
Augmented Memory: Capitalizing on Experience
Replay to Accelerate De Novo Molecular Design

Jeff Guo1,2, Philippe Schwaller1,2

1Laboratory of Artificial Chemical Intelligence (LIAC), Institut des Sciences et Ingénierie Chimiques,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

2National Centre of Competence in Research (NCCR) Catalysis,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

{jeff.guo,philippe.schwaller}@epfl.ch

Abstract

Sample efficiency is a fundamental challenge in de novo molecular design. Ide-
ally, molecular generative models should learn to satisfy desired objectives under
minimal oracle evaluations (computational prediction or wet-lab experiment). This
problem becomes more apparent when using oracles that can provide increased
predictive accuracy but impose a significant cost. Molecular generative models
have shown remarkable sample efficiency when coupled with reinforcement learn-
ing, as demonstrated in the Practical Molecular Optimization (PMO) benchmark.
Here, we propose a novel algorithm called Augmented Memory that combines data
augmentation with experience replay. We show that scores obtained from oracle
calls can be reused to update the model multiple times. We compare Augmented
Memory to previously proposed algorithms and show significantly enhanced sam-
ple efficiency in an exploitation task and a drug discovery case study requiring
both exploration and exploitation. Our method achieves a new state-of-the-art in
the PMO benchmark which enforces a computational budget, and outperforms
the previous best performing method on 19/23 tasks. The code is available at
https://github.com/schwallergroup/augmented_memory.

1 Introduction

A quintessential task in any molecular discovery campaign is identifying promising candidate
molecules amidst an enormous chemical space1. With the democratization of computing resources,
computational oracles can be deployed to query larger chemical spaces in search of the desired
property profile. The use of such oracles has enabled researchers to identify functional materials2,
therapeutics3–5, and catalysts6, thus accelerating chemical discovery. However, there is generally a
trade-off between oracle predictive accuracy and inference cost, such that the computational budget
imposes a pragmatic constraint. Provided a sufficiently sample efficient model, it is conceivable
for wet-lab experiments to be the oracle itself, as enabled by a high-throughput experimentation
platform. Correspondingly, designing computational workflows and algorithms that are performant
under minimal oracle calls is widely beneficial to the field of molecular design.

Recent advancements in de novo molecular design have positioned generative methods as a com-
plementary approach to traditional virtual screening3,7. Core advantages of these models include
the ability to sample chemical space outside the training data and by coupling an optimization
algorithm, goal-directed learning can be achieved8. Although the field is relatively nascent, molec-
ular generative models have identified experimentally validated therapeutic molecules4,5,9,10 and
organocatalysts6. An important shared commonality between these success stories is the inclusion of
relatively computationally expensive oracles that are optimized. In drug design, molecular docking is

Preprint. Under review.

https://github.com/schwallergroup/augmented_memory

frequently used while in catalyst and materials design, quantum mechanical properties are of interest.
Correspondingly, many generative models proposed in recent years have competed to demonstrate
accelerated optimization of these properties. However, the heterogeneity of the assessment protocols
makes comparisons difficult. Recently, Gao et al.11 propose the Practical Molecular Optimization
(PMO) benchmark which assesses 25 molecular generative models across 23 tasks, enforcing a
computational budget of 10,000 oracle calls. Their results show that REINVENT12,13, a recurrent
neural network (RNN)-based generative model operating on simplified molecular-input line-entry
system (SMILES)14 is, on average, the most sample efficient generative model. REINVENT12,13 uses
a policy-based reinforcement learning (RL) algorithm to optimize a reward function in a goal-directed
approach. Recently, alternative algorithms have been proposed in the form of Best Agent Reminder
(BAR)15 and Augmented Hill Climbing (AHC)16 which both introduce bias towards high rewarding
molecules to improve sample efficiency. Other studies show that experience replay, where the highest
rewarding molecules sampled are stored and replayed to the model, improves sample efficiency.10,13

More recently, Bjerrum et al.17 proposed Double Loop RL to take advantage of the non-injective
nature of SMILES and the ease with which they can be augmented. By obtaining different SMILES
sequences for the same molecule, oracle scores can be re-used to perform multiple updates to the
Agent. Their results show accelerated learning while maintaining the diversity of results, an aspect
missing in many proposed benchmarks.

Sample efficiency is a limiting factor to enabling more exploration of chemical spaces of interest,
such as in drug discovery where the reward is sparse, i.e., finding a needle in the haystack. In this
paper, we highlight the importance of experience replay in policy-based RL algorithms for molecular
generation. We propose a novel algorithm called Augmented Memory that combines experience
replay with SMILES augmentation. We further propose Selective Memory Purge which removes
entries in the replay buffer with undesired chemical scaffolds and jointly address sample efficiency
and diversity. The main contributions of this paper are:

• We explicitly highlight the importance of experience replay on the sample efficiency of
REINVENT and all proposed algorithmic modifications.

• We propose a novel algorithm called Augmented Memory which significantly outperforms
all previous algorithms in sample efficiency. This is demonstrated in an exploitation task
and a drug discovery case study.

• We propose a method called Selective Memory Purge, which can be used in conjunction
with Augmented Memory to generate diverse molecules while retaining enhanced sample
efficiency.

• We expand the PMO benchmark11 by adding Augmented Memory and BAR15 implemen-
tations. We further add experience replay to the implemented version of AHC16,18 for
comparison. Our algorithm achieves a new state-of-the-art and outperforms the previous
state-of-the-art, REINVENT12,13, on 19/23 tasks.

2 Related Work

Goal-directed Molecular Design with Policy-based Reinforcement Learning. Molecular genera-
tion can be framed as a policy-based RL problem, where a base model (Prior) is trained on a general
dataset and fine-tuned (Agent) to generate molecules with desired property profiles. Existing works
that follow this paradigm include SMILES-based RNNs12,13,19–22, generative adversarial networks
(GANs)23–27, variational autoencoders (VAEs)4,28,29, graph-based models15,30–32, and GFlowNets33.
Other RL methods include using a policy network to choose favourable actions in a genetic algo-
rithm34 and learning a value function instead of a policy35. While all methods can generate valid
molecules and the policy can be fine-tuned via RL, none of the previous methods jointly address
sample efficiency and a reliable mechanism to mitigate mode collapse. We note that GFlowNets33

by construction can achieve diverse sampling but are not as sample efficient as demonstrated in the
PMO benchmark11. By contrast, SMILES-based models, particularly REINVENT12,13, have been
shown to be amongst the most sample efficient molecular generative models, even when compared to
the newest proposed models11. Moreover, their ability to learn complex molecular distributions36

and satisfy multi-parameter optimization (MPO) objectives has been shown in diverse benchmarks,
such as GuacaMol37, MOSES38, and PMO11. Our proposed Augmented Memory algorithm builds
on this observation and exploits the non-injective nature of SMILES.

2

Sample Efficiency in Molecular Design. Many existing policy-based RL works for molecular
design are based on the REINFORCE39 algorithm, particularly for models operating on SMILES.
Algorithmic alternatives present a unifying theme of using biased gradients to direct the policy
towards chemical space with high reward. Neil et al.40 explored Hill Climbing (HC) and Proximal
Policy Optimization (PPO)40. Similarly, Atance et al. introduced Best Agent Reminder (BAR)15

which keeps track of the best agent and reminds the current policy of favorable actions. Thomas et al.
introduced Augmented Hill Climbing (AHC)16, a hybrid of HC and REINVENT’s algorithm, which
updates the policy at every epoch using only the top-k generated molecules and shows improved
sample efficiency. However, sample efficiency by itself is not sufficient for practical applications of
molecular generative models as one should aim to generate diverse molecules that satisfy the objective
function. To address this limitation, Bjerrum et al. built directly on REINVENT and introduced
Double Loop RL17. By performing SMILES augmentation, the policy can be updated numerous
times per oracle call. Their results showed improved sample efficiency compared to AHC, while
maintaining diverse sampling.

Experience Replay for Molecular Design. Experience replay was first proposed by Lin et al.41 as
a mechanism to replay past experiences to the model so that it can learn from the same experience
numerous times. Two paradigms in RL are on-policy and off-policy where the model’s actions
are dictated by its current policy or a separate policy known as the behavior policy, respectively42.
Experience replay is usually applied in off-policy methods as past experiences are less likely to
be applicable to the current policy. In molecular design, experience replay has been proposed by
Blaschke et al.13,43 and Korshunova et al.10 to keep track of the best molecules sampled so far, based
on their corresponding reward. Notably, both applications of experience replay are for on-policy
learning using the REINFORCE39 algorithm and only Korshunova et al. empirically show its benefit
in sparse reward environments. We note that a similar mechanism was proposed by Putin et al.25

using an external memory.

3 Proposed Method: Augmented Memory

In this work, we extend the observations by Korshunova et al.10 and explicitly show the benefit of
experience replay in dense reward environments, i.e., most molecules give at least some reward, for
on-policy learning given a static objective function. This static nature means that regardless of the
current policy, high-rewarding molecules will always receive the same reward, which supports the
efficacy of experience replay in the on-policy setting for molecular generation. Next, we combine
elements of HC and SMILES augmentation with experience replay, and propose to update the policy
at every fine-tuning epoch using the entire replay buffer. A reward shaping mechanism44 is introduced
by using these extremely biased gradients towards high rewarding chemical space which we show
significantly improves sample efficiency. This section describes each component of Augmented
Memory (Figure 1), which is capable of performing MPO.

