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Abstract14

To reliably deploy lithium-ion batteries, a fundamental understanding of cycling and aging behav-15

ior is critical. Battery aging, however, consists of complex and highly coupled phenomena, making16

it challenging to develop a holistic interpretation. In this work, we generate a diverse battery17

cycling dataset with a broad range of degradation trajectories, consisting of 363 high energy den-18

sity commercial Li(Ni,Co,Al)O2/Graphite + SiOx cylindrical 21700 cells cycled across 218 unique19

cycling protocols. We consolidate aging via 16 mechanistic state-of-health (SOH) metrics, including20

cell-level performance metrics, electrode-specific capacities/state-of-charges (SOCs), and aging tra-21

jectory descriptors. Through the use of interpretable machine learning and explainable features, we22

deconvolute the high-dimensional correlations that contribute to battery degradation. This general-23

izable data-driven mechanistic framework reveals the complex interplay between cycling conditions,24

degradation modes, and SOH, representing a holistic approach towards understanding battery aging.25

Keywords: lithium-ion batteries, machine learning, data analytics26

1 Introduction27

Lithium-ion batteries are a key enabler for electrifying transportation and decarbonizing the electricity28

grid [1–8]. Optimizing new battery designs is challenging due to the need to simultaneously meet many29
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performance targets while satisfying design constraints. Improving battery lifetime is especially difficult30

due to the slow, nonlinear, and coupled physics of the aging process [9–18]. It is time and resource31

consuming to observe the impact that design choices have on battery life and understand why one battery32

degrades more rapidly than another.33

Characterization at the materials and cell level generates a mechanistic understanding of battery34

aging [19–22]; however, the throughput is relatively low [23]. In recent years, machine learning (ML)35

techniques have been developed to analyze battery aging through a data-driven lens [24–39]. While ML36

techniques are high in throughput, a purely data-driven approach overlooks key scientific and engineer-37

ing insights. Despite the predictive power of complex black-box ML models (e.g., deep learning), the38

relationships between cycling conditions and battery aging mechanisms are unclear. On the other hand,39

physics-based electrochemical simulations, such as the Doyle-Fuller-Newman model [40–42], are physi-40

cally interpretable. Nonetheless, predicting battery lifetime under unseen conditions remains challenging41

due to the complexity of interconnected aging phenomena [14] and model parameter identifiability [43].42

Yet another approach are mechanistic models which involve estimation of electrode capacities and lithium43

inventory [44–46]. These models capture aggregate physical mechanisms with fewer model parameters44

than physics-based simulations [47–51]. Tracking electrode capacities independently provides a clear45

picture of what types of degradation occur under various operating conditions [23, 52].46

A challenge with developing and benchmarking battery aging models is that publicly available47

datasets do not contain a wide range of operating conditions. Existing datasets are typically collected48

with specific applications in mind [53–57]. For example, Attia, Severson, and colleagues focused on opti-49

mizing electric vehicle fast charging protocols [58, 59]. Diao et al. examined different temperatures to50

understand how temperatures accelerate battery aging [60]. Paulson, Ward, and colleagues tested various51

cell chemistries to understand the differences in their aging and build transferable ML models [34, 61].52

As a final example, Wildfeuer et al. examined different state-of-charge (SOC) ranges and temperatures53

in both cycling and calendar aging tests to investigate different experimental factors, but did not apply54

ML techniques to analyze the large dataset [62]. There remains a significant gap in interpretable data-55

driven models that can be comprehensively applied to large datasets. The lack of available data spanning56

many use cases, including a wide range of SOC, charging, and discharging protocols, further compounds57

this challenge.58

In this work, we develop a physically interpretable, data-driven understanding of lithium-ion battery59

aging. We generate a large dataset consisting of 363 cells under 218 unique cycling conditions spanning60

diverse use cases and aging trajectories. We apply interpretable ML with explainable features to track61
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16 mechanistic SOH metrics. With this framework, we begin to answer three principal questions: 1) how62

do cells degrade? 2) when will cells degrade? and, most critically, 3) what factors influence degradation?63

