. Lett. 2012, 108, 058301.

(85) Hait, D.; Head-Gordon, M. How accurate are
static polarizability predictions from density func-
tional theory? An assessment over 132 species
at equilibrium geometry. Phys. Chem. Chem. Phys.
2018, 20, 19800–19810.

(86) Adamo, C.; Cossi, M.; Scalmani, G.; Barone, V. Ac-
curate static polarizabilities by density functional
theory: assessment of the PBE0 model. Chem.
Phys. Lett. 1999, 307, 265–271.

(87) Hickey, A. L.; Rowley, C. N. Benchmarking quan-
tum chemical methods for the calculation of
molecular dipole moments and polarizabilities. J.
Phys. Chem. A 2014, 118, 3678–3687.

(88) O’Boyle, N. M.; Banck, M.; James, C. A.; Mor-
ley, C.; Vandermeersch, T.; Hutchison, G. R. Open
Babel: An open chemical toolbox. J. Cheminf.
2011, 3, 1–14.

(89) Haider, N. Functionality Pattern Matching as
an Efficient Complementary Structure/Reaction
Search Tool: an Open-Source Approach. Molecules
2010, 15, 5079–5092.

14



TOC Graphic

15


	Introduction
	Models for Polarizability and Frontier Orbital Energy Gap
	Results and Discussion
	First Order Linear Atomic Additive Model for Polarizability
	Case Studies for the Relation between the HOMO-LUMO Gap and Polarizability
	Clustering of Structures in the ( EHL,)-Space

	Case Study: Design of Photodetectors
	Conclusions
	Computational Methods
	Target Molecular Property Space
	Molecular Classification: Functional Groups