Squared Difference Loss. The molecular generative model builds directly on REINVENT12,13

and is an autoregressive SMILES-based RNN using long short-term memory (LSTM)45 cells. The
generative process is cast as an on-policy RL problem by defining the state space, St, and the
action space, At(st). Since REINVENT is a language model and samples tokens, St denotes every
intermediate sequence of tokens leading up to the fully constructed SMILES and At(st) are the token
sampling probabilities at every intermediate state. At(st) is controlled by the policy, πθ, which is
parameterized by the RNN. An assumption is that the SMILES (x) generation process is Markovian
(Equation 1):

P (x) =

T∏
t=1

P (st | st−1, st−2, . . . , s1) (1)

The Augmented Likelihood is defined as a linear combination between the Prior Likelihood and
the scoring function, S, which returns a reward denoting the desirability of a given molecule and
modulated by a hyperparameter sigma, σ (Equation 2). The Prior Likelihood term acts to ensure the
generated SMILES are syntactically valid, and has been shown to empirically enforce reasonable
chemistry12,16.

3

Figure 1: Augmented Memory. (a) The proposed method proceeds via four steps: 1. generate a
batch of SMILES according to the current policy. 2. Compute the reward for the SMILES given
the objective function. 3. Update the replay buffer to keep only the top K molecules. Optionally,
remove molecules from the replay buffer to discourage further sampling of specific scaffolds. Perform
SMILES augmentation of both the sampled batch and the entire replay buffer. 4. Update the Agent
and repeat step 3 N times. (b) Schematic of the intended behavior. Augmenting the entire replay
buffer and updating the Agent repeatedly directs chemical space exploration to areas of high reward.

log πθAugmented
= log πθPrior

+ σS(x) (2)

The policy is directly optimized by minimizing the squared difference between the Augmented
Likelihood and the Agent Likelihood given a sampled batch, B, of SMILES constructed following
the actions, a ∈ A∗ (Equation 3):

L(θ) =
1

|B|

[∑
a∈A∗

(log πθAugmented
− log πθAgent

)

]2

(3)

Taking the gradient of the loss function yields Equation 4:

∇θL(θ) = −2
1

|B|

[∑
a∈A∗

log πθAugmented
− log πθAgent

] ∑
a∈A∗

∇θ log πθAgent
(4)

Equivalency of the Squared Difference Loss to Policy Gradient Optimization. Minimizing the
loss function described in Equation 3 is equivalent to maximizing the expected reward. To show this
equivalency, we follow Fialková et al.46 and start with the following objective, where R is the reward
function (Equation 5):

J(θ) = Eat∼πθ

[
T∑

t=0

R(at, st)

]
(5)

Following the REINFORCE39 algorithm and applying the log-derivative trick yields Equation 6 for
the gradient:

∇θJ(θ) = Eat∼πθ

[
T∑

t=0

R(at, st)∇θ log πθ(at|st)

]
(6)

4

Computing the expectation is intractable and is instead approximated using the mean of a sampled
batch, B, of SMILES constructed by choosing actions, a ∈ A∗. Further noting that log πθ(at|st) =
log πθAgent

yields Equation 7:

∇θJ(θ) =
1

|B|

[
T∑

t=0

∑
a∈A∗

R(at, st)∇θ log πθAgent

]
(7)

Finally, the reward is defined as R(at, st) = log πθAugmented
−log πθAgent

. The corresponding gradient
expression (Equation 7) is now equivalent to the gradient of the loss function (Equation 4) up to a
constant factor. Further details on the derivation and algorithm is in Appendix K.

SMILES Augmentation. SMILES are non-injective and yield different sequence representations
given a different atom numbering in the molecular graph, i.e., augmented SMILES. SMILES-based
molecular generative models have taken advantage of this to train performant models under low-data
regimes, e.g., by artificially increasing the dataset size via data augmentation47, and to increase
chemical space generalizability48 by training a Prior model on augmented SMILES. Similar to
Bjerrum et al.17, we reuse scores obtained from the oracle to update the Agent multiple times by
passing different augmented SMILES representations.

Experience Replay. Experience replay is implemented as a buffer that stores a pre-defined maximum
number of the highest rewarding SMILES sampled so far (100 in this work). Usually, during each
sampling, a subset of the buffer is replayed to the Agent13. In our proposed method, all SMILES in
the buffer are augmented and using their corresponding reward, the Agent is updated multiple times
according to the loss function given in Equation 3.

Selective Memory Purge. Blaschke et al.43 introduced memory-assisted RL to enforce diverse
sampling in REINVENT via diversity filters (DFs). During the generative process, the scaffolds
of sampled molecules are stored in ’buckets’ with pre-defined and limited size. Once a bucket has
been fully populated, further sampling of the same scaffold results in zero reward. We incorporate
this heuristic in our proposed method called Selective Memory Purge to enforce diversity. At every
epoch, the replay buffer is purged of any scaffolds that are penalized by the DF. The effect is that
each augmentation round only updates the Agent with scaffolds that still receive reward, preventing
the Agent from becoming myopic and leading to sub-optimal convergence.

4 Results & Discussion

We designed three experiments to assess our method. First, we explicitly demonstrate the importance
of experience replay and identify optimal parameters for Augmented Memory using the Aripiprazole
Similarity experiment. Next, we benchmark its performance on the Practical Molecular Optimization
(PMO)11 benchmark containing 23 tasks. Lastly, we demonstrate the practical applicability of our
method on a Dopamine Type 2 Receptor (DRD2) drug discovery case study.

Baselines. In experiments 1 and 3, the baseline algorithms include REINVENT12,13, Augmented Hill
Climbing (AHC)16, Best Agent Reminder (BAR)15, and Double Loop RL17 as all algorithms are for-
mulated using REINVENT’s12,13 loss function with shared hyperparameters. Thus, the experiments
isolate the effect of SMILES augmentation and experience replay on sample efficiency. Moreover,
SMILES-based models are strong baselines as demonstrated in the GuacaMol37, MOSES38, and
PMO11 benchmarks. In the PMO11 benchmarking experiment, we compare our method’s perfor-
mance to diverse molecular optimization models. The Appendix includes further details on the
dataset, hyperparameters, and ablation studies.

4.1 Aripiprazole Similarity

The aripiprazole similarity task is from the GuacaMol benchmark37 and the objective is to successfully
sample aripiprazole. This experiment was used to demonstrate the importance of experience replay
and compare Augmented Memory to existing policy-based algorithms. As the code for Double Loop
RL is not released, we took the values reported in their paper which holds as the method was also
built directly on REINVENT12,13, uses the same pre-trained Prior, and hyperparameters. Moreover,

5

Figure 2: Augmented Memory and Selective Memory Purge significantly improve sample efficiency
and enable diverse sampling. The shaded region represents the minimum and maximum scores
across triplicate runs. (a) Comparing sample efficiency of on-policy algorithms. Experience Replay
(ER) improves all base algorithms. The values for Double Loop RL17 are taken from the original
paper as the code is not released. The black dots are the mean at 0.5 and 0.8 and the standard
deviation across triplicate runs. (b) The average score for aripiprazole similarity. In the Diversity
Filter and Memory Purge experiments, scores of 0 are given if the Agent repeatedly samples the same
scaffold. (c) Pooled Tanimoto similarities. Memory purge rediscovers aripiprazole and has a flatter
distribution, suggesting increased exploration. (d) UMAP49 of Morgan fingerprints50 and IntDiv138

metric showing qualitatively and quantitatively increased exploration using Memory Purge. The plots
were generated using ChemCharts51 (e) The negative log-likelihood of sampling aripiprazole across
the full generative experiments.

in the studies presenting AHC16 and BAR15, experience replay was not used but we provide an
implementation and further compare their performance.

Experience Replay is Vital for Sample Efficiency. We first identified the optimal number of aug-
mentation rounds for Augmented Memory as two for training stability. Increasing the augmentation
rounds can further improve sample efficiency but can lead to mode collapse (Appendix A). Next, we
compare REINVENT12,13, AHC16, BAR15, and Double Loop RL17 with our method. Figure 2 plots
the number of oracle calls to explicitly highlight the computational budget. Augmented Memory
significantly outperforms all other algorithms and reaches a score of 0.8 with 6,144 oracle calls
(average over 100 replicates). Double Loop RL17 uses experience replay and is the second most
sample efficient algorithm and reaches a score of 0.8 after 12,416 ± 1,984 oracle calls (as stated in
their paper), which is twice the number of oracle calls required compared to our method. Moreover,
the key observation we convey is that experience replay improves upon the base algorithm in all cases
(Figure 2). For example, AHC16 with the newly implemented experience replay reaches a score of
0.8, but with more than 2.5x the oracle calls (15,552). Our observations around experience replay are
supported by previous works10,13. Finally, we show that augmentation is crucial for the enhanced
sample efficiency in Appendix D.

Selective Memory Purge Enables Diverse Sampling while Retaining Efficiency. Figure 2 demon-
strates the enhanced sample efficiency of Augmented Memory but real-world applications of molecu-
lar generative models require the ability to sample diverse solutions. While aripiprazole is inherently
an exploitation task, it can be framed as an exploration task if the goal is rephrased as: rediscover the

6

target molecule and generate similar molecules. Using this formulation, we design experiments to
prove that Augmented Memory can achieve diverse sampling. Figure 2 shows the training plot across
three methods: pure exploitation where diversity is not enforced, exploration using a diversity filter
(DF)43, and Selective Memory Purge. In the pure exploitation scenario, aripiprazole is rediscovered
quickly (score of 1.0). In the DF experiment where a score of 0 is assigned for scaffolds sampled more
than 25 times, mode collapse is observed (Figure 2). By contrast, Selective Memory Purge maintains
a moderate average score. The results from triplicate experiments were pooled to investigate the
density of aripiprazole similarities (Figure 2). As expected, in the pure exploitation scenario, most
molecules are aripiprazole (Tanimoto similarity of 1.0). DF and Selective Memory Purge both enforce
a wider distribution of similarities, but to varying degrees. In the shaded region (rediscovery score),
Selective Memory Purge only shows a small density relative to DF. Moreover, Selective Memory
Purge shows a flatter distribution of similarities. These observations demonstrate that Selective
Memory Purge rediscovers the target molecule and enforces increased exploration compared to DF.
To investigate this further, the Morgan fingerprints50 of the same pooled dataset were embedded
using Uniform Manifold Approximation and Projection (UMAP)49 to visualize the chemical space.
Qualitatively and quantitatively, Selective Memory Purge covers a larger chemical space (Figure 2).
The internal diversity (IntDiv1) metric was calculated as proposed in the MOSES benchmark38, and
measures the diversity within a set of generated molecules. Finally, we save the Agent states at every
5 epochs across the entire generative run and trace the NLL of sampling aripiprazole (Figure 2). It is
evident that Selective Memory Purge can discourage sampling of the target molecule more effectively
than only using a DF. Importantly, the NLL also diverges, suggesting that the Agent is increasingly
moving to chemical space dissimilar to aripiprazole as the generative experiment progresses.