We demonstrate that physically meaningful features must be used in combination with methods that64

robustly extract feature importance [63–67]. Our approach of using interpretable features also reveals65

which and how mechanistic SOH metrics can be predicted from early cycle data, addressing the challenge66

that features used for early prediction tasks are difficult to meaningfully interpret, such as the features67

employed in Severson et al. [58]. With our explainable data-driven model, we analyze and understand68

battery aging further than would be possible with either a data-driven or physics-based approach alone.69

More generally, constraining ML models to use features that have clear physical meaning dramatically70

enhances interpretability and explainability, complementing purely data-driven featurization approaches.71
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Fig. 1: Overview of dataset. a) The scope of our dataset across various cycling conditions is highlighted in
the inscribed spider plot in blue compared to other large, publicly available battery cycling datasets [34, 53, 58–
62, 68]. All batteries in this dataset are cycled at 25°C. The cycling experiment structure is shown schematically
with the loop surrounding the spider plot. Individual cells go through a diagnostic “checkup” cycle, followed
by 100 aging cycles repeating until end of life (EOL). b) The diagnostic cycle consisting of a reset cycle, a
hybrid pulse power characterization (HPPC) [69], and three rate performance tests (RPTs) at 0.2C, 1C, and
2C discharge currents (see SI Table S2 for full conditions). Mechanistic SOH metrics are extracted from various
parts of this diagnostic cycle data (see SI Section S.3 for further details). c) The distribution of rate-dependent
capacities at beginning of life (BOL). Means and coefficients of variation are included in the plot showcasing
the tight distribution at BOL. d) The distribution of rate-dependent capacities at end of life (EOL, defined by
0.2C RPT capacity reaching 80% of the nominal capacity, 4.84Ah). The broadened distribution showcases diverse
aging and highlights the limitations of using a single mechanistic SOH metric such as the low-rate capacity (for
further information on BOL to EOL variability see SI Section S.5) [70].
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2 Comprehensive Aging Characterization72

Our dataset contains electrochemical data from 363 Li(Ni,Co,Al)O2/Graphite + SiOx cylindrical 2170073

cells cycled for over 2 years (Fig. 1a). To induce diverse aging trajectories, we explore a broad range of74

cycling voltage windows and charging and discharging rates (see Section S.2.2 for details). To cleanly75

compare the effects of different cycling conditions, we apply a standardized, periodic diagnostic cycle76

to comprehensively probe SOH over cell lifetime (typically every 100 aging cycles – Fig. 1b). Given the77

variation of voltage windows and charge and discharge rates throughout the dataset, we compare cell78

lifetimes using capacity throughput-based equivalent full cycles (EFCs) [71]. In total, we examine 21879

unique aging protocols, with EFCs at end of life (EOL) ranging from 44 to 994 (or 63 to 4,641 cycles).80

EOL is defined as when the 0.2C rate-specific capacity, QRPT,0.2C, reaches 80% of the nominal capacity81

(where 1C is 4.84A). Fig. 1a compares the diversity of our cycling conditions to other public datasets.82

Critically, we realize that a single health metric, such as low-rate capacity, does not capture all facets of83

degradation (Fig. 1c,d, and SI Section S.5). To address this gap, we automatically calculate and track84

16 mechanistic SOH metrics (see SI Section S.1.1 for summary of abbreviations).85

We first quantify six cell-level performance metrics: 1) total EFCs at EOL, 2) 1C rate-specific capacity:86

QRPT,1C, 3) 2C capacity: QRPT,2C, 4) ohmic resistance: Rohm, 5) charge transfer resistance: Rct, and87

6) polarization resistance: Rp. We calculate resistances through pulse measurements performed during88

the hybrid pulse power characterization (HPPC) sequence of the diagnostic cycle at various SOCs and89

timescales (see SI Section S.3.2 for definitions and calculation details for resistance metrics). Unless90

otherwise specified, the resistances reported are at 50% SOC.91

Second, to determine electrode-specific capacities/SOCs, we implement a mechanistic model-fitting92

algorithm to extract seven interpretable quantities (see Methods for details): 1) negative electrode capac-93

ity: QNE, 2) positive electrode capacity: QPE, 3) lithium capacity: QLi, 4) State of charge of the negative94

electrode near the full cell charged state: SOCNE,4.0V, 5) state of charge of the negative electrode in95

the discharged state: SOCNE,2.7V, 6) state of charge of the positive electrode near the charged state:96