4.2 Practical Molecular Optimization (PMO) Benchmark

Table 1: Performance of Augmented Memory, REINVENT12,13, AHC16, and BAR15 on the PMO
benchmark11. The mean and standard deviation of the AUC Top-10 is reported. The values obtained
for REINVENT differ slightly from the PMO paper as we performed 10 independent runs compared
to 5. Best performance is bolded and is relative to all models in the benchmark. * denotes superior
performance to REINVENT but not overall, compared to other models in the benchmark. We note
however, that we take the AUC Top-10 values for the other models as is from the PMO paper. If
they were re-run with 10 different seeds (instead of 5), the values may decrease as was observed for
REINVENT.

Benchmark Augmented REINVENT AHC BAR AHC BAR
Task Memory Replay Replay

albuterol_similarity 0.913 ± 0.009 0.871 ± 0.031 0.792 ± 0.030 0.700 ± 0.024 0.745 ± 0.024 0.633 ± 0.031
amlodipine_mpo 0.691 ± 0.047 0.657 ± 0.025 0.596 ± 0.023 0.538 ± 0.019 0.578 ± 0.012 0.523 ± 0.006

celecoxib_rediscovery 0.796 ± 0.008 0.717 ± 0.048 0.697 ± 0.029 0.563 ± 0.043 0.583 ± 0.070 0.437 ± 0.025
deco_hop 0.658 ± 0.024 0.672 ± 0.052 0.650 ± 0.030 0.589 ± 0.010 0.632 ± 0.032 0.579 ± 0.008

drd2 0.963 ± 0.006∗ 0.939 ± 0.012 0.913 ± 0.011 0.916 ± 0.012 0.912 ± 0.009 0.899 ± 0.027
fexofenadine_mpo 0.859 ± 0.009 0.783 ± 0.021 0.747 ± 0.004 0.708 ± 0.010 0.749 ± 0.005 0.692 ± 0.009

gsk3b 0.881 ± 0.021 0.870 ± 0.026 0.819 ± 0.025 0.744 ± 0.021 0.800 ± 0.021 0.686 ± 0.068
isomers_c7h8n2o2 0.853 ± 0.087 0.856 ± 0.042 0.682 ± 0.037 0.741 ± 0.064 0.631 ± 0.084 0.713 ± 0.058

isomers_c9h10n2o2pf2cl 0.736 ± 0.051∗ 0.641 ± 0.038 0.276 ± 0.133 0.612 ± 0.054 0.191 ± 0.096 0.508 ± 0.066
jnk3 0.739 ± 0.110 0.723 ± 0.147 0.649 ± 0.056 0.555 ± 0.089 0.616 ± 0.092 0.511 ± 0.092

median1 0.326 ± 0.013 0.368 ± 0.011 0.346 ± 0.008 0.286 ± 0.007 0.338 ± 0.014 0.269 ± 0.011
median2 0.291 ± 0.008∗ 0.279 ± 0.005 0.273 ± 0.005 0.218 ± 0.008 0.265 ± 0.005 0.199 ± 0.006

mestranol_similarity 0.750 ± 0.049 0.637 ± 0.041 0.599 ± 0.031 0.463 ± 0.027 0.561 ± 0.022 0.444 ± 0.017
osimertinib_mpo 0.855 ± 0.004 0.836 ± 0.007 0.810 ± 0.003 0.789 ± 0.012 0.809 ± 0.002 0.792 ± 0.004
perindopril_mpo 0.613 ± 0.015 0.561 ± 0.019 0.487 ± 0.012 0.468 ± 0.012 0.482 ± 0.008 0.455 ± 0.011

qed 0.942 ± 0.000 0.941 ± 0.000 0.941 ± 0.000 0.939 ± 0.003 0.941 ± 0.000 0.932 ± 0.007
ranolazine_mpo_mpo 0.801 ± 0.006 0.768 ± 0.008 0.721 ± 0.00 0.704 ± 0.017 0.722 ± 0.008 0.700 ± 0.021

scaffold_hop 0.567 ± 0.008 0.556 ± 0.019 0.535 ± 0.007 0.477 ± 0.010 0.525 ± 0.008 0.464 ± 0.005
sitagliptin_mpo 0.284 ± 0.050∗ 0.049 ± 0.067 0.022 ± 0.008 0.126 ± 0.049 0.028 ± 0.011 0.070 ± 0.020

thiothixene_rediscovery 0.550 ± 0.041∗ 0.531 ± 0.036 0.519 ± 0.012 0.396 ± 0.011 0.467 ± 0.032 0.347 ± 0.013
troglitazone_rediscovery 0.540 ± 0.048 0.428 ± 0.028 0.409 ± 0.020 0.301 ± 0.007 0.371 ± 0.019 0.279 ± 0.007

valsartan_smarts 0.000 ± 0.000 0.091 ± 0.273 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zaleplon_mpo 0.394 ± 0.026 0.269 ± 0.083 0.072 ± 0.032 0.319 ± 0.033 0.047 ± 0.013 0.294 ± 0.014

Sum of AUC Top-10 (↑) 15.002 14.016 12.555 12.152 11.993 11.426
PMO Rank (n/29) 1 2 7 9 11 14

7

The main motivation of our method is to improve sample efficiency. This would enable molecular
generative models to explicitly optimize more expensive oracles which can afford increased predictive
accuracy. We benchmark our method on the PMO benchmark proposed by Gao et al.11 which restricts
the number of oracle calls to 10,000 and encompasses 23 tasks. The metric used is the Area Under
the Curve (AUC) for the top 10 molecules. We note that Thomas et al.18 proposed a modified
AUC Top-10 metric that incorporates diversity, but we omit comparison as the formulation can be
subjective. The current Top AUC-10 metric assesses sample efficiency which is our focus. In the
original PMO paper, REINVENT12 (with experience replay) is the most sample efficient model. We
compare our method directly to REINVENT, BAR15, and AHC16 which reports improved sample
efficiency compared to REINVENT and is open-sourced. We also add experience replay to BAR and
AHC to highlight its importance for sample efficiency. For a more statistically convincing comparison,
we perform 10 independent runs (using 10 different seeds) compared to 5 used in the original PMO11

paper as the authors benchmarked 25 models, which imposed a significant computational cost. The
optimal hyperparameters for REINVENT and AHC were used as provided in the PMO repository.
We perform hyperparameter optimization for BAR following the PMO protocol (Appendix G) and
Augmented Memory was run using REINVENT’s optimal hyperparameters. The results show
Augmented Memory significantly outperforms all methods and achieves superior performance to
REINVENT across 19/23 tasks (14/23 compared to all models in PMO11) (Table 1). Moreover, the
results reinforce the importance of experience replay as it improves the sample efficiency of both
BAR and AHC, although neither outperform REINVENT. Finally, in the PMO paper11, models were
ranked based on the sum of the total AUC Top-10 and adjacently ranked models typically differ
by 0.3-0.5. Augmented Memory outperforms REINVENT by 0.986 AUC Top-10 and yields a new
state-of-the-art performance on the PMO benchmark.

4.3 Dopamine Type 2 Receptor (DRD2) Case Study

To prove that Augmented Memory can perform MPO, we formulate a case study to generate potential
dopamine type 2 receptor (DRD2) inhibitors52 by explicitly optimizing molecular docking scores
(Figure 3). For accessibility and reproducibility, we use the open-source AutoDock Vina53 for
docking. A well-known failure mode of docking algorithms is they reward lipophilic molecules, e.g.,
possessing many carbon atoms, which can be promiscuous binders54,55. Bjerrum et al.17 consider
this and enforced molecules to possess a molecular weight (MW) < 500 Da but this is insufficient
in preventing exploitation of the docking algorithm as we show in Appendix E. Following Guo et
al.56, we design the MPO as follows: MW < 500 Da, maximize QED57, and minimize the Vina
docking score, for chemical plausibility. AutoDock Vina is a relatively expensive oracle and we
impose a computational budget of 9,600 oracle calls, similar to the 10,000 oracle calls enforced in the
PMO11 benchmark. We compare Augmented Memory, REINVENT12,13, AHC16, and BAR15 as the
optimization algorithms. To mimic a real-world drug discovery pipeline that discards unpromising
molecules, we pool the results from triplicate experiments with the following filter: MW < 500 Da,
QED > 0.4 (the DRD2 drug molecule, risperidone, has a QED of 0.66), and Vina docking score
< -9.4 (risperidone’s score). Figure 3 shows the docking scores distribution with the number of
molecules passing the filter and the IntDiv138 score annotated. Firstly, experience replay improves
all base algorithms, further reinforcing its importance. Secondly, all algorithms with the exception
of Augmented Memory perform similarly. Compared to AHC with experience replay, which is the
second most sample efficient algorithm, Augmented Memory generates over 2,000 more molecules
with a better docking score than risperidone, with a small trade-off in diversity (IntDiv138 of 0.801).
We emphasize that AHC with experience replay only generates 1,667 molecules passing the filter.
To further prove the optimization capability, Figure 3 shows a contour plot of the QED-Vina score
distribution for Augmented Memory and AHC with experience replay. It is clear that the joint
QED-Vina score distribution for Augmented Memory is shifted to higher QED values and lower Vina
scores. The black dot is risperidone and the bulk density of AHC does not possess a better docking
score. Finally, Figure 3 shows an example binding pose of a molecule generated using Augmented
Memory. We highlight that the chemical plausibility of the structure is enforced precisely because
MW and QED are also included in the MPO objective, thus representing a more realistic case study.