SOCPE,4.0V, and 7) state of charge of the positive electrode in the discharged state: SOCPE,2.7V. We97

select the latter four quantities because the electrode-specific SOC near the fully discharged and fully98

charged states can dominate aging.99

These cell-level and electrode-specific metrics are calculated at every diagnostic cycle for each cell100

and tracked from beginning of life (BOL) to EOL. As would be expected for commercial cells, these101

metrics have low variability at BOL (Fig. 1c). Importantly, this low variability also confirms that the102

staggered start of cycling (resulting in different calendar aging in the discharged state) does not contribute103
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significantly to the initial conditions of the cells (SI Section S.5). However, by EOL there is high variation104

in the rate capability, resistance, and electrode-specific capacities/SOCs (Fig. 1d, and SI Fig. S8). This105

observation underscores the importance of using a comprehensive set of SOH metrics, and confirms that106

the cycling conditions in this work induce a wide range of degradation trajectories.107

In addition to probing cell-level and electrode-specific metrics with each diagnostic cycle, we also108

quantify the aging trajectory over the entire battery lifetime [9, 72]. We define three trajectory descriptors:109

1) knee indicator: Knee, 2) resistance growth factor: R”, and 3) negative/positive capacity (N/P) ratio:110

NP Ratio. The knee indicator describes a sudden and accelerated capacity-based degradation (i.e., a111

knee in the capacity vs. cycle number curve) with knee indicator > 0 if a knee exists at any point in112

the cell lifetime. The resistance growth factor captures the curvature of resistance with respect to EFCs,113

indicating whether resistance grows at an accelerating or decelerating rate during cycling. Finally, the114

NP Ratio captures the ratio of the estimated QNE and QPE. SI Section S.7 details the calculations of115

these trajectory descriptors.116

We combine these 16 cell-level performance metrics, electrode-specific capacities/SOCs, and trajec-117

tory descriptors (collectively called mechanistic SOH metrics) and comprehensively quantify battery118

aging. By concurrently assessing these metrics, we reveal their relationships to 218 cycling conditions to119

develop a holistic understanding of aging. Fig. 2 visualizes selected metrics calculated on all cells in the120

dataset.121
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Fig. 2: Mechanistic SOH metric trajectories. a) The cell-level performance metrics column show the trajec-
tories of selected performance metrics: the 0.2C RPT discharge capacity (QRPT,0.2C) (top) and the combination
of Rohm,Rct,Rp (Rtot) at 50% SOC (bottom). b) The electrode-specific capacities/ SOCs column depict the
trajectories of electrode-specific capacities, QNE, QPE, and QLi, on the left. A utilization plot showing electrode-
specific SOCs at the charged and discharged state is shown on the right. c) The trajectory metrics row shows
histograms of the values for the NP ratio, resistance growth factor, and knee indicator. The highlighted protocol
(in dark blue) represents CCdischarge = 0.2C, CC1 = CC2 = 0.2C, Vcharge = 4.2V and Vdischarge = 2.7V aging
conditions. This protocol has four experimental repeats shown by the scatter markers with the solid line repre-
senting the mean trajectory. The gray lines in the background showcase the mean trajectory of all other unique
protocols. This protocol appears as a blue vertical bar in the trajectory metric histograms.