8

Figure 3: Dopamine type 2 receptor (DRD2) molecular docking case study. PDB ID: 6CM4. (a)
Docking scores distribution of all compared algorithms. (b) Augmented Memory jointly optimizes
QED and Vina docking score, demonstrating the ability to perform MPO. (c) Binding pose of a
generated molecule using Augmented Memory. The three components in the objective function: MW
< 500, QED, and Vina docking score are all optimized.

9

5 Conclusion

In this work, we explicitly show that experience replay is vital for sample efficiency. We propose
Augmented Memory which capitalizes on this observation and applies SMILES augmentation
on the replay buffer to update the Agent multiple times per oracle call. Compared to existing
algorithms, Augmented Memory significantly improves sample efficiency and is able to generate
diverse molecules using the newly proposed Selective Memory Purge heuristic. We benchmark
Augmented Memory on the PMO benchmark11 and achieve a new state-of-the-art performance,
outperforming the previous state-of-the-art on 19/23 tasks and by a total sum of 0.986 AUC Top-10.
Next, we show the practical application of Augmented Memory by mimicking a more realistic
drug discovery task. Our method significantly outperforms existing algorithms, as assessed by
the property profile of the generated molecules, and can perform MPO. Moreover, we note that in
particularly sparse reward landscapes10, the enhanced sample efficiency of Augmented Memory
may be diminished as it becomes more difficult to populate the replay buffer with high rewarding
molecules. Future work will investigate this scenario thoroughly and algorithmic modifications to
couple additional local chemical space exploration58 around high rewarding molecules may better
handle sparsity. This work opens up future integration of Augmented Memory with curriculum
learning59,60, the use of more expensive oracles given a limited computational budget, and provides
further insights into experience replay for molecular generative models.

10

A Tolerability to Augmentation Rounds

Figure 4: Identifying the optimal augmentation rounds using Aripiprazole Similarity. The shaded
region represents the minimum and maximum scores across triplicate runs.

Similar to Esben et al.17 in their proposed Double Loop RL algorithm, increasing the number of
augmentation rounds increases susceptibility to mode collapse (Figure 4). We used the Aripiprazole
Similarity task to perform a grid optimization and found two rounds to be optimal for stability. At
three rounds, mode collapse is already observed with triplicate runs.

B Pure Exploitation: Robustness of 2 Augmentation Rounds

Table 2: Robustness experiments: stability of two augmentation rounds. 100 replicates of Aripiprazole
Similarity was performed using 2 augmentation rounds and the epoch number to reach various average
scores are presented. The values for Double Loop RL17 are for 10 augmentations which the authors
state to be most stable

Average Score Mean Epochs Double Loop RL Mean Epochs
0.5 65± 6 93± 9

0.8 99± 23 194± 31

0.9 122± 19 did not report

Initial screening experiments identified two augmentation rounds to be optimal for training stability.
We envisioned in pure exploitation scenarios where Selective Memory Purge is not used, mode

11

collapse may be possible. The rationale being that the Agent is reinforced on the same replay buffer
molecules. In the case where the entire replay buffer contains very similar or identical molecules,
mode collapse may occur. This is not an issue when using Selective Memory Purge as entries
in the replay buffer would be removed, thus preventing the entire buffer containing the same
molecules. We verified this statement by performing 100 replicates of Aripiprazole Similarity
using Selective Memory Purge. All replicates rediscovered Aripiprazole, indicating no mode
collapse at sub-optimal minima.

In most practical applications of molecular generative models, Selective Memory Purge should
be used to achieve both exploration and exploitation. However, for full transparency, we report
the stability of our proposed method in a pure exploitation scenario. The following insights will
be informative if prospective users only want to generate one optimal solution in their generative
experiment or want to reproduce the Aripiprazole Similarity experiment. To preemptively prevent
mode collapse, we introduce "mode collapse guard" that purges the replay buffer if 50 percent
of the buffer contains the exact same reward. For statistical rigour, we perform 100 replicates of
Aripiprazole Similarity and present the results in Table 2. We follow Bjerrum et al.17 and present
statistics on the epochs it takes to reach various average scores (average Tanimoto similarity of the
batch of sampled molecules to aripiprazole) of 0.5, 0.8, and 0.9. The results support the stability of
our method even in pure exploitation scenarios. The "mode collapse guard" was activated 16 times
across 100 replicates and in all cases except 4, prevents mode collapse. The exceptions failed to
rediscover aripiprazole (mode collapse at a Tanimoto similarity of 0.88). In practical applications,
the experiment can be monitored and restarted from a check-point state. Moreover, we comment
on the number of epochs it takes to reach an average score of 0.8 and 0.9 which are, in both cases,
much lower than Double Loop RL17. In particular, even at three standard deviations from the mean,
the epochs it takes our method is faster than Double Loop RL. We further note that it is unclear if
running their algorithm for 100 replicates would still be stable as it is not open-sourced. Overall, in
pure exploitation scenarios, mode collapse can be observed but is not a problem if Selective Memory
Purge is used. We highlight the practical usage of Augmented Memory with Selective Memory Purge
to generate diverse molecules on the DRD2 case study in the main results and in Appendix E. Our
method is consistently stable.

We end this section by further discussing the choice to use a "mode collapse guard" and why it is
not just to make our method look more robust. The insights in this section are for transparency on
our method but also positions the work for future integration with curriculum learning (CL)59,60. In
curriculum learning, a complex objective function is decomposed into simpler sequential tasks to
accelerate the learning process. It may be advantageous to enforce pure exploitation for intermediate
tasks as the objective is to learn as quickly as possible this task before moving to the successive task.
In this case, enforcing diversity could be counterproductive. While mode collapse is rare, as discussed
above, its possibility decreases the robustness of a direct CL integration. Leveraging the insights from
this section, a lenient Selective Memory Purge (allowing a larger number of identical scaffolds to be
sampled before penalization) can be applied on top of CL to retain Augmented Memory’s sample
efficiency while also capitalizing on benefits of CL.

C Buffer Size Experiments and Reinforcing with Only Experience Replay

As Augmented Memory revolves around exploiting experience replay, we investigate the efficacy of
our method when using different buffer sizes (Figure 5). We again use the Aripiprazole Similarity
task to assess the proposed changes. Interestingly, with the exception of a buffer size of 25, minimal
difference is observed between buffer sizes. We posit that a buffer size of 25 is more susceptible to
mode collapse as it is increasingly likely that the stored molecules are all identical or similar relative
to having a larger buffer size. Conversely, our initial hypothesis was that a larger buffer size would
decrease sample efficiency. The rationale is that relatively low rewarding molecules may be stored in
the buffer and reinforcing on these low rewarding molecules could be counterproductive. Following
experiments (Figure 5), this was not the case, at least for the Aripiprazole Similarity task. Given
that the differences in the buffer sizes result in minimal difference and that our hypothesis may be
true for other objective functions, we decided to use a buffer size of 100 for main result experiments.
Next, we were curious if reinforcing the Agent with only the molecules in the replay buffer would be
possible. In these experiments, the sampled molecules in a given epoch were only used to reinforce
the Agent once and no augmented forms were used to further reinforce the Agent. Interestingly,

12

Figure 5: Investigating changes in the replay buffer size and reinforcing the Agent only with molecules
stored in the replay buffer. The shaded region represents the minimum and maximum scores across
triplicate runs.

minimal difference is observed again (Figure 5). Since the performance is similar, we hypothesize
that using augmented forms of the sampled molecules would act to mitigate against mode collapse.
This is in agreement with insights from Arús-Pous et al.48 that posit SMILES augmentation acts as a
regularizer. Therefore, all main result experiments were performed using augmented SMILES from
the sampled batch and the buffer.

D Ablation Study: SMILES Augmentation is a Regularizer

Table 3: Stability without SMILES augmentation. 100 replicates of Aripiprazole Similarity was
performed using 2 augmentation rounds (but without SMILES augmentation) and the epoch number
to reach various average scores are presented. Failed runs did not reach the average score threshold.
The epoch numbers for the runs with augmentation are shown in parenthesis for comparison.