3 Impact of Cycling Conditions on Mechanistic SOH Metrics122

By varying six cycling parameters across this dataset (SI Table S4), we induce a diverse range of EOL123

states and trajectory descriptors (Fig. 2a-c). To understand the impact of cycling conditions on mecha-124

nistic SOH metrics, we construct nonlinear random forest ML models, and then employ Shapley additive125

explanations (SHAP) analysis [73] to interpret these models.126

We first develop descriptive models using cycling protocol parameters alone as inputs. These “pro-127

tocol models” predict a single cell-level performance metric, such as an electrode-specific capacity or a128
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trajectory descriptor at EOL conditions. Fig. 3a schematically depicts the structure of these models,129

with the cycling protocol conditions as the input features and the EOL mechanistic SOH metrics as the130

target outputs. With only cycling conditions as input features, the EFC model attains good performance131

on the training/test set (SI Section S.9.5 for performance, and SI Section S.9.1 on train/test split). Well-132

performing models are critical in order to extract the correct feature importance. To understand the133

impact of the various cycling conditions, we investigate feature importance using SHAP analysis [74].134

Fig. 3b shows an example of SHAP feature importance for predicting EFC. In Fig. 3c, we devise a 96135

element aging matrix representation that comprehensively visualizes how cycling conditions affect each136

mechanistic SOH metric, where the color indicates the magnitude of feature importance for all cycling137

conditions.138

While no single cycling parameter dominates all mechanistic SOH metrics, it was surprising that139

many of the metrics are either primarily determined by a single cycling parameter, or a combination of140

features (e.g., the NP Ratio, a combination of QPE and QNE) that are primarily influenced by a single141

cycling parameter . For example, the cell-level performance metrics QRPT,1C and QRPT,2C are dominated142

by CC2, the resistances Rohm and Rct are dominated by Vcharge, while Rp is dominated CC1. Some143

more convoluted metrics, such as the EFC, depend on multiple parameters; both CC1 and Vdischarge are144

about equally important. Surprisingly, Vdischarge and tCV do not dominate aging (within the bounds of145

this dataset) for most of the mechanistic SOH metrics (except for EFC), despite previous reports stating146

their importance [75, 76].147

For the electrode-specific capacities, both the positive and negative electrode are strongly affected by148

the magnitude of the current in the direction of lithiation. This current is CCdischarge for QPE, and CC1149

for QNE. Since QLi also depends most strongly on CC1, it is possible that CC1 triggers mechanisms that150

age both QNE and QLi, such as solid-electrolyte interface (SEI) growth. The electrode-specific SOCs,151

calculated from electrode-specific capacities, depend most strongly on CC1 and CCdischarge (the most152

important features of the electrode-specific capacities), approximately equally. Finally, for the trajectory153

metrics, the knee indicator depends most strongly on CC1 and CCdischarge, the resistance growth factor154

(R”) on CC1 and CC2, and NP ratio on the values it was constructed from, in this case, both the155

dominant feature from QNE (CC1), and from QPE (CCdischarge). For detailed information on influence156

of cycling conditions on mechanistic SOH metrics, as well as model performance see SI Section S.9.5157

With our aging matrix representation generated by interpretable ML, a battery cell designer could158

more intelligently identify aging mechanisms and design cycling limits. For example, if it is important159
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to prevent capacity knees, from this analysis, we see that modifying CC1 and CCdischarge will have the160

greatest impact, whereas modifying the Vdischarge would not be effective.161

Fig. 3: Impact of cycling conditions. a) Schematic of inputs and outputs of the protocol models. Gray
rectangles indicate cycling parameters, and red rectangles indicate the EOL mechanistic SOH metrics. b) SHAP
feature importances for the protocol model predicting EFCs, marked by a dashed box in a. The color indicates
the feature value, and horizontal location indicates the SHAP value impact on EFCs. Features are listed in
descending order of importance. c) Replicating this approach for each mechanistic SOH metric, the matrix shows
the mean absolute SHAP value of each cycling condition for each degradation metric. Darker hue indicates
stronger dependence. Additionally, the RAE (relative absolute error) column indicates the test error of the
models trained to predict a particular mechanistic SOH metric. SI Section S.9.5 shows the parity plot and SHAP
beeswarm plot for each mechanistic SOH metric. This degradation matrix representation visualizes the impact
of cycling conditions on degradation in a high-dimensional space.
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4 Fundamental Investigation of Performance Metric162

Degradation163

Having revealed the relationship between 16 mechanistic SOH metrics and cycling conditions using an164

aging matrix, we now demonstrate the explanatory nature of our framework by answering one important,165

exemplar question: “how does degradation at specific electrodes contribute to resistance growth in a166

battery?” Resistance growth during aging can limit the discharge capacity and energy of a battery.167