Average Score Mean Epochs Failed Runs
0.5 69(65)± 8(6) 0
0.8 119(99)± 41(23) 3
0.9 159(122)± 47(19) 14

The results in the main text show that experience replay is vital for sample efficiency. In this section,
the question we answer is: "can we just perform multiple rounds of Agent update with the entire
replay buffer without SMILES augmentation?" If yes, then the benefits of Augmented Memory
can be attributed to simply experience replay. The experimental design is as follows: using the
Aripiprazole Similarity experiment, perform two rounds of Agent update using the entire buffer
(size of 100) without SMILES augmentation. This mirrors the optimal parameters of Augmentation
Memory of two augmentation rounds and a buffer size of 100. For statistical rigour, we perform
100 replicates and present the results in Table 3. Compared to Augmented Memory, the average
epochs it takes to reach an average score of 0.5, 0.8, and 0.9 is higher (values with augmentation are
shown in parentheses and is from Table 2). Importantly, the standard deviation is also much higher,
suggesting instability in the runs. This is further supported by some runs not reaching the 0.8 and
0.9 average score thresholds. While monitoring the sampling, we notice that the Agent repeatedly
samples the same SMILES, indicating mode collapse. From a probabilistic perspective, the Agent
negative log-likelihoods (NLLs) become focused on the replay buffer sequences, suggesting token-
level memorization. These insights are supported by previous work from Arús-Pous et al.48 which
explored the effect of SMILES augmentation on the Prior’s NLL on the training data. Specifically,
they found that training a Prior without SMILES augmentation can cause token-level memorization,

13

such that the NLL for the specific SMILES sequences in the training data are low. This decreases the
generalizability of the trained Prior. Bjerrum et al.17 in their Double Loop RL work also posit that
reinforcing the Agent on augmented SMILES prevents sequence-wise mode collapse. Our results
are in agreement and we show that SMILES augmentation is necessary to ensure the efficacy of
Augmented Memory and is itself a regularizer.

E Dopamine Type 2 Receptor (DRD2) Case Study: Exploiting AutoDock Vina

Figure 6: Dopamine type 2 receptor (DRD2) case study using the objective function: molecular
weight < 500 Da and minimize Vina docking score. Augmented Memory significantly outperforms
other algorithms. The generated molecules, however, are not realistic and shows that Augmented
Memory can exploit objective functions in a sample efficient manner.

This section elaborates on the statement that the experimental design of Bjerrum et al.17 in their
Double Loop RL work is insufficient in preventing AutoDock Vina53 exploitation. Specifically,
the drug discovery case study to design potential dopamine type 2 receptor (DRD2) inhibitors was
performed using the following objective function: molecular weight (MW) < 500 Da, maximize QED,
and minimize docking score. This is in contrast to the objective function proposed by Bjerrum et al.17:
molecular MW < 500 Da and minimize docking score. We perform a set of experiments comparing
the sample efficiency of alternative algorithms including REINVENT12,13, Best Agent Reminder
(BAR)15, and Augmented Hill Climbing (AHC)16 using this simplified objective function. Similar to
the main result experiments, we ran all experiments enforcing an oracle budget of 9,600 calls and
show the distribution of Vina scores from triplicate pooled runs. The following filter was applied:
MW < 500 Da and Vina score < -9.4 (the Vina score of the reference drug molecules, risperidone). It
is evident that Augmented Memory significantly outperforms other algorithms, generating drastically

14

better docking scores and more molecules passing the filter. Moreover, experience replay improves
the performance of all base algorithms. However, we investigate the property profile of the generated
molecules in the Augmented Memory experiments and show that the Agent exploits AutoDock Vina
in rewarding lipophilic molecules, i.e., all top scoring molecules have extensive aromatic carbon
rings (Figure 6). These molecules, while possessing excellent Vina scores, are not realistic. As we
emphasize the usability of Augmented Memory on more realistic case studies to encourage practical
applications, we show the set of experiments which also enforce QED57 in the main results. QED
ensures generated molecules are "drug-like". We end this section by emphasizing that the ability of
Augmented Memory to exploit AutoDock Vina is not a weakness and rather, further proves its ability
for sample efficient optimization.

F Aripiprazole and DRD2 Prior and Hyperparameters

The random.prior.new pre-trained Prior was used from the REINVENT 2.013 repository which was
trained on ChEMBL61. We note that for the Aripiprazole Similarity experiment, this enables direct
comparison to Double Loop RL17 as the authors also used the same Prior. The hyperparameters used
for Experiment 1: Aripiprazole Similarity and Experiment 3: Dopamine Type 2 Receptor (DRD2)
are presented in Table 4.

Table 4: Hyperparameters (default) used in Experiment 1: Aripiprazole Similarity and Experiment 3:
Dopamine Type 2 Receptor (DRD2).

Algorithm Sigma (σ) Batch Size Learning Rate k Alpha (α)
Augmented Memory 128 64 0.0001 N/A N/A
REINVENT12,13 128 64 0.0001 N/A N/A
Augmented Hill-Climbing (AHC)16 60 64 0.0001 0.5 N/A
Best Agent Reminder (BAR)15 1 64 0.0001 N/A 0.5

G Practical Molecular Optimization (PMO) Hyperparameters

Table 5: Hyperparameters used in Experiment 2: Practical Molecular Optimization (PMO)11 Bench-
mark.

Algorithm Sigma (σ) Batch Size Learning Rate k Alpha (α)
Augmented Memory 500 64 0.0005 N/A N/A
REINVENT12,13 500 64 0.0005 N/A N/A
Augmented Hill-Climbing (AHC)16 120 256 0.0005 0.25 N/A
Best Agent Reminder (BAR)15 1000 64 0.0005 N/A 0.25

The hyperparameters used for the Practical Molecular Optimization (PMO)11 benchmark is presented
in Table 5. The hyperparameters provided in the PMO repository for REINVENT12,13 and AHC16

were used. The hyperparameters for BAR15 were tuned according to Table 6. We note that the default
σ hyperparameter is 1 as stated in the BAR repository. However, we found that the resulting AUC
Top-10 was much lower than all σ values in 6. Thus, we performed hyperparameter tuning using
much larger σ values according to the values REINVENT was tuned with.

H Practical Molecular Optimization (PMO) Augmented Memory and BAR
Prior

Augmented Memory required training a Prior and follows the protocol from REINVENT13 and using
the provided ZINC62 dataset in the PMO11 repository. Table 7 shows the hyperparameters of the
LSTM45 network. We note all hyperparameters were kept default and the model was trained for 10
epochs as SMILES validity reached 95% and the total wall time was 11 minutes 57 seconds. BAR15

experiments were run with this same pre-trained Prior.

15

Table 6: Best Agent Reminder (BAR)15 hyperparameter tuning for Experiment 2: Practical Molecular
Optimization (PMO)11. The AUC top-10 was used to assess performance and was based on the
protocol proposed in the PMO benchmark: average AUC top-10 across 3 independent runs of
zaleplon_mpo and perindopril_mpo.

Sigma (σ) Alpha (α) Top-10 AUC
250 0.25 0.610
250 0.50 0.677
500 0.25 0.708
500 0.50 0.728
750 0.25 0.739
750 0.50 0.732
1000 0.25 0.762
1000 0.50 0.759

Table 7: LSTM model hyperparameters for Augmented Memory and BAR

Cell Type LSTM
Number of Layers 3
Embedding Layer Size 256
Dropout 0
Training Batch Size 128
SMILES Training Randomization True

I DRD2 Experiment Wall Times

Table 8: Experiment 3: Dopamine Type 2 Receptor (DRD2) Case Study wall times.

Algorithm Wall Time
Augmented Memory 21 hours 25 minutes ± 2 hours 20 minutes
REINVENT 27 hours 7 minutes ± 2 hours 21 minutes
Augmented Hill-Climbing (AHC) 30 hours 24 minutes ± 4 hours 48 minutes
Best Agent Reminder (BAR) 35 hours 18 minutes ± 2 hours 12 minutes

The wall times for Experiment 3: Dopamine Type 2 Receptor (DRD2) are presented in Table 8. We
note that we performed a total of 6 replicates for each algorithm: 3 in the main result experiments
and 3 in the exploiting AutoDock Vina experiments (Figure 6). For REINVENT12,13, AHC16, and
BAR15, we pool the experiments using experience replay. For example, REINVENT values are
reported based on 12 total runs: 3 for main result experiments, 3 for main results experiments with
experience replay, 3 for exploiting AutoDock Vina experiments, and 3 for exploiting AutoDock Vina
experiments with experience replay. The bottleneck in all experiments is AutoDock Vina53 and the
wall time is highly variable, depending on the molecules sampled by the Agent. Finally, we note that
all experiments were run with a batch size of 64 for 150 epochs. The exception is BAR which was
run for 75 epochs as each epoch samples 2 batches of molecules: one from the current Agent and one
from the best Agent. All experiments had an AutoDock Vina oracle budget of 9,600 calls. Finally,
we comment on the variable wall times of each algorithm despite having a fixed oracle budget. There
are two sources of stochasticity. Firstly, the experiments were performed on a shared cluster and
compute speed is variable depending on usage. Secondly, docking is itself stochastic and generally
requires more search time for larger molecules. Augmented Memory jointly optimizes for Vina,
QED57, and MW which generally enforces smaller molecules and could be a reason for the faster
average compute time.

16

J AutoDock Vina DRD2 Receptor Preparation and Docking

The receptor grid for AutoDock Vina53 docking against DRD2 (PDB ID: 6CM452) was performed
using DockStream56. The PDB file for 6CM4 was first downloaded from the Protein Data Bank.
One monomer unit was extracted and refined using PDBFixer63 through the DockStream wrapper.
The prepared grid was centered at (x, y, z) = (9.93, 5.85, -9.58) with a search box of 15Å x 15Å x
15Å. Docking for all experiments were performed with DockStream using the following protocol:
embed sampled SMILES with RDKit Universal Force Field (UFF)64 with 600 maximum convergence
iterations and execute AutoDock Vina docking parallelized over 36 CPU cores (Intel(R) Xeon(R)
Platinum 8360Y processors).

K Proof of Loss Function and Policy Gradient Equivalency

In this section, we show that the loss function used to tune the Agent is equivalent to optimizing the
expected reward of the policy following the REINFORCE39 algorithm. Molecules are represented as
a sequence of tokens given by the Simplified Molecular Input Line Entry System (SMILES)14 format
and generated in an autoregressive manner. The generative process is Markovian (Equation 8):

P (x) =

T∏
t=1

P (st | st−1, st−2, . . . , s1) (8)

Equation 1 states that the probability of generating a given SMILES, x, is equal to the product of the
probabilities of generating a token at time-step t, given the sequence so far at time-step t− 1. The
model is pre-trained on a dataset of molecules (ChEMBL61 for the main experiments and ZINC62 for
the benchmarking experiment) to yield the Prior which is parameterized by the weights θ. The Agent
is initialized identical to the Prior but is fine-tuned during the reinforcement learning (RL) process.
The Augmented Likelihood is defined as a linear combination between the Prior and a reward term
(Equation 9):

log πθAugmented
= log πθPrior

+ σS(x) (9)

S is the reward function assessing the desirability of a sampled molecule and σ is a hyperparameter
that scales the reward. A higher σ places a greater contribution on the reward function and less
on the Prior. The Prior is used to ensure generated SMILES are syntactically correct and has been
empirically shown to enforce reasonable chemistry. The loss function is defined as the squared
difference between the Augmented Likelihood and the Agent Likelihood for a given batch, B, of
sampled SMILES constructed following the actions, a ∈ A∗ (Equation 10):

L(θ) =
1

|B|

[∑
a∈A∗

(log πθAugmented
− log πθAgent

)

]2

(10)

Taking the derivative with respect to θ (Equation 11):

∇θL(θ) = −2
1

|B|

[∑
a∈A∗

log πθAugmented
− log πθAgent

] ∑
a∈A∗

∇θ log πθAgent
(11)

Minimizing J(θ) tunes the Agent to generate molecules satisfying the reward function.

Following Fialková et al.46, we now show that minimizing J(θ) is equivalent to optimizing the
expected reward of the policy. The generative process is cast as an on-policy RL problem by defining
the state space, St, and the action space, At(st). St denotes every intermediate sequence of tokens
leading up to the fully constructed SMILES and At(st) are the token sampling probabilities at every
intermediate state. At(st) is controlled by the policy, πθ, which is parameterized by the weights, θ,

17

of the neural network. Given a reward function, R, the objective is to maximize the expected reward
when taking actions defined by the policy (Equation 12):

J(θ) = Eat∼πθ

[
T∑

t=0

R(at, st)

]
(12)

Rewriting the expectation (Equation 13):

J(θ) =

T∑
t=0

∑
a∈At

R(at, st)πθ(at|st) (13)

The expectation can be rewritten as a double summation over all time-steps and actions taken at each
time-step, following the policy, πθ. Next, the derivative of the expression is taken (Equation 14):

∇θJ(θ) =
T∑

t=0

∑
a∈At

R(at, st)∇θπθ(at|st) (14)

Applying the log-derivative trick (Equation 15):

∇θJ(θ) =

T∑
t=0

∑
a∈At

R(at, st)πθ(at|st)∇θ log πθ(at|st) (15)

Using the definition of expectation for discrete variables, i.e., the policy actions which can only
sample the vocabulary tokens (Equation 16):

∇θJ(θ) = Eat∼πθ

[
T∑

t=0

R(at, st)∇θ log πθ(at|st)

]
(16)

As computing the expectation is intractable, it is instead approximated by sampling a batch, B, of
trajectories, i.e., SMILES strings. The process of SMILES generation is further defined as an episodic
task where reward is only given at the terminal state. In particular, the desirability of a SMILES
sequence only applies once the full SMILES string has been sampled and it maps to a valid molecule.
Thus, all intermediate rewards are 0. Defining the set of actions taken in a batch, A∗ as the specific
token sequences generated at a given epoch yields Equation 17:

∇θJ(θ) =
1

|B|

[
T∑

t=0

∑
a∈A∗

R(at, st)∇θ log πθ(at|st)

]
(17)

Finally, the reward, R is defined according to Fialková et al.46 (Equation 18):

R(at, st) = log πθAugmented
− log πθAgent

(18)

Substituting Equation 18 into Equation 17 yields the desired equivalency to the loss function (Equation
11) up to a constant factor.

L Augmented Memory Algorithm

The pseudo-code for Augmented Memory is presented here.

18

Algorithm 1: Augmented Memory
Input: Prior πPrior , Epochs N , Augmentation Rounds A, Scoring Function S, Sigma σ
Output: Fine-tuned Agent Policy πθAgent

, Generated Molecules G
Initialization:
Generative Agent πθAgent

= πPrior ;
Diversity Filter DF ;
Replay Buffer B = {};
for i← 1 to N do

Sample batch of SMILES X = {x1, . . . , xb} with xi ∼ πθAgent
;

Compute reward using the scoring function S(X);
Modify reward based on the diversity filter DF (S(X));
Update replay buffer Bi = Xi ∪Xi−1;
(Optionally) purge replay buffer;
Compute Augmented Likelihood log πθAugmented

= log πPrior(X) + σS(X);

Compute loss J(θ) = (log πAugmented − log πθAgent
(X))2;

Update the Agent’s policy πθAgent
;

for j ← 1 to A do
Augment sampled SMILES XAugmented ;

Compute Augmented Likelihood of augmented SMILES (reward is unchanged)
log πAugmented = log πPrior(XAugmented) + σS(X);

Compute loss J(θ)Augmented = (log πAugmented − log πθAgent
(XAugmented))

2;

Augment entire replay buffer BAugmented ;

Compute Augmented Likelihood on the augmented buffer (reward is the buffer stored
rewards) log πBuffer Augmented = log πPrior(BAugmented) + σS(B);

Compute augmented buffer loss
J(θ)Buffer Augmented = (log πBuffer Augmented − log πθAgent

(BAugmented))
2;

Concatenate the augmented sampled SMILES loss and the augmented buffer loss
J(θ)Augmented Memory = J(θ)Augmented + J(θ)Buffer Augmented ;

Update the Agent’s policy πθAgent
;

References
1. Benjamin Sanchez-Lengeling and Alán Aspuru-Guzik. Inverse molecular design using machine

learning: Generative models for matter engineering. Science, 361(6400):360–365, July 2018.
doi: 10.1126/science.aat2663. URL https://www.science.org/doi/10.1126/science.
aat2663. Publisher: American Association for the Advancement of Science.

2. Julia Westermayr, Joe Gilkes, Rhyan Barrett, and Reinhard J. Maurer. High-throughput property-
driven generative design of functional organic molecules. Nat Comput Sci, 3(2):139–148,
February 2023. ISSN 2662-8457. doi: 10.1038/s43588-022-00391-1. URL https://www.
nature.com/articles/s43588-022-00391-1. Number: 2 Publisher: Nature Publishing
Group.

3. Jiankun Lyu, Sheng Wang, Trent E Balius, Isha Singh, Anat Levit, Yurii S Moroz, Matthew J
O’Meara, Tao Che, Enkhjargal Algaa, Kateryna Tolmachova, et al. Ultra-large library docking
for discovering new chemotypes. Nature, 566(7743):224–229, 2019.

4. Alex Zhavoronkov, Yan A. Ivanenkov, Alex Aliper, Mark S. Veselov, Vladimir A. Aladinskiy,
Anastasiya V. Aladinskaya, Victor A. Terentiev, Daniil A. Polykovskiy, Maksim D. Kuznetsov,
Arip Asadulaev, Yury Volkov, Artem Zholus, Rim R. Shayakhmetov, Alexander Zhebrak,

19

https://www.science.org/doi/10.1126/science.aat2663
https://www.science.org/doi/10.1126/science.aat2663
https://www.nature.com/articles/s43588-022-00391-1
https://www.nature.com/articles/s43588-022-00391-1

Lidiya I. Minaeva, Bogdan A. Zagribelnyy, Lennart H. Lee, Richard Soll, David Madge,
Li Xing, Tao Guo, and Alán Aspuru-Guzik. Deep learning enables rapid identification of
potent DDR1 kinase inhibitors. Nat Biotechnol, 37(9):1038–1040, September 2019. ISSN
1546-1696. doi: 10.1038/s41587-019-0224-x. URL https://www.nature.com/articles/
s41587-019-0224-x. Number: 9 Publisher: Nature Publishing Group.

5. Feng Ren, Xiao Ding, Min Zheng, Mikhail Korzinkin, Xin Cai, Wei Zhu, Alexey Mantsyzov,
Alex Aliper, Vladimir Aladinskiy, Zhongying Cao, Shanshan Kong, Xi Long, Bonnie Hei Man
Liu, Yingtao Liu, Vladimir Naumov, Anastasia Shneyderman, Ivan V. Ozerov, Ju Wang, Frank
W. Pun, Daniil A. Polykovskiy, Chong Sun, Michael Levitt, Alán Aspuru-Guzik, and Alex
Zhavoronkov. AlphaFold accelerates artificial intelligence powered drug discovery: efficient
discovery of a novel CDK20 small molecule inhibitor. Chemical Science, 14(6):1443–1452, 2023.
doi: 10.1039/D2SC05709C. URL https://pubs.rsc.org/en/content/articlelanding/
2023/sc/d2sc05709c. Publisher: Royal Society of Chemistry.

6. Julius Seumer, Jonathan Kirschner Solberg Hansen, Mogens Brøndsted Nielsen, and Jan H Jensen.
Computational evolution of new catalysts for the morita–baylis–hillman reaction. Angewandte
Chemie International Edition, page e202218565, 2022.

7. Arman A. Sadybekov, Anastasiia V. Sadybekov, Yongfeng Liu, Christos Iliopoulos-Tsoutsouvas,
Xi-Ping Huang, Julie Pickett, Blake Houser, Nilkanth Patel, Ngan K. Tran, Fei Tong, Nikolai
Zvonok, Manish K. Jain, Olena Savych, Dmytro S. Radchenko, Spyros P. Nikas, Nicos A. Petasis,
Yurii S. Moroz, Bryan L. Roth, Alexandros Makriyannis, and Vsevolod Katritch. Synthon-
based ligand discovery in virtual libraries of over 11 billion compounds. Nature, 601(7893):
452–459, January 2022. ISSN 1476-4687. doi: 10.1038/s41586-021-04220-9. URL https:
//www.nature.com/articles/s41586-021-04220-9. Number: 7893 Publisher: Nature
Publishing Group.