However, it is challenging to understand where inside a battery resistance growth originates using only full168

cell measurements because of the convolution of multiple effects from both electrodes. The resistances of169

individual electrodes are highly dependent on their respective electrode’s lithiation state and degradation.170

In addition, as cells age under diverse usage conditions, individual electrodes can go through various171

degradation pathways such as cathode structural changes [77] and anode solid electrolyte interface (SEI)172

formation [78]. These changes lead to varying degrees of electrode slippage or SOC shifts, adjusting the173

relative lithium composition of the cathode and anode at a given full cell SOC (SI Fig. S22).174

To understand the complex relationship between electrode degradation and resistance growth in175

a full cell, we expand on the “protocol model” discussed in the previous section to include EOL176

electrode-specific capacities/ SOCs metrics as input features. This “explanatory model” aims to learn the177

relationship between the physically meaningful electrode-level features and the mechanistic SOH metric178

of interest (Fig. 4a). In this section, we investigate the changes in the electrode-specific capacities/SOCs179

and resistances with cycling. As such, the model inputs are the changes in SOH metrics from BOL to EOL180

(represented by ∆). The model output here is the low SOC (30%) total resistance (summation of Rohm,181

Rct, and Rp, SI Section S.3.2). We choose this health metric as the example target of our explanatory182

model because resistance at low SOCs are typically the largest and limit the discharge capacity.183

Fig. 4b lists the most dominant features contributing to the observed total resistance growth. From184

the SHAP analysis, we observe that two electrode-specific features, ∆SOCPE,2.7V and ∆SOCNE,2.7V, are185

dominant features impacting the total resistance but show opposite relationships with resistance growth186

(Fig. 4b,c). Surprisingly, negative electrode over-discharging (∆SOCNE,2.7V < 0) leads to lower resistance187

increase. This is unexpected because electrode kinetics are typically most sluggish at the SOC extremes;188

therefore, at low SOC, we expect that resistance should increase in the direction of deeper discharge for189

an electrode [76].190

To understand the origin of this effect, we recall how ∆SOCPE,2.7V and ∆SOCNE,2.7V are calculated.191

These quantities are calculated at a specified full cell voltage (2.7V for this example) and, as a result, are192
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highly correlated (Fig. 4d, SI Section S.8.1). This correlation arises because when one electrode’s SOC193

shifts, regardless of the aging mechanism, the other electrode’s SOC must shift in the opposite direction to194

produce the same measured full cell voltage (SI Fig. S22 explores this in further detail). In general, SHAP195

is unable to differentiate between highly correlated features, and repeating the SHAP analysis multiple196

times reveals that either ∆SOCPE,2.7V or ∆SOCNE,2.7V can emerge as the most dominant feature (SI197

Fig. S20). However, if ∆SOCNE,2.7V is removed from this explanatory model, for example, ∆SOCPE,2.7V198

appears as the dominant feature (SI Fig. S21). From this analysis, we understand that, while negative199

electrode over-discharging (∆SOCNE,2.7V < 0) leads to lower resistance increase, the correlated metric200

positive electrode over-discharging (∆SOCPE,2.7V < 0) leads to higher resistance increase, in line with201

the understanding that electrode kinetics are most sluggish at SOC extremes. Combining statistical202

analysis with scientific understanding of battery materials, we rationalize that low SOC resistance rise203

is dominated by the over-discharging of the positive electrode.204

Our framework exemplifies the value of SHAP as a tool for identifying correlations between input205

features and the target mechanistic SOH metrics. While the ML method alone does not differentiate206

between the contributions from two highly correlated electrodes, the explainable features together with207

scientific knowledge helps to hypothesize causation. Although we choose in this section to highlight208

and analyze low SOC resistance as one example, we emphasize that the approach generalizes to any209