8. Joshua Meyers, Benedek Fabian, and Nathan Brown. De novo molecular design and generative
models. Drug Discovery Today, 26(11):2707–2715, November 2021. ISSN 1359-6446. doi: 10.
1016/j.drudis.2021.05.019. URL https://www.sciencedirect.com/science/article/
pii/S1359644621002531.

9. Atsushi Yoshimori, Yasunobu Asawa, Enzo Kawasaki, Tomohiko Tasaka, Seiji Matsuda, Toru
Sekikawa, Satoshi Tanabe, Masahiro Neya, Hideaki Natsugari, and Chisato Kanai. De-
sign and Synthesis of DDR1 Inhibitors with a Desired Pharmacophore Using Deep Gener-
ative Models. ChemMedChem, 16(6):955–958, 2021. ISSN 1860-7187. doi: 10.1002/
cmdc.202000786. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.
202000786. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cmdc.202000786.

10. Maria Korshunova, Niles Huang, Stephen Capuzzi, Dmytro S. Radchenko, Olena Savych,
Yuriy S. Moroz, Carrow I. Wells, Timothy M. Willson, Alexander Tropsha, and Olexandr Isayev.
Generative and reinforcement learning approaches for the automated de novo design of bioactive
compounds. Commun Chem, 5(1):1–11, October 2022. ISSN 2399-3669. doi: 10.1038/
s42004-022-00733-0. URL https://www.nature.com/articles/s42004-022-00733-0.
Number: 1 Publisher: Nature Publishing Group.

11. Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor W. Coley. Sample Efficiency Matters: A
Benchmark for Practical Molecular Optimization, October 2022. URL http://arxiv.org/
abs/2206.12411. arXiv:2206.12411 [cs, q-bio].

12. Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of Cheminformatics, 9(1):48, September
2017. ISSN 1758-2946. doi: 10.1186/s13321-017-0235-x. URL https://doi.org/10.1186/
s13321-017-0235-x.

13. Thomas Blaschke, Josep Arús-Pous, Hongming Chen, Christian Margreitter, Christian Tyrchan,
Ola Engkvist, Kostas Papadopoulos, and Atanas Patronov. REINVENT 2.0: An AI Tool for
De Novo Drug Design. J. Chem. Inf. Model., 60(12):5918–5922, December 2020. ISSN
1549-9596. doi: 10.1021/acs.jcim.0c00915. URL https://doi.org/10.1021/acs.jcim.
0c00915. Publisher: American Chemical Society.

20

https://www.nature.com/articles/s41587-019-0224-x
https://www.nature.com/articles/s41587-019-0224-x
https://pubs.rsc.org/en/content/articlelanding/2023/sc/d2sc05709c
https://pubs.rsc.org/en/content/articlelanding/2023/sc/d2sc05709c
https://www.nature.com/articles/s41586-021-04220-9
https://www.nature.com/articles/s41586-021-04220-9
https://www.sciencedirect.com/science/article/pii/S1359644621002531
https://www.sciencedirect.com/science/article/pii/S1359644621002531
https://onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.202000786
https://onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.202000786
https://www.nature.com/articles/s42004-022-00733-0
http://arxiv.org/abs/2206.12411
http://arxiv.org/abs/2206.12411
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1021/acs.jcim.0c00915
https://doi.org/10.1021/acs.jcim.0c00915

14. David Weininger. SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules. J. Chem. Inf. Comput. Sci., 28(1):31–36, February 1988. ISSN
0095-2338. doi: 10.1021/ci00057a005. URL https://doi.org/10.1021/ci00057a005.
Publisher: American Chemical Society.

15. Sara Romeo Atance, Juan Viguera Diez, Ola Engkvist, Simon Olsson, and Rocío Mercado.
De novo drug design using reinforcement learning with graph-based deep generative models.
Journal of Chemical Information and Modeling, 62(20):4863–4872, 2022.

16. Morgan Thomas, Noel M. O’Boyle, Andreas Bender, and Chris de Graaf. Augmented
Hill-Climb increases reinforcement learning efficiency for language-based de novo molecule
generation. Journal of Cheminformatics, 14(1):68, October 2022. ISSN 1758-2946. doi:
10.1186/s13321-022-00646-z. URL https://doi.org/10.1186/s13321-022-00646-z.

17. Esben Jannik Bjerrum, Christian Margreitter, Thomas Blaschke, and Raquel López-Ríos de Cas-
tro. Faster and more diverse de novo molecular optimization with double-loop reinforcement
learning using augmented SMILES, March 2023. URL http://arxiv.org/abs/2210.12458.
arXiv:2210.12458 [physics].

18. Morgan Thomas, Noel M O’Boyle, Andreas Bender, and Chris De Graaf. Re-evaluating sample
efficiency in de novo molecule generation. arXiv preprint arXiv:2212.01385, 2022.

19. Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for de
novo drug design. Science Advances, 4(7):eaap7885, July 2018. doi: 10.1126/sciadv.aap7885.
URL https://www.science.org/doi/10.1126/sciadv.aap7885. Publisher: American
Association for the Advancement of Science.

20. Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS central science, 4(1):
120–131, 2018.

21. Niclas Ståhl, Goran Falkman, Alexander Karlsson, Gunnar Mathiason, and Jonas Bostrom. Deep
reinforcement learning for multiparameter optimization in de novo drug design. Journal of
chemical information and modeling, 59(7):3166–3176, 2019.

22. Manan Goel, Shampa Raghunathan, Siddhartha Laghuvarapu, and U Deva Priyakumar. Moleg-
ular: molecule generation using reinforcement learning with alternating rewards. Journal of
Chemical Information and Modeling, 61(12):5815–5826, 2021.

23. Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks, June 2014. URL
http://arxiv.org/abs/1406.2661. arXiv:1406.2661 [cs, stat].

24. Benjamin Sanchez-Lengeling, Carlos Outeiral, Gabriel L Guimaraes, and Alan Aspuru-Guzik.
Optimizing distributions over molecular space. an objective-reinforced generative adversarial
network for inverse-design chemistry (organic). 2017.

25. Evgeny Putin, Arip Asadulaev, Yan Ivanenkov, Vladimir Aladinskiy, Benjamin Sanchez-
Lengeling, Alán Aspuru-Guzik, and Alex Zhavoronkov. Reinforced Adversarial Neural Com-
puter for de Novo Molecular Design. J. Chem. Inf. Model., 58(6):1194–1204, June 2018. ISSN
1549-9596. doi: 10.1021/acs.jcim.7b00690. URL https://doi.org/10.1021/acs.jcim.
7b00690. Publisher: American Chemical Society.

26. Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Carlos Outeiral, Pedro Luis Cunha
Farias, and Alán Aspuru-Guzik. Objective-Reinforced Generative Adversarial Networks (OR-
GAN) for Sequence Generation Models, February 2018. URL http://arxiv.org/abs/1705.
10843. arXiv:1705.10843 [cs, stat].

27. Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular
graphs, September 2022. URL http://arxiv.org/abs/1805.11973. arXiv:1805.11973 [cs,
stat].

28. Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, December 2022. URL
http://arxiv.org/abs/1312.6114. arXiv:1312.6114 [cs, stat].

21

https://doi.org/10.1021/ci00057a005
https://doi.org/10.1186/s13321-022-00646-z
http://arxiv.org/abs/2210.12458
https://www.science.org/doi/10.1126/sciadv.aap7885
http://arxiv.org/abs/1406.2661
https://doi.org/10.1021/acs.jcim.7b00690
https://doi.org/10.1021/acs.jcim.7b00690
http://arxiv.org/abs/1705.10843
http://arxiv.org/abs/1705.10843
http://arxiv.org/abs/1805.11973
http://arxiv.org/abs/1312.6114

29. Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 4(2):268–276, 2018.

30. Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph Convolutional
Policy Network for Goal-Directed Molecular Graph Generation, February 2019. URL http:
//arxiv.org/abs/1806.02473. arXiv:1806.02473 [cs, stat].

31. Wengong Jin, Dr Regina Barzilay, and Tommi Jaakkola. Multi-Objective Molecule Generation
using Interpretable Substructures. In Proceedings of the 37th International Conference on
Machine Learning, pages 4849–4859. PMLR, November 2020. URL https://proceedings.
mlr.press/v119/jin20b.html. ISSN: 2640-3498.

32. Rocío Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. Mach. Learn.: Sci.
Technol., 2(2):025023, March 2021. ISSN 2632-2153. doi: 10.1088/2632-2153/abcf91. URL
https://dx.doi.org/10.1088/2632-2153/abcf91. Publisher: IOP Publishing.

33. Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

34. Tianfan Fu, Wenhao Gao, Connor Coley, and Jimeng Sun. Reinforced genetic algorithm for
structure-based drug design. Advances in Neural Information Processing Systems, 35:12325–
12338, 2022.

35. Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of
molecules via deep reinforcement learning. Scientific reports, 9(1):1–10, 2019.

36. Daniel Flam-Shepherd, Kevin Zhu, and Alán Aspuru-Guzik. Language models can learn complex
molecular distributions. Nature Communications, 13(1):3293, 2022.

37. Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. GuacaMol:
Benchmarking Models for de Novo Molecular Design. J. Chem. Inf. Model., 59(3):1096–
1108, March 2019. ISSN 1549-9596, 1549-960X. doi: 10.1021/acs.jcim.8b00839. URL
https://pubs.acs.org/doi/10.1021/acs.jcim.8b00839.

38. Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov,
Oktai Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy,
Mark Veselov, Artur Kadurin, Simon Johansson, Hongming Chen, Sergey Nikolenko, Alán
Aspuru-Guzik, and Alex Zhavoronkov. Molecular Sets (MOSES): A Benchmarking Platform for
Molecular Generation Models. Frontiers in Pharmacology, 11, 2020. ISSN 1663-9812. URL
https://www.frontiersin.org/articles/10.3389/fphar.2020.565644.

39. Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist re-
inforcement learning. Mach Learn, 8(3):229–256, May 1992. ISSN 1573-0565. doi:
10.1007/BF00992696. URL https://doi.org/10.1007/BF00992696.

40. Daniel Neil, Marwin Segler, Laura Guasch, Mohamed Ahmed, Dean Plumbley, Matthew Sell-
wood, and Nathan Brown. EXPLORING DEEP RECURRENT MODELS WITH REIN- FORCE-
MENT LEARNING FOR MOLECULE DESIGN. 2018.

41. Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching.

42. William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting Fundamentals of Experience Replay, July 2020. URL
http://arxiv.org/abs/2007.06700. arXiv:2007.06700 [cs, stat].

43. Thomas Blaschke, Ola Engkvist, Jürgen Bajorath, and Hongming Chen. Memory-assisted
reinforcement learning for diverse molecular de novo design. Journal of Cheminformatics, 12
(1):68, November 2020. ISSN 1758-2946. doi: 10.1186/s13321-020-00473-0. URL https:
//doi.org/10.1186/s13321-020-00473-0.

22

http://arxiv.org/abs/1806.02473
http://arxiv.org/abs/1806.02473
https://proceedings.mlr.press/v119/jin20b.html
https://proceedings.mlr.press/v119/jin20b.html
https://dx.doi.org/10.1088/2632-2153/abcf91
https://pubs.acs.org/doi/10.1021/acs.jcim.8b00839
https://www.frontiersin.org/articles/10.3389/fphar.2020.565644
https://doi.org/10.1007/BF00992696
http://arxiv.org/abs/2007.06700
https://doi.org/10.1186/s13321-020-00473-0
https://doi.org/10.1186/s13321-020-00473-0

44. Eric Wiewiora. Reward Shaping. In Claude Sammut and Geoffrey I. Webb, editors, Ency-
clopedia of Machine Learning, pages 863–865. Springer US, Boston, MA, 2010. ISBN 978-
0-387-30164-8. doi: 10.1007/978-0-387-30164-8_731. URL https://doi.org/10.1007/
978-0-387-30164-8_731.

45. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

46. Vendy Fialková, Jiaxi Zhao, Kostas Papadopoulos, Ola Engkvist, Esben Jannik Bjerrum, Thierry
Kogej, and Atanas Patronov. LibINVENT: Reaction-based Generative Scaffold Decoration for
in Silico Library Design. J. Chem. Inf. Model., 62(9):2046–2063, May 2022. ISSN 1549-9596.
doi: 10.1021/acs.jcim.1c00469. URL https://doi.org/10.1021/acs.jcim.1c00469. Pub-
lisher: American Chemical Society.

47. Michael Moret, Lukas Friedrich, Francesca Grisoni, Daniel Merk, and Gisbert Schneider. Gener-
ative molecular design in low data regimes. Nat Mach Intell, 2(3):171–180, March 2020. ISSN
2522-5839. doi: 10.1038/s42256-020-0160-y. URL https://www.nature.com/articles/
s42256-020-0160-y. Number: 3 Publisher: Nature Publishing Group.

48. Josep Arús-Pous, Simon Viet Johansson, Oleksii Prykhodko, Esben Jannik Bjerrum, Christian
Tyrchan, Jean-Louis Reymond, Hongming Chen, and Ola Engkvist. Randomized SMILES
strings improve the quality of molecular generative models. Journal of Cheminformatics, 11
(1):71, November 2019. ISSN 1758-2946. doi: 10.1186/s13321-019-0393-0. URL https:
//doi.org/10.1186/s13321-019-0393-0.

49. Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction, September 2020. URL http://arxiv.org/abs/
1802.03426. arXiv:1802.03426 [cs, stat].

50. David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical
information and modeling, 50(5):742–754, 2010.

51. Chemcharts. https://github.com/SMargreitter/ChemCharts.

52. Sheng Wang, Tao Che, Anat Levit, Brian K Shoichet, Daniel Wacker, and Bryan L Roth. Structure
of the d2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 555
(7695):269–273, 2018.

53. Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

54. John A Arnott and Sonia Lobo Planey. The influence of lipophilicity in drug discovery and
design. Expert opinion on drug discovery, 7(10):863–875, 2012.

55. AkshatKumar Nigam, Robert Pollice, and Alán Aspuru-Guzik. Parallel tempered genetic
algorithm guided by deep neural networks for inverse molecular design. Digital Discovery, 1(4):
390–404, 2022.

56. Jeff Guo, Jon Paul Janet, Matthias R. Bauer, Eva Nittinger, Kathryn A. Giblin, Kostas Pa-
padopoulos, Alexey Voronov, Atanas Patronov, Ola Engkvist, and Christian Margreitter. Dock-
Stream: a docking wrapper to enhance de novo molecular design. Journal of Cheminformat-
ics, 13(1):89, November 2021. ISSN 1758-2946. doi: 10.1186/s13321-021-00563-7. URL
https://doi.org/10.1186/s13321-021-00563-7.

57. G. Richard Bickerton, Gaia V. Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L. Hopkins.
Quantifying the chemical beauty of drugs. Nature Chem, 4(2):90–98, February 2012. ISSN 1755-
4349. doi: 10.1038/nchem.1243. URL https://www.nature.com/articles/nchem.1243.
Number: 2 Publisher: Nature Publishing Group.

58. AkshatKumar Nigam, Robert Pollice, Mario Krenn, Gabriel dos Passos Gomes, and Alan Aspuru-
Guzik. Beyond generative models: superfast traversal, optimization, novelty, exploration and
discovery (stoned) algorithm for molecules using selfies. Chemical science, 12(20):7079–7090,
2021.

23

https://doi.org/10.1007/978-0-387-30164-8_731
https://doi.org/10.1007/978-0-387-30164-8_731
https://doi.org/10.1021/acs.jcim.1c00469
https://www.nature.com/articles/s42256-020-0160-y
https://www.nature.com/articles/s42256-020-0160-y
https://doi.org/10.1186/s13321-019-0393-0
https://doi.org/10.1186/s13321-019-0393-0
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://doi.org/10.1186/s13321-021-00563-7
https://www.nature.com/articles/nchem.1243

59. Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning, pages 41–48,
2009.

60. Jeff Guo, Vendy Fialková, Juan Diego Arango, Christian Margreitter, Jon Paul Janet, Kostas
Papadopoulos, Ola Engkvist, and Atanas Patronov. Improving de novo molecular design with
curriculum learning. Nat Mach Intell, 4(6):555–563, June 2022. ISSN 2522-5839. doi: 10.1038/
s42256-022-00494-4. URL https://www.nature.com/articles/s42256-022-00494-4.
Number: 6 Publisher: Nature Publishing Group.

61. Anna Gaulton, Louisa J. Bellis, A. Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey,
Yvonne Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, and John P. Over-
ington. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res, 40
(Database issue):D1100–D1107, January 2012. ISSN 0305-1048. doi: 10.1093/nar/gkr777. URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245175/.

62. John J. Irwin, Khanh G. Tang, Jennifer Young, Chinzorig Dandarchuluun, Benjamin R. Wong,
Munkhzul Khurelbaatar, Yurii S. Moroz, John Mayfield, and Roger A. Sayle. ZINC20—A
Free Ultralarge-Scale Chemical Database for Ligand Discovery. J. Chem. Inf. Model., 60
(12):6065–6073, December 2020. ISSN 1549-9596. doi: 10.1021/acs.jcim.0c00675. URL
https://doi.org/10.1021/acs.jcim.0c00675. Publisher: American Chemical Society.

63. Peter Eastman, Jason Swails, John D Chodera, Robert T McGibbon, Yutong Zhao, Kyle A
Beauchamp, Lee-Ping Wang, Andrew C Simmonett, Matthew P Harrigan, Chaya D Stern, et al.
Openmm 7: Rapid development of high performance algorithms for molecular dynamics. PLoS
computational biology, 13(7):e1005659, 2017.

64. Anthony K Rappé, Carla J Casewit, KS Colwell, William A Goddard III, and W Mason Skiff.
Uff, a full periodic table force field for molecular mechanics and molecular dynamics simulations.
Journal of the American chemical society, 114(25):10024–10035, 1992.

24

https://www.nature.com/articles/s42256-022-00494-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245175/
https://doi.org/10.1021/acs.jcim.0c00675

	Introduction
	Related Work
	Proposed Method: Augmented Memory
	Results & Discussion
	Aripiprazole Similarity
	Practical Molecular Optimization (PMO) Benchmark
	Dopamine Type 2 Receptor (DRD2) Case Study

	Conclusion
	Tolerability to Augmentation Rounds
	Pure Exploitation: Robustness of 2 Augmentation Rounds
	Buffer Size Experiments and Reinforcing with Only Experience Replay
	Ablation Study: SMILES Augmentation is a Regularizer
	Dopamine Type 2 Receptor (DRD2) Case Study: Exploiting AutoDock Vina
	Aripiprazole and DRD2 Prior and Hyperparameters
	Practical Molecular Optimization (PMO) Hyperparameters
	Practical Molecular Optimization (PMO) Augmented Memory and BAR Prior
	DRD2 Experiment Wall Times
	AutoDock Vina DRD2 Receptor Preparation and Docking
	Proof of Loss Function and Policy Gradient Equivalency
	Augmented Memory Algorithm