mechanistic aging feature of interest (SI Section S.8.3).210
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Fig. 4: Analyzing EOL cell-level performance metrics through electrode capacities/SOCs. a)
Schematic representation of the explanatory models to understand the degradation of cell-level performance met-
rics. Gray rectangles indicate cycling parameters, and red rectangles indicate mechanistic SOH metrics that are
obtained at EOL. b) SHAP feature importance ranking from the random forest model fit on 30% SOC total resis-
tance in descending order. The ∆SOCs are the most important features, but show an opposite relationship with
resistance increase. c) One example row of a matrix plot summarizing the information in the SHAP analysis. d)
∆SOCPE,2.7V plotted against ∆SOCNE,2.7V at EOL for 146 cells. Color bar indicates full cell total resistance
growth at 30% SOC. The high correlation indicates that feature importance can be convoluted. With knowledge
that resistance values of electrodes increase at extremes of the SOC range, we determine that resistance increase
is driven by the positive electrode.

5 Early Prediction Using Explainable Features211

Finally, we quantify and rationalize the predictive power of explainable features in early cycles, and212

demonstrate the value of features extracted from the early diagnostic cycles for early prediction of the213

16 EOL mechanistic SOH metrics. Building upon our protocol model in which random forest regression214
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models were employed to correlate EOL mechanistic aging features to cycling parameters, we construct215

a “diagnostic-aided model” that uses both cycling parameters and early values of the mechanistic SOH216

metrics (specifically, the evolution between the 1st and 3rd diagnostic cycle, Fig. 5a) as inputs to our217

interpretable ML model. The inclusion of features from early diagnostic cycles differentiates between cells218

with the same cycling parameters, giving insight into cell-to-cell variability in fixed aging conditions.219

We perform similar SHAP analysis as demonstrated in the previous sections on our diagnostic-aided220

model and present the results in an aging matrix plot in Fig. 5b (see SI Section S.9.5 for parity plots221

and full shap analysis). For the mechanistic SOH metrics, the diagonal entries of the degradation matrix222

correspond to self prediction (i.e., predicting the EOL value of a given metric using its early value).223

Interestingly, while the features on this diagonal might be expected to consistently be the most predictive,224

this is not always the case. For example, the early prediction of Rct is dominated by Vcharge. Additionally,225

the early prediction of EFC is dominated by Rp, rather than by QRPT0.2C; the latter is the metric used226

to define the EOL cutoff, and thus EFC at EOL. The result highlights the importance of a detailed227

tracking of battery SOH. While a given degradation mode might dominate the EOL values of certain228

mechanistic SOH metrics, the best early indicators for the onset of that mode may be a different metric229

or set of metrics.230

Since SHAP analysis cannot differentiate between correlated input features, in order to draw robust231

conclusions about the importance of early cycle features, it is necessary to also consider a “diagnostic-232

only” model, excluding cycling parameters as input features (SI Section S.9.4). In principle, this may233

affect the relative feature importance of the early cycle features which correlate with specific cycling234

parameters. In addition, this type of model may be preferred in cases where you either do not directly235

have access to cycling conditions, cycling conditions are kept constant, or the relationship to cycling236

conditions is not the focus [79]. In this case, the exclusion of cycling conditions does not meaningfully237

affect the ranking of the feature importances (see SI Section S.9.4 for further details).238
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Fig. 5: Early prediction of mechanistic SOH metrics. a) Architecture of the diagnostic-aided model where
the blue rectangles indicate values that are extracted early in the cycling and red rectangles are extracted at EOL.
b) SHAP analysis degradation matrix plot showcasing the importance of cycling protocols and early prediction
features on predicting mechanistic SOH metrics. All early prediction features are extracted as the difference of
mechanistic SOH metrics from 1st to 3rd diagnostic cycle (annotated as d3-d1).

6 Conclusions239

In this study, we develop a holistic framework for revealing and explaining coupled battery aging240

pathways by combining interpretable ML, physically-derived mechanistic SOH metrics, and a diverse241

dataset spanning over 200 distinct cycling conditions. By tracking a comprehensive set of 16 mechanistic242
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aging features, we fully describe the battery SOH through an aging matrix, provide insight into bat-243

tery degradation mechanisms and also identify mechanistic features from early cycles that enable early244

predictions.245

Through our interpretable ML framework, we deepen our physical intuition on battery degradation246

with a diverse dataset. While interpretable ML tools can be used to generate hypotheses and summaries of247

the dataset, the findings must be further validated with physical characterization to gain confidence. We248

urge the field to use the dataset presented here to expand upon this work while keeping interpretability249

in mind as to enrich our understanding of battery degradation.250

7 Methods251

7.1 Data Cycling and Generation252

All cells in this study were harvested from a newly purchased 2019 Tesla Model 3. These 21700 cylindrical253

cells were manufactured by Panasonic and tested to have a low-rate capacity of 4.84Ah. The positive254

electrode is NCA (approximately 90-5-5 composition) and the negative electrode is a graphite-SiOx blend.255

Cells were cycled in CSZ ZP-16-2-H/AC environmental chambers set to 25°C, and fitted with 4-point256

contact cylindrical cell fixtures from Korea Thermo-Tech Co. Ltd. assembled by SpectraPower. The cells257

were cycled using two 96 channel Maccor Series 4000 battery cyclers.258

The cells are subject to two types of cycling: aging cycles and diagnostic cycles. The aging cycle259

consists of a multi-step CC-CV charge and a CC discharge. Information on cycling protocol, parameters260

varied and their distribution see SI Section S.2.2. The diagnostic cycle consists of three main portions:261

a reset cycle, a hybrid pulse power characterization (HPPC) cycle [69], and a rate performance test262

(RPT) sequence. The reset cycle, resets the transient kinetics due to the aging cycles, HPPC probes263

resistance at different SOC increments, and the RPT extracts rate-dependent capabilities (Fig. 1b). For264

information on diagnostic cycle protocol see SI Table S2. This cycling data is automatically backed up to265

an S3 bucket and subsequently processed through the BEEP processing pipeline for use in analysis [80].266

7.2 Differential Voltage Fitting267

We implement differential voltage fitting (DVF) to estimate properties of the battery at the electrode268

level. Similar methodologies have been implemented by other groups [23, 48, 50, 81, 82]. This method269

extracts electrode capacities and lithium inventory: QPE, QNE, and QLi. Additional information, such as270

the SOC of either electrode at a full cell specified voltage is further calculated: SOCPE,2.7V, SOCNE,2.7V,271

SOCPE,4.0V and SOCNE,4.0V. The DVF routine employed non-invasively probes degradation by fitting272
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the measured 0.2C RPT full cell differential voltage profile with an emulated full cell profile by stretching273

and translating the voltage profiles of the cathode and anode. Details of the fitting methodology and274

feature extraction are provided in SI Section S.3.3. Additionally, a comparison to DVF performed at275

C/40 is provided in S.6.1.276

Reference voltage profiles for the cathode and anode are acquired through destructive tear down of277

the full cell to extract cathode and anode sheets. Portions of the sheet are then cycled in a pouch cells278

with a lithium counter electrode at various low rates. Details of the experimental electrode extraction279

and measurement procedure are in SI Section S.4.280

7.3 Machine Learning Models281

Random forest regression was chosen as the machine learning model of choice for all models in this work282

due to its ability in capturing non-linear relations with input features. We first generate a train/test split283

of the data, and cross validation folds on the training split. The cells that go in to the different splits are284

chosen randomly for the explanatory model, but an inside-of-domain testing scenario for the protocol285

only, diagnostic-only, and diagnostic-aided models (see SI Section S.9.1 for details). Random forest hyper286

parameters are optimized via grid search cross validation. From the subsequent trained model we report287

the RAE metric to accurately compare the prediction performance on different mechanistic SOH metrics288

of different scales and distributions. To determine feature importances we then use the SHAP python289

library on the fitted model to extract SHAP values for all features and datapoints (see SI Section S.9.5290

for full parity plots and SHAP analysis). To summarize this information, we then take the absolute mean291

feature importance and report this value in the matrix plots.292

8 Data Availability293

Raw data and data structured via the BEEP pipeline [80] will be available at the time of publication294

9 Code Availability295

Code for figure generation, and random forest model building will be available at the time of publication.296
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